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Introduction
This review focuses on the linkage between glycoconjugate 

structure/function and intracellular protein kinase activity 
modulation. Tumor-associated, aberrant glycosylation of cell 
surface glycoconjugates has significant impact on intracellular 
phosphorylation cascades.  Some recent studies have shown that 
altering specific glycosyltransferase gene expression in malignant 
human glioblastoma models not only suppresses tumor growth in 
vivo, but alters the activities of specific kinases as well [1,2]. These data 
suggest that glycoconjugate-mediated protein kinase/phosphatase 
activity modulation may help explain how altered glycogene 
expression can lead to enhanced metastasis and invasivity and provide 
a new approach for the creation of effective anti-cancer therapeutics.

N- And O-Glycan-Mediated Signaling
N-linked glycans (asparagine-linked glycans) are the major

post-translational constituents of glycoproteins in eukaryotes. Their 
biosynthesis takes place largely in the endoplasmic reticulum and 
Golgi apparatus where the potential to synthesize a large diversity of 
structures from high-mannose N-glycans into a large repertoire of 
hybrid and complex N-glycan subtypes that are secreted or positioned 
at the vertebrate cell surface. Since the cloning and sequencing of 
the entire glyco-transcriptome has been completed, studies on the 
manipulation of genes that regulate the N-glycan diversification 
pathways aimed at characterizing their physiological function have 
been very productive over the past several decades. A number of 
glycoprotein N-glycan structures, particularly growth factor receptors 
and adhesion molecules such as integrins, galectins, selectins, and 
cadherins, appear to contribute to folding, stability, and biological 
function of the proteins.

The modification of serine or threonine residues on proteins by 
addition of a GalNAc residue results in an O-linked oligosaccharide 
or O-glycan. O-glycan biosynthesis is simpler than asparagine 
(N)-linked oligosaccharide generation in that a lipid-linked 
oligosaccharide precursor for transfer to protein is not required. 
The initiating event is the addition of the monosaccharide GalNAc 
(from UDP-GalNAc) to serine and threonine residues catalyzed by a 
polypeptide GalNActransferase (GalNAcT). O-glycans are commonly 
biantennary structures, less branched than most N-glycans(Figure 1). 

The frequency of O-glycosylation varies and, on certain tumor cells, 
O-glycans may be as abundant as N-glycans. O-glycosylation plays a
key role in the control of cell differentiation and growth through both 
proliferative and apoptotic pathways.

Growth factor receptor signaling

 The remodeling of cell surface growth factor receptors through 
modification of their oligosaccharide structures is associated with 
the functions and biological behavior of most tumor cells, including 
highly malignant glioblastomas. For example, theepidermal growth 
factor receptor (EGFR) is highly glycosylated and EGFR amplification 
is among the most prevalent molecular event during gliomagenesis 
and development. As such, modulation of EGFR function by altered 
glycan structures has been extensively characterized over the past 
several decades by a number of laboratories.

Core fucosylation of EGFRs, mediated by α1, 6 fucosyltransferase 
8 (FUT8), has been shown to contribute to tumor malignancy and to 
their invasive and metastatic potential. FUT8 catalyzes the transfer 
of fucose from GDP-fucose to N-linked type complex glycopeptides 
and is distinct from other, more common fucosyltransferases 
which catalyze α1, 2, α1, 3, and α1, 4 fucose additions. Loss of 
core fucosylation results in downregulation of EGFR-mediated 
signaling pathways, primarily involving decreased phospho-ERK 
and phospho-JNK [3]. In addition, core fucosylation by FUT8 also 
regulates the high affinity binding of EGFR, which is both required 
and sufficient for EGF-induced responses [3]. EGFR is also decorated 
with N-glycans synthesized by β1,4-mannosyl-glycoprotein 4-β-N-
acetylglucosaminyltransferase 3 (GnT-III) in many tumor types, and 
these alterations dramatically influence tumor progression [4]. In 
addition, forced overexpression of GnT-III, a glycosyltransferase that 
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Abstract
The oligosaccharide chains, or glycans, that decorate cell surface glycoproteins and glycolipids are among the most 

complex and diverse structures in vertebrate cells. It is estimated the well over half of all human proteins are glycosylated. 
Their expression is exquisitely regulated and is the result of the coordinated activity of distinct glycosyltransferases 
and glycosyl hydrolases that add or remove individual sugars to complete each glycan chain. Aberrantly expressed 
cell surface glycoconjugates are associated with malignant transformation, tumor progression, and metastasis and are 
predominantly the result of alterations in their biosynthetic machinery. They mediate key pathophysiological events during 
tumorigenesis including altered cellular adhesion and invasivity, molecular trafficking, receptor activation, and intracellular 
signal transduction in tumors.  
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plays a major role in the biosynthesis of hybrid and complex types 
of N-linked oligosaccharides [5], significantly reduces the ability 
of EGF to bind to its receptor, reduces EGFR autophosphorylation, 
and subsequently blocks EGFR-mediated Erk phosphorylation in 
U373MG glioma cells [6] and in PC12 cells [7].

Glycan structures on other growth factor receptors also influence 
intracellular signaling cascades. In addition to targeting the EGFR, 
GnT-III-mediated glycan changes have also been described on the 
PDGF receptor, similarly influencing tumor progression[8]. Nerve 
growth factor binds to its receptor, TrkA, on the surface of PC12 cells, 
resulting in TrkA receptor dimerization and phosphorylation [9]. 
TrkA-mediated neurite outgrowth and its tyrosine phosphorylation 
are blocked as the result of the transfection of GnT-III into PC12 cells, 
suggesting that bisecting structures also participate in the regulation 
of TrkA functions [10].

Fibroblast growth factor receptor (FGFR) forms a ternary 
complex at the cell surface with its ligand, FGF, and heparan sulfate 
proteoglycan which in turn leads to activation and phosphorylation 
of the receptor tyrosine kinase that triggers various intracellular 
signaling cascades, including the MAPK pathway [11-14].Lastly, the 
N-glycan β1,6GlcNAc branching associated with GnT-V activity 
can promote the cell motility through specifically triggering Rho 
family signaling. Upregulation of Rac1 but downregulation of RhoA, 
together with dephosphorylation of cofilin play the indispensable 
roles for GnT-V- and β1,6GlcNAc-driven cell motility and phenotypic 
changes [15].

Integrin-mediated Signaling
The effects of cellular adhesion to the extracellular matrix (ECM) 

are primarily mediated by integrins, a family of heterodimeric cell 
surface receptors that bind to distinct, although partially overlapping, 
subsets of ECM proteins. The resultant mechanical and chemical 
signals regulate the activities of cytoplasmic kinases, growth factor 
receptors, and ion channels and control the organization of the 
intracellular actin cytoskeleton. These signals also control the action 
of receptor tyrosine kinases (RTKs), determining whether cells 
proliferate and migrate in response to soluble growth factors and 
cytokines. Most integrins activate focal adhesion kinase (FAK) and 
Src Family Kinases (SFKs), causing phosphorylation and signaling 
from p130-CAS and paxillin. A subset of integrins, α1β1, α5β1, and 
αvβ3, also activate the adaptor protein Shc. 

Alterations in integrin glycosylation profoundly affect their 
capacity to transduce intracellular signals. Integrin engagement 
during normal cell adhesion leads to intracellular phosphorylation, 
primarily phosphorylation of focal adhesion kinase (FAK), and 
normal regulation of gene expression, cell growth, cell differentiation 
and survival from apoptosis [16]. Forced overexpression of GnT-
III in human gliomas inhibited α5β1 integrin-mediated cell 
spreading and migration, and phosphorylation of FAK [17]. In 
addition, increased expression of the glycosyltransferase β1,3-N-
acetylglucosaminyltransferase 6 (core3-synthase) increased core3 
structure on α2β1 integrin, leading to decreased tumorigenesis by 
attenuating the maturation, heterodimerization, and phosphorylation 
of focal adhesion kinase (FAK) [18]. Expression of the normally 
quiescent, α2,6sialyltransferase ST6Gal1, in gliomas was shown to 
lead to the replacement of terminal α2,3-linked sialic acids on the 
β1 subunit of the a3b1 integrin with α2,6-linked sialic acids.  This in 
turn led to inhibition of adhesion-mediated tyrosine phosphorylation 
of FAK, modification of actin cytoskeletal dynamics, and marked 
decreases in invasivity and tumorigenesis both in vitro and in vivo 
models [1,2,19,20].   Thus, alterations in signaling thru FAK and 
its downstream effectors appears to be an overarching theme and 
implies that indirect modulation of downstream kinase(s) by altering 
glycosyltransferase gene expression, rather than direct kinase activity 
modulation, may be a key to how differential glycogene expression is 
related to alterations in tumor cell metastasis, invasivity and growth 
control.

Cell adhesion molecule (cam)-mediated signaling

The galectins, selectins, and cadherins are families of lectins that 
have been strongly implicated in many cancers [21,22]. Although 
they are typically not themselves glycosylated, they play pivotal roles 
in the recognition of cell surface glycoconjugates and activation of 
intracellular signals.

The galectins are defined by shared sequence elements and by 
affinity for β-galactosides. Galectins are intimately involved in the 
modulation of the cell cycle, apoptosis, tissue invasion, metastasis, 
angiogenesis and tumor immune surveillance. Galectin-3 has 
been proposed to enhance tumor growth by being antiapoptotic, 
proangiogenic, and to promote metastasis by mediating effects 
on cellular adhesion. Binding of galectin-3to branched N-glycan 

Figure 1: N-Glycan structure and O-Glycan structure.
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ligands modulate focal adhesion remodeling through FAK and 
phosphoinositide 3-kinase (PI3K) activation, local F-actin instability, 
and α5β1 integrin translocation to fibrillar adhesions [23]. The 
overexpression of galectins has been correlated with the aggressiveness 
of a large number of tumors and therapeutic approaches targeting 
their functional inactivation have shown promise [24].

Selectins are also a family of cell adhesion molecules (CAMs). 
All selectins are single-chain transmembrane glycoproteins that 
themselves bind other sialic acid rich glycoproteins. The vast majority 
of highly invasive or metastatic tumors express significantly increased 
cell surface sialoglycoproteins although to date there have been few 
selectin-directed therapeutic approaches reported [25].

Cadherins mediate cell adhesion and migration and play a 
fundamental role in normal development in that they participate 
in the maintenance of proper cell-cell contacts. Cadherins are 
extensively modified post-translationally via both glycosylation 
and phosphorylation. Oligosaccharide remodeling via many 
diverse approaches regulates E-cadherin function [26,27].On the 
cell surface, cadherins tend to be concentrated at cell-cell junctions 
and proximally associated with actin bundles. The cytoplasmic 
domains of the cadherins are associated with cytoplasmic proteins 
termed catenins. Deletion of the cytoplasmic domain destroys these 
interactions and also eliminates cadherin function. Selective changes 
in N-glycosylation also directly affect the tyrosine phosphorylation 
of β-catenin. For example, forced overexpression of GnT-III leads 
to suppression of tyrosine phosphorylation of β-catenin after EGF 
stimulation in stable GnT-III transfectants[28]. Recently src, yes, 
and lyn kinases have also been found co-expressed with cadherin at 
cell-cell junctions and it has been proposed that these kinases may 
be responsible for cadherin phosphorylation used for inter- and 
intracellular signaling [29,30].

In neuroblastomas and rhabdomyosarcomas, the addition of 
polysialic acid (PSA) to CAMs, predominantly neural cell adhesion 
molecule (NCAM), is mediated by the differential expression of 
the polysialyltransferaseST8SiaII, ST8SiaIV and ST8SiaV [31] and 
has been shown to be a positive modulator of tumor malignancy 
[32-34]. NCAM is highly concentrated at cell-cell contact sites, and 
the number of NCAM-positive cell-cell contacts has been shown 
to increase following PSA removal [35]. Moreover, previous studies 
have demonstrated that PSA affects NCAM-dependent signaling, is 
involved with regulation of tumor cell proliferation, survival, and 
differentiation, and that these effects are mediated via the direct 
involvement of the p44/p42 MAPK ERK1/2 pathways [36-38].

Modulation of Additional Signaling Pathways

The role of the AKT and MAPK pathways in gliomas have been 
a primary focus for decades and large therapeutic development 
programs focusing on small molecule inhibitors of key members 
of these pathways have been established. Modulation of the kinase 
activities in these pathways for therapeutic gain may also be achievable 
via glycobiology-based approaches. For example, β1,4GalTV functions 
as a positive growth regulator in gliomas via activation of AKT and 
MAPK pathways [39], both of which are important for facilitating 
tumor cell proliferation, inhibiting apoptosis, and maintenance of the 
tumor phenotype [40-42]. Secondly, FUT4 overexpression promotes 
cell proliferation through crosstalk of the MAPK and PI3K/Akt 
signaling pathways increased S-phase via augmenting cyclins and 
CDKs, specifically by decreasing cyclin-dependent kinase inhibitor 1 
(p21) and p27kip1, and increasing pRb. Interestingly FUT4 also directly 
activates ERK1/2, p38 MAPK, and AKT. Lastly, the reduction in the 

expression of GalTV leads to a reduction of the levels of phospho-
AKT (ser473/thr308) and phospho-JNK1/2 (thr183/tyr185). Clearly, 
although complex, there are multiple ways in which crosstalk between 
major glyco- and phospho-mediated signaling pathways can take 
place.

Ganglioside-Mediated Signaling
Gangliosides are sialic acid-bearing glycosphingolipids that 

are an important component of the cell surface glycoconjugates 
expressed on all vertebrate cells Figure 2, [43]. They influence tumor 
growth and progression through modulation of adhesion, migration, 
and angiogenesis, and their expression is markedly altered in a 
variety tumors. Gangliosides are important transducers of cell signal 
transduction events due to both direct and indirect interactions 
with growth factor receptor tyrosine kinases (GFRTKs), membrane-
associated or cytosolic protein kinases, and membrane microdomain-
associated protein kinases. 

Aberrantly expressed cell surface gangliosides directly impact 
intracellular signaling by affecting intracellular localization of 
integrins, src, and caveolin into or out of glycolipid-enriched 
microdomains[44]. The association of GD2 with the integrin/FAK 
macromolecular complex has also been demonstrated. Ganglioside 
alterations in epithelial cells leading to changes in (i) adhesion to 
specific extracellular matrix components, (ii) relative rates of cellular 
proliferation and apoptosis, (iii) protease activation and function, 
and (iv) disruption of cell surface integrin:growth factor receptor 
associations have also been described [45]. The direct binding of GT1b 
to α5β1 integrin directly leads to increased apoptosis via decreased 
activity of the integrin-linked kinase/protein kinase B/AKT pathway 
[46]. Although it remains to be determined how glycosphingolipid 
modulation affects gliomainvasivity and tumor metastasis to the 
brain, it is clear that aberrant signal transduction plays a pivotal role.

Ganglioside-dependent modulation of several well-known 
cytosolic protein kinase activities have also been described, 
identified primarily in cell-free systems [47]. Gangliosides suppress 
phospholipid and Ca+2-dependent activity of protein kinase C (PKC) 
[48]. Contrary to this, PKC is activated by GM3 along with phorbol 
ester as a substitute for the phospholipids [49].  Cyclic-AMP dependant 
protein kinase A (PKA) activity is stimulated by gangliosides[50], 
while cAMP-independent activity of catalytic subunit of PKA is 
suppressed by gangliosides[51]. CaMKII activity itself is modulated 
by gangliosides[52]; in the absence of Ca+2/calmodulin, gangliosides 
activate CaMKII, while higher concentrations of gangliosides prevent 
its activation. The mechanisms of this complex regulation of CaMKII 
activity by gangliosides are due to direct interactions between the 
gangliosides and regulatory domains of the kinase and between the 
gangliosides and Ca+2/calmodulin[53,54].

TrkA is the high-affinity tyrosine kinase-type receptor for nerve 
growth factor (NGF). TrkA activity is enhanced by GM1 ganglioside, 
again by direct interaction of the ganglioside and the receptor [55]. 
Conversely, the activity of other growth factor receptors including the 
epidermal growth factor receptor (EGFR) is unaffected by modulation 
of GM1. EGFR activity is, however enhanced by GM3 and GD1a, also 
by the direct interaction of the extracellular domain of the receptor 
and the gangliosides.

The ganglioside GM3, the first ganglioside in the step-wise 
biosynthesis of the ganglioside series of glycosphingolipids, has been 
among the most studied.  The PTEN gene is a tumor suppressor gene 
frequently mutated in glioblastoma[56]. GM3 induces a marked 
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and 3-sulfoglucuronylparagloboside and correlated with decreased 
transcripts for UDP glucose ceramideglucosyltransferase-like 2 
(UGCGL2) and ST6GALNAC2. In a parallel phosphoproteomic 
study of the same cell line (refer to [72]), α-glucosidase (GANAB), 
ribophorin 1 (RPN1) and dolichyl-diphosphooligosaccharide--
protein glycosyltransferase subunit STT3B were found to be increased 
at the protein level, consistent with the lipidomic findings. Changes 
in the cell surface glycolipids would be expected given that WP1193 
treatment results in release of glioma stem cells (GSCs) from the 
characteristic clusters (neurospheres) formed by GSCs in cell culture 
(Table:1).

Direct Glycosylation of Signaling Molecules
In addition to the indirect effects that altered N- and O-glycans 

and gangliosides have on intracellular signaling, there is an emerging 
literature that describes the effects of differential glycosylation of the 
signaling molecules themselves.

Notch

Notch is a transmembrane receptor which plays an important 
role in numerous developmental processes and cell fate decisions 
[73]. Notch is modified by O-fucose[74] added to serine or threonine 
on extracellular EGF-like repeats by protein-O-fucosyltransferase 1 
(POFUT1). This modification is essential for proper Notch function 
[75-77]. Notch signaling acts primarily as a result of the formation 
of an active nuclear transcription factor and interactions between 
the Notch and Ras pathways have both antagonistic and synergistic 
effects in different contexts [78]. As is becoming increasingly clear in 
the case of other (cross-talking) pathways, these interactions can be 
cooperative or antagonistic and multiple levels of feedback are possible 
depending on the context. Previous studies have demonstrated a 
correlation between the expression of Ras and Notch1 in breast cancers 
[79] suggesting a possible interaction between these two pathways. A 

expression of PTEN which, in turn, blocks PI-3K/AKT survival 
signaling. PTEN expression stimulated by ganglioside GM3 sustains 
the function of p53 as a transcriptional factor by inhibiting of MDM2 
activity through the inactivation of PI-3K/AKT signal pathway [57]. 
Localized in the membrane, GM3 is known to interact with other 
transmembrane proteins such as the motility-regulatory protein 
(CD9) and EGF receptor (EGFR) to form a complex, which facilitates 
cell adhesion, cell motility, and cell signaling [58-60]. Endogenous 
depletion of the GM3 content by sialidase gene transfection in A431 
cells results in increased EGFR autophosphorylation and activity 
[61]. Conversely, direct exogenous administration of GM3 results in 
inhibition of EGFR function [62], likely due to inhibitory effects on 
receptor autophosphorylation. It has been demonstrated in a number 
of tumors that GM3 exerts its effect on EGFR though the activation of 
a tyrosine phosphatase [63].

Disialogangliosides, including GD1a, has been found to increase 
EGFR dimerization and enhance receptor signaling in either the 
presence or absence of the ligand [64]. GD1a has also been shown to 
suppress FBJ cell metastasis[65] and bind c-Met to suppress signal 
transduction following HGF binding in FBJ-LL cells; in GD1a-rich 
cells, the phosphorylation of c-MET by HGF is suppressed compared 
to FBJ-LL cells [66]. Interference of NF-kB activation by increased 
GD3, has been observed in the past in various cell types [67-70].

Increases in GM2αganglioside by overexpression of ST6GalNAC5 
in U373MG glioma cells leads to decreased invasivity, decreased 
adhesivity to fibronectin, increased adhesion-mediated tyrosine 
phosphorylation of HSPA8, and the inhibition of glioma growth in 
vivo [1].

Changes in glycogene expression and expression of gangliosides 
by GSC11 glioma stem cells in response to STAT3 phosphorylation 
inhibition by WP1193 have been studied [71]. WP1193 treatment 
resulted in decreased expression of gangliosides GM3, GM1b, GD1, 

Figure 2: Ganglioside biosynthetic pathways.
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functional cooperation between constitutively active Notch1 and Ras 
in the transformation of immortalized breast epithelial cells as well as 
in breast stem cell self-renewal has been described [80]. Dysregulation 
of both Notch1 and Ras signaling is also characteristic of high grade 
gliomas[81,82]. That POFUT1 is also differentially expressed in these 
tumors [83] provides an alternative, glyco-based strategy targeting 
the Notch pathway for therapeutic gain.  

Pecam
 PECAM (platelet endothelial cell adhesion molecule) is considered 

to be an inhibitory receptor, and its cytoplasmic region possesses 
an immunoreceptor tyrosine-based inhibitory motif that becomes 
tyrosine-phosphorylated and subsequently recruits and activates 
Src homology 2 domain-containing protein-tyrosine phosphatase 2 
(SHP2) for the transduction of inhibitory signals to the cell [84]. SHP-
2 in other cell types has been implicated as a multifunctional signaling 
molecule, acting both as a phosphatase to activate nearby Src family 
kinases and/or as an upstream mediator of p21 ras activation via its 
ability to bind the Grb2/Sos complex. Homophilic interactions of 
PECAM in endothelial cells are dependent on cell surface, ST6Gal1-
dependent, α2,6-linked sialic acids. In the absence of α2,6-sialic 
acid, PECAM is unable to remain on the cell surface and results 
in incomplete transduction of inhibitory signals, including those 
required for its antiapoptotic role. In PECAM-deficient endothelial 
cells, the absence of α2,6-sialic acid down-regulates the tyrosine 
phosphorylation of PECAM and subsequent recruitment of SHP-2 and 
ultimately renders these cells more sensitive to apoptotic signals [85].

Receptor protein-tyrosine phosphatase kappa (rptpκ)
GnT-V activates EGF-mediated signaling and, in part, promotes 

cell migration through the modification of N-glycans on receptor 
protein tyrosine phosphatase kappa (RPTPκ). Overexpression of 
GnT-V in the human hepatoma SMMC-7721 cell line has been 
demonstrated to induce the addition of β1,6 GlcNAc branch to 
N-glycans of RPTPκ and decrease the level of RPTPκ protein 
expression, ultimately contributing to the decreased phosphatase activity 
of RPTPκ and thereby activating subsequent EGFR signaling [86].

Receptor protein-tyrosine phosphatase beta (rptpβ)

Results using SH-SY5Y neuroblastoma cells indicate that GnT-
Vb activity promotes the addition of the O-mannosyl-linked HNK-

1 modification found on the developmentally regulated and neuron 
specific receptor protein-tyrosine phosphatase β (RPTPβ). The 
HNK-1 epitope is a terminal sulfoglucuronyl carbohydrate structure 
that plays important roles in neural cell adhesion and migration 
[87,88] and has been shown to be expressed on O-mannosyl-linked 
glycans[89]. These changes in glycosylation accompany decreased 
cell-cell adhesion and increased rates of migration on laminin. In 
addition, expression of GnT-Vb promotes RPTPβ dimerization and 
inhibits its intrinsic phosphatase activity, resulting in higher levels of 
phosphorylated β-catenin, suggesting a mechanism by which GnT-Vb 
glycosylation couples to changes in cell adhesion. GnT-Vb-mediated 
glycosylation of RPTPβ also promotes galectin-1 binding and RPTPβ 
retention on the cell surface [90].

CD45
 CD45 is a receptor-like protein tyrosine phosphatase expressed 

on the cell surface of all hematopoietic cells and glioma stem cells. 
Its phosphatase activity is important for removing a negatively 
regulating COOH-terminal phosphate on Src family kinases, making 
CD45 critical for the induction of signaling events in these cells. A 
direct role of glycosylation in regulating CD45 function has been 
described. CD45 catalytic activity is curtailed by its dimerization; 
enzymatic blockade is mediated by an “inhibitory wedge”, by which 
one CD45 molecule masks the phosphatase-active site of its partner 
[91,92]. Mutation of a key residue in this “wedge” leads to chronic 
activation of the phosphatase [92]. Other data suggest that CD45 
dimer formation is determined by inclusion of the alternative exons 
and sialylation[93]. CD45RA dimers can form if glycosylation is 
perturbed through the removal of sialic acids or prevention of normal 
O-linked glycan synthesis, and this leads to a reduction in the capacity 
of CD45RA to support TCR-triggered activation [93]. An interesting 
prediction from these data is that CD45RA expression per se will not 
enhance signaling; rather, this effect will depend on sialylation and 
be conditioned, therefore, by the expression of sialyltransferases and 
neuraminidases within and, in the case of neuraminidases, outside, 
the cell.

Direct competition with o-linked β-n-acetylglucosamine 
(o-glcnac)

Like phosphorylation, the addition of a single O-GlcNAc 
(O-GlcNAcylation) by O-GlcNActransferase (OGT) is a ubiquitous, 
reversible process that modifies serine and threonine residues on both 
nuclear and cytoplasmic proteins. Unlike most glycans, however, 
it is not elongated to more complex structures. In many cases, 
O-GlcNAcylation is in direct competition with phosphorylation at 
the same sites [94,95]. For example, forced overexpression of OGT 
increased the inhibitory phosphorylation of cyclin-dependent kinase 
1 (CDK1) and reduced the phosphorylation of CDK1 target proteins. 
The increased phosphorylation of CDK1 is explained by increased 
activation of its upstream kinase, MYT1, and by a concomitant 
reduction in the transcript for the CDK1 phosphatase, CDC25C [95].

O-GlcNAc has been detectedon a myriad of other proteins, 
including RNA polymerase II and manyof its associated transcription 
factors, on kinases, phosphatases,cytoskeletal proteins, nuclear 
hormone receptors, nuclear poreproteins, signal transduction 
molecules, and actin regulatoryproteins (reviewed in [96]). Among the 
kinases and adaptor proteins modified by O-GlcNAcylation described 
thus far are casein kinase II (CKII) [97], glycogen synthase kinase-3ß 
(GSK-3ß) [97], insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) 
[98-100], and PI3 kinase (p85) [99]. O-GlcNAcylated phosphatases 
characterized thus far include nuclear tyrosine phosphatase p65 [101], 
and phosphatase 2a inhibitor (i2pp2a) [102].

Table 1: Linkage between individual glycogenes and signal transduction pathways.

Glycogen ID Involved kinase pathway
B3GALT5 AKT/JNK1/2/MAPK

B3GNT1 CCT6A (RAK/JRM, unpublished 
observation)

B3GNT6 (CORE 3 SYNTHETASE) FAK/SRC/SHC
FUT4 MAPK/PI3K-AKT
FUT8 ERK
GnT-III ERK
TRKA FAK/SRC/SHC
GnT-V MAPK/RHO/RAC/COFILINRPTPK
GnT-VB RPTPB

OGT CDK1, MYT1, CDC25C, CK2, GSK-3B, 
IRS1/2, PI3K, P65, I2PP2A

POFUT1 NOTCH/RAS
ST6GAL1 FAK
ST3GAL3 FAK
ST6GALNAC5 HSPA8
ST8SIAII, ST8SIAIV, ST8SIAV p44/p42 MAPK ERK1/2
SIALYLTRANSFERASE/
SIALIDASE (NEU1) SHP2, SRC, TYROSINE PHOSPHATASE
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There is no doubt that glycoconjugates and kinase activities 
are intimately linked. Repeatedly we see that alterations in the 
oligosaccharides of cell surface glycoproteins such as adhesion 
molecules, growth factor receptors and even kinases themselves, leads 
to alterations in various kinase activities that themselves play key 
roles in regulating normal cell function and cellular processes gone 
awry in cancer cells. 

While there are a significant number of reports linking 
glycoconjugates and kinases, all in all there has been no truly 
systematic effort with any particular tumor cell type to establish true 
functional linkages between the observed changes in oligosaccharide 
expression found on tumor cells and the mechanism of kinase activity 
alteration. Nevertheless the correlational data are compelling.

We have examined glycogene expression patterns in malignant 
brain tumors. From these studies we have shown that increasing the 
expression of selective glycogenes in gliomas has led to the complete 
suppression of their growth in vitro and in vivo.  We have also shown 
that in each case a unique kinase[s] was markedly expressed, again 
suggesting the possibility that expression of tumor suppressing 
glycogenes in brain tumors may lead to alterations in kinase activities 
that underlie their ability to inhibit tumor formation. Put another 
way, these studies suggest that specific glycogenes are linked to 
specific kinases. 

There are numerous intracellular signaling pathways affected 
by aberrant glycosylation in tumors. It will be fruitful to contrast 
the difference in kinomic involvement between those transducers 
that are directly phosphorylated/dephosphorylated by differential 
glycosylation (e.g., Notch, PECAM, or O-GlcNAcylated molecules) 
with those that are more indirectly involved (e.g., select gangliosides 
and sialoglycoconjugates). 

Glycogene expression is developmentally regulated and cell type 
specific. Thus when thinking about glycogene-based therapeutic 
strategies, cellular context must be considered. For example, compare 
the effect of α2,6sialylation in gliomas vs. colon tumors. In malignant, 
highly invasive gliomas, only α2,3-linked sialoglycoconjugates 
are expressed on the cell surface. Switching the N-glycan profile to 
predominantly α2,6-linked N-glycans (by forced overexpression 
of ST6Gal1) inhibits invasivity and tumorigenicity in vivo. In 
highly metastatic colon cells, α2,6sialoglycans predominate, and 
overexpression of ST6Gal1 would likely be an ineffective therapeutic 
approach. Molecular context (i.e., the endogenous glycotranscriptomic 
fingerprint) will, of course, also influence the relative roles of the 
actual signal transducer versus the downstream effector molecules. 

While there has been a significant amount of research linking 
glycobiology and protein phosphorylation, combining comprehensive 
glycotranscriptomic and glycolipidomic analyses [71,83,103] with 
more detailed, global level phosphoproteomic analyses such as those 
reported by Nilsson and coworkers [72] will be required to set the 
stage for the kind of structure-function studies necessary to establish 
the mechanistic links that will then provide the foundation for 
developing glycogene-based cancer therapeutics.
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