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Abstract

Glycogen is an important energy store of almost all living organisms. It is an alpha linked polymer comprised of
thousands of glucose units. In bacteria it is usually synthesized when carbon ions are in excess in the growth
medium and its synthesis helps for the survival of the bacteria under such nutritional conditions. Mycobacterium
tuberculosis (M. tuberculosis), accumulates glycogen during the adverse condition such as reactive oxygen and
nitrogen intermediates, low pH, nutrients and other vital element starvation for their survival in the host. Glycogen
also plays a very important role in the pathogenesis of M. tuberculosis. The biosynthesis of glycogens is mediated
by glycosyltransferases enzyme which can be divided into two families; glycogen transferase (GT) 3 and
glycosyltransferases GT 5. Regulation of glycogen metabolism in bacteria involves a complex mechanism, involving
several synthase enzymes such as glycogen synthase A (glgA), glycogen branching enzyme (glgB), and catalytic
enzyme (glgC). Another enzyme known as glycogen phosphorylase (glgP), removes extra units of glucose from the
non- reducing ends of the glycogen molecule. Several workers have recognized role of glycogen in Mycobacterial
pathogenesis, in the recent years. Trehalose-dimycolate (TDM) and trehalose-monomycolate (TMM) present in the
cell wall are indeed a precursor of mycolic acid of Mycobacteria, which plays an important role in its invasion and
pathogenesis. This review focuses on various cycles and mechanisms involved in the glycogen synthesis in M.
tuberculosis and its role in pathogenesis.
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Introduction
All living organisms present on the earth accumulates glucose as

energy storage molecules in the form of glycogen or starch [1,2].
Glycogen is a polysaccharide localized in the cytoplasm, which is
mainly utilized by bacteria, fungus or animals [3-5]. Starch is
synthesized in the plant and stored in plastids. It is composed of two
glucose polymers: amyl pectin, which is the main component and is
sufficient to form starch granules, and amylase [6]. Glycogen and
amylopectin are the complex molecules containing α-4-linked glucose
units with α-6-branching points. The length and number of branches
vary depending on the organism [5,7,8]. Glycogen is linked with α
glucose polymer with the ~90 % α-4-links in its backbone and ~10 %
α-6-linked branches [9]. It is comprised thousands of glucose units
and is generally synthesized in bacteria, when excess carbon is present
over other nutrient that limits growth [3,10]. Glycogen covered 60% of
dry cell weight and enhances the cell survival (e.g. M.tuberculosis). It
rapidly accumulates prior to beginning of sporulation in Bacillus
cereus and production of exo-polysaccharides in M. tuberculosis [11].

Glycogen and starch both are extra-large sized glucose polymers
and are the major reservoir of freely available carbon and energy
source of all living organisms such as archaea, eubacteria, yeasts and
higher eukaryotes including animals and plants. The parasitic lifestyle
appears to be related to the reduction and eventual complete
abolishment of glycogen metabolism [12]. In mammals, uptake and
utilization of glucose are under stretched control. Any defect in the
normal glucose level, lead to induce a variety of glycogen storage
diseases, like diabetes in the human [13].

M. tuberculosis, aerobic, acid fast bacilli that cause tuberculosis in
human, accumulates glycogen during the adverse condition i.e.
reactive oxygen and nitrogen intermediates, low pH, nutrients and
other vital element starvation for their survival in the host [14].
Although, glycogen accumulation does not occur during exponential
growth under laboratory culture conditions, but existence of glycogen
may increase the viability of M. tuberculosis under adverse conditions.
Glycogen also plays a very important role in the pathogenesis of M.
tuberculosis [15]. It has been validated in the M. tuberculosis, if the
organisms are physiologically inactive for long time period; its storage
of sugars becomes very important for survival. Various groups of
scientific community has been reported that, glycan’s may regulate
biochemical pathways by binding of these molecules to proteins and
lipids during the post-translational modifications via covalent and
non-covalent interactions. It also acts as a boundary between cells,
tissues and organs to organize biological processes [16]. Therefore,
from a biological viewpoint, complex glycan’s represent a promising,
but relatively untapped, source for the development of new
pharmaceutical agents. In this context, many uncharacterized
glycosyltransferase (GTs) of M. tuberculosis are of particular interest
of researchers. This review summarizes present knowledge and facts
on characterizing and putative GTs in Mycobacterium spp.

Glycosyltransferases (GTs)- A key enzymes of glycogen
synthesis

The biosynthesis of glycogen is mediated by glycosyltransferase
enzyme [17]. GTs constitutes a large family of enzymes that are
involved in the biosynthesis of oligosaccharides, polysaccharides and
glycoconjugates [18,19]. Due to enormous diversity of these enzymes,
it’s mediating a wide range of functions both structural and storage for
molecular signaling. It is present in both prokaryotes and eukaryotes
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and generally display vast specificity for both the glycosyl donor and
acceptor. In eukaryotes, glycosylation reactions occur in the
specialized compartment such as golgi apparatus and generate a wide
range of structural oligosaccharide diversity of eukaryotic cells [20].

But in prokaryotes, they produce a variety of glycoconjugates and
polysaccharides of vast structural diversity and complexity. In E. coli,
glgC, glgA and glgB gens encode glycogen synthesis enzymes and glgP
and glgX genes encode enzymes for glycogen degradation. The role of
glgC and glgA is a generation of the activated glucose nucleotide
diphosphate and linear glucan chain respectively. GlgB, or glycogen
branching enzyme, catalyzes the transfer of a fragment of 6–7 glucose
units from a non-reducing end of hydroxyl group of C6 of a glucose
unit, either on the same glucose chain or adjacent chains. GlgB is very
essential enzyme present in bacteria [21], and fungus, responsible for
glycogen accumulation. Functional glgB (encoded by the ORF
Rv1326c) is essential for normal growth of M. tuberculosis [22]. In
bacteria, glycans includes many unusual sugars which are generally
not found in vertebrates, i.e. Kdo (3-deoxy-D-manno-octulosonic
acid), heptoses, and also various modified hexoses. The modified
hexoses molecules play a very important role in the pathogenicity of
bacterial cells. In some instances, the donor substrates are lipids
(dolichol-phosphate), linked to glucose or mannose or a dolichol-
oligosaccharide precursor and play major role in the assembly
of peptidoglycan, lipopolysaccharide, and capsules [17].

Classification of glycosyltransferase (Glycogen Synthase)
Based on sequence and structural analysis, glycogen synthase (GS)

have grouped within the GTB-fold of glycosyl transferases. These
structures are characterized by the presence of two Rossmann fold
domains with a deep inter domain cleft in between that harbors the
substrate-binding and catalytic sites. GTB-fold enzymes are further
subdivided into two families, GT3 and GT5 (Figure 1). The bacterial
and archaeal GS enzymes are grouped in the GT5 family and
eukaryotic enzymes are grouped into the GT3 family and are regulated
through the allosteric activator glucose-6- phosphate (G-6-P) and
inhibitory phosphorylation.

Figure 1: Schematic representation of the Glycotransferases (GTs)
enzymes classification.

An additional point of distinction is that the bacterial enzyme uses
adenosine diphosphate (ADP) -glucose as their sugar donor, whereas
eukaryotic enzymes almost exclusively utilize uridine diphosphate
(UDP) glucose as their donor molecule. Archaeal enzymes are capable
of using both ADP and UDP-glucose as sugar donors. To date, three
dimensional structures have been determined for three members of
the GT5 family - a monomeric E. coli enzyme, dimeric Agrobacterium
tumefacians and trimeric Pyrococcus abyssi. However, these structures

have shed little light on the regulatory mechanisms controlling
eukaryotic enzymes.

Mechanisms of action
The action mechanisms of GTs are based on the use of an activated

donor, such as nucleotide di-phosphosugar, nucleoside mono-
phosphosugar or lipid phosphosugar and acceptor molecules like a
hydroxyl group of amino acid. GTs catalyzes the transfer of
monosaccharide moieties from activated nucleotide sugar (glycosyl
donor) to glycosyl acceptor molecules, forming glycosidic bonds. The
mechanism of inverting GTs is believed to be similar to the one of
inverting glycosyl-hydrolases with the requirement of one acidic
amino acid, which activates the acceptor hydroxyl group by
deprotonation [20].

c glycogen- role and regulation
In higher eukaryotes such as mammals, glycogen is synthesized at

the time of nutritional abundance. The two major tissues or organ
systems that serve as a glycogen stores in higher eukaryotes, are
skeletal muscles and liver. Other organs like brain, adipose, kidney and
pancreas are also capable of synthesizing minute quantity of glycogen.
In the skeletal muscles, glycogen provides energy for muscular
contraction during generation of glucose-6-phosphate (G-6-P) from
glycogen for entry into glycolysis as a means for ATP production and
liver glycogen play vital role in glucose homeostasis or maintaining the
blood glucose level during fasting. Any defect or mutation in the
enzymes involved in glycogen metabolism leads to development of
glycogen storage disease (GSD), which affects the liver, muscle or both
and other organs.

In the budding yeast (Sacccharomyces cerevisiae), glycogen is one
of the major reservoir of carbohydrate and accounts 20% of the dry
weight of yeast cells. The amount of glycogen accumulated in the cell
increases, when the cell enters into the stationary phase or in depletion
of essential nutrients like nitrogen and phosphorous in the growth
media. Also, Glycogen accumulation was observed when exponentially
growing S. cerevisiae exposed cells to high temperature, salt, oxidizing
agents or ethanol. The accumulated glycogen has been utilized for
their survival by yeast during nutrient deprivation [23,24].
Additionally, yeast has a growth advantage over other non-glycogen
accumulative cells, as it makes a contribution to the overall fitness of
the cell [25].

The glycogen regulation in eukaryotes is controlled by the activity
of various enzymes such as glycogenin, glycogen synthase, branching
and de-branching enzyme followed by multiple mechanisms including
covalent modification, allosteric activators and translocation within
the cells [23,25-29]. The common regulatory themes of GTs are
phosphorylation and allosteric activation by G-6-P, but the
physiological responses that interrupt these regulatory controls often
differ between different organisms and even between different tissues
of the same organism [29]. Yeast has two different isoforms of
glycogen synthase (GS), of which the nutritionally regulated isoform-2
(GSY2) has shown to be the most essential enzyme for the
accumulation of glycogen in the cells. Unlike the other higher
eukaryote, where the regulation of glycogen metabolism is primarily
control by the action of enzyme activities, in yeast it involves both
transcriptional and enzymatic responses. The transcriptional response
is dependent on the presence of the cis-element stress response
element (STRE) in the promoter of the genes involved in glycogen
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pathways. The enzymatic control of glycogen deposition is controlled
by the activation of GS through G-6-P and inactivation of Glycoside-
Pentoside-Hexuroni (GPH) through phosphorylation. Exposure of the

starved cells to nutrients activates GPH, inhibits GS resulting in the
mobilization of glycogen and vice versa.

Organisms Organism Name Enzyme Name Name of Glycotransferese GT Family References

Virus T4- Phage BGT β-Glycosyltransferase GT63 [69]

Prokaryotes

A. tumefaciens AtGS Glycogen Synthase GT5 [15]

Amycolatopsis orientalis

GtfA Β-Epi-vancosaminyl transferase GT-1 [70]

GtfB β-Glycosyltransferase GT-1 [70]

GtfD β -vancosaminyl transferase GT-1 [70]

B. subtilis SpsA Putative glycosyltransferase GT-2 [71]

Campylobactor jejuni CstII α-2-3-8-Sialyltransferase Gt-42 [72]

E. coli.

MurG β -1-4- Galactosyltranserase GT-28 [73]

OtsA Trehalose-6-phosphate synthase GT-20 [74]

RfaF Heptosyl transferase GT-9 [74]

Neisseria meningitidis LgtC α -1-4-Galactosyltransferase GT-8 [75]

Rhodothermus marinus MGS Mannosylglycerate GT-78 [76]

Mouse
Ext12 α-1-4-N- Acetylhexosaminlytransferase GT-64 [18]

ppGalNAc-T1 Polypeptide- α-GalNAc transferase GT-27 [18]

Rabbit
Glycogenin α-Glucosyltransferase GT-8 [74]

GnT1 β-1-2-GlcNAc transferase GT-13 [77]

Bovine
α3GalT α-3-Galactosyltransferase GT-6 [78]

β4GalT1 β-1-4- Galactosyltransferase I GT-7 [78]

Human

GlcAT-I β-1-3-Glucuronytransferase GT-43 [19]

GlcAT-P β-1-3-Glucuronytransferase GT-43 [79]

GTA α-3-GalNAc transferase A GT-6 [80]

GTB α-3-GalNAc transferase B GT-6 [80,81]

Table 1: Glycotransferases enzymes with available crystal structures.

Figure 2: Systemic representation of genes mediated regulatory
pathway of Glycogen synthesis in M. tuberculosis.

Prokaryotes glycogen- synthesis, degradation and regulation
The enzymology of glycogen biosynthetic and degradative processes

is highly conserved in prokaryotes [3,30]. Extracellular glucose is taken
up and converted into G-6-P by the carbohydrate phosphotransferase
system (PTS). G-6-P is further converted into glucose-1-phosphate
(G-1-P) by the action of phosphoglucomutase (PGM) and finally
converted into ADP glucose (ADPG) in the presence of Mg2+ and ATP
[30]. ADPG act as sugar donor nucleotide for the production of
bacterial glycogen by the action of glycogen synthase (glgA). After
chain elongation by glgA, glycogen branching enzyme (glgB) catalyzes
the formation of branched oligosaccharide chains having α-6-
glucosidic linkages [3]. Genetic evidence of glycogen synthesis
suggested that glgC is the sole enzyme catalyzing the production of
ADPG [30,31].

Regulation of glycogen metabolism in bacteria, involves a complex
group of factors that adjusted to the physiological and energetic status
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of the cell [32,33], expression of corresponding genes and cell-to-cell
communication [34]. At genomic level, several factors have been
described to control the bacterial glycogen accumulation. In M.
tuberculosis, it is subjected to allosteric regulation of enzymes [3,35].
The product of glgC gene is representing the signals of high carbon
and energy contents within the cell, whereas the presence of inhibitors
provides the signal at the low metabolic energy levels (Figure 2) [30].
Allosteric regulation of glgC has been extensively reviewed in recent
years including structural and functional relationships of glgC, glgA
and glgB [3,30].

Glycogen phosphorylase (glgP), which removes glucose units from
the non-reducing ends of the glycogen molecule, shows strong and
highly specific interaction between glgP and HPr (a PTS component)
by surface plasmon resonance ligand fishing [32,35]. The binding of
glgP to HPr is maximal, when HPr is totally phosphorylated and
reduce activity of glgP during log phase of M. tuberculosis and vice-
versa. It’s assumed that activity of glgP is regulated by the
phosphorylation status of Hpr and therefore allowing the
accumulation of glycogen at the beginning of the stationary phase
under glucose excess conditions (Table 1) [35,36].

Pathways of glycogen synthesis, degradation and its
regulation in M. tuberculosis

Glycogen synthesis, an endergonic process and is synthesized from
monomers of UDP-glucose. The genetic basis of glycogen synthesis
and degradation has been extensively characterized in E. coli. In E.
coli, glgC, glgA and glgB genes encode glycogen synthesis enzymes
and glgP and glgX encode enzymes for glycogen degradation [37,38].
It is expected that bacteria have been synthesize glycogen using
classical glgC-glgA pathway (Figure 3).

Figure 3: Bacterial glucan pathways. GlgC and GlgA are central to
the classical glycogen pathway. The Rv3032 pathway is associated
with methylglucose lipopolysaccharide biosynthesis. The newly
identified GlgE pathway (red) (Kalscheue et al.) may contribute to
cytosolic glycogen, capsular glucan and/or methylglucose
lipopolysaccharide biosynthesis.

The activated glucose nucleotide diphosphate generated from G-1-
P by the action of nucleotide di-phosphoglucose pyrophosphorylase
(glgC) and subsequently polymerization by glycogen synthase (glgA),
for generation of linear glucan [6,10]. Conversion of linear glucan’s
into glycogen is mediated by glgB enzyme through the transfer of oligo

glucans (non-reducing-end) to the 6-position of residual chain for the
generation of side branches [10,39].

Expressions of glgC and glgA genes are regulated by intracellular
bacterial signals, which denote the energy status of the cell [40].
Deletion or mutations in glgC gene prevent glycogen synthesis in E.
coli. [9]. The outcome of recent studies suggested that a tiny amount
of glycogen can be synthesized in naturally glgC deleted mutant
during growth under specific conditions [3,41]. Also, glgS is linked to
the glycogen synthesis process, but role is still unclear. Recent study
shows that it could be plays important role during glycogen
accumulation in E. coli [4,38,42]. In prokaryotes, glycogen has been
degraded by the combined action of two enzyme glgP (highly
conserved enzyme together) and glgX, to yield G-1-P, which is directly
utilized in the primary metabolism of bacteria [10]. Glycogen
phosphorylase enzyme degrades glycogen by sequentially removes
glucose units from the non-reducing ends of glycogen and glgX
removes α- 6 linkages of glycogen via hydrolyzing manner [39]. glgP
and glgX regulates glycogen degradation according to the energy
requirement of bacteria. A recent study suggests the deletion of either
glgP or glgX or both prevents degradation of internal stores of
glycogen [39]. Trehalose, a well-known disaccharide present in
bacteria as storage carbohydrate and is used as both an energy store
and a stress-protectant. Trehalose helps bacteria to survive under
desiccation, cold and osmotic stress [43,44]. Trehalose is consist of
α-1-1 linkage of di-glucose and synthesized in bacteria from glucose
phosphate intermediates via trehalose-6-phosphate, using the GalU-
OtsA-OtsB system [45]. Trehalose can constitute more than 10% of
cellular dry weight, and might be the major storage carbohydrate
during specialized developmental states i.e. spores and bacteroids.

In mycobacteria, trehalose shows extraordinary interest for
researchers due of its incorporation into mycolic acids. Mycolic acid is
a cell wall component of mycobacteria and is involved in the
pathogenesis of M. tuberculosis [46,47]. Because of poor appearance of
trehalose, conversion from trehalose to glucose has been studies
relatively low as compared to other molecules [48,49]. The
transcriptional regulation of glycogen operon is also mediated through
the RNA polymerase (Es70) by the restricted action of RpoS subunit
[40]. Makinoshima et al. demonstrated that the rpoS mutants of E. coli
accumulate less glycogen as compared to the wild type strain of E. coli
[50]. The biosynthesis of glycogen is depending on the substrate
accessibility and allosteric activity of ADP-glucose pyrophosphorylase
[9] and catabolism is adjusted to accommodate changes in the
availability of easily utilizable energy sources [40].

Role of glycogen under stress condition in M.tuberculosis
Mycobacterium cell wall accounts approximately 2-3% of dry

weight of bacteria and constituted mostly of polysaccharide and
proteins (94-99%). Mycobacterial glycans is similar to E. coli glycogen
and the exact role of glycogen under stress (hypoxia, nutrient
deprivation, Nitrous oxide treatment and growth in acidic media)
environment is not fully understood [22]. But it has been reported by
various group of scientific community, mycobacteria accumulates
glycogen under stress condition for their survival and endogenous
reserves during post exponential growth. [Antoine and Tepper, 1968
was demonstrated that glycogen and lipid accumulation increased
affectedly as the nitrogen/ sulfur content of the medium was dropped
in M. phlei and M. tuberculosis under stress conditions. In the absence
of exogenous carbon substrate, these reserve substrates were utilized as
carbon and energy source and continued growth of organism.
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Glycogen inhibits phagocytosis of M. tuberculosis in macrophage and
also takes part in host-pathogen interaction during pathogen entry in
to the host [51].

Alternatively, glycogen or its intermediates also act as key role for
production of two unusual cell wall constitutes i.e. 6-O-
methylglucosyl-containinglipopolysaccharides (MGLP) and the 3-O-
methylmannose polysaccharides, which plays regulatory role in fatty
acid biosynthesis in M. tuberculosis [52].

Role of glycogen in pathogenomics of M.tuberculosis
Glycogen is one of the most important storage sugars in the living

world. It is provides nutrition to the organism and plays a very
important role during host pathogen interaction [15]. Under the
nutrient limiting conditions, glycogen accumulation occurs in M.
tuberculosis and their role in survival and pathogenesis is poorly
understood.

Figure 4: Pathway for the synthesis of the MGLP in M. tuberculosis.
Confirmed activities are shaded in green. White boxes indicate
putative/deduced enzyme activities. Genes linked to the MGLP
pathway by mutagenesis studies are indicated in blue box. GpgS
(Rv1208), glucosyl-3-phosphoglycerate synthase; GpgP (Rv2419),
glucosyl-3-phosphoglycerate phosphatase; DggS, di-
glucosylglycerate synthase; GT, glucosyltransferases

The glycogen has been playing a minor role in virulence and
colonization in the Salmonella typhi, but has a more significant role in
their survival. It has been demonstrated that the capsule consists of
carbohydrate (glycan up to 80%), proteins and tiny volume of lipids
[15,40,53]. The glycan’s of mycobacterium envelope showed unique
features than other bacteria. Its cell wall consists of mycolic acids (also
known as arabinoglacton) and peptidoglycan, which constitutes “the
core” of the cell wall and it is intercalated by a number of glycolipids
such as lipoarabinomannan (LAM), the phosphatidylinositol
containing mannosides (PIMs), phenolic glycolipids (PGLs),
trehalose-dimycolate (TDM) and trehalose-monomycolate (TMM)
present in the cell wall [27,54]. M. tuberculosis capsule is located
outside of the mycolic acid layers, which contains generally
polysaccharides such as arabinomannan and α-glucans and take part
during the time of infection and invasion of macrophages [55]. The
trehalose (formed by glycogen) is the precursor of formation of
mycolyl acetyl trehalose (known as mycolic acid or cord factor). Also,

mycobacteria synthesize unusual polysaccharides containing α-4-
linked methylated hexoses (methyl glucose lipopolysaccharide
(MGLP), methyl-mannose polysaccharide (MMP) that is slightly
hydrophobic and helical conformation as amylose chain. These
polysaccharides forms stable complex with fatty acids and modulate
the activity of fatty acid synthase I (FAS I) In vitro. The MGLP has
been found in both slow- and rapid-growing mycobacteria, while
MMP has been detected only in rapid-growing mycobacteria. The
synthesis and regulation of MGLP are shown in Figure 4. Based on
presence of complex glucan and their derivatives in the M.
tuberculosis cell wall suggested that glycogen might be responsible for
pathogenesis.

Glyco-immunology in M. tuberculosis pathogenesis
Carbohydrate constitute M. tuberculosis capsules representing up

to 80% of the extracellular polysaccharides (glycan), composed of α-4-
α-DGlc-1 core branched at position six every five or six residues by 4-
α-D-Glc-1 oligoglucosides [22,56,57]. The mycobacterial ligands that
interact with macrophage receptors are less well characterized.
Therefore, as the discovery of the role of capsular carbohydrates in
bacterial pathogenesis, researchers have been given focus on the
identification and characterization of the macrophage receptors
involve in the binding and phagocytosis of M. tuberculosis.
Carbohydrates are pathogenic mycobacterial species and have been
determined much later than the discovery of the mycobacterial capsule
[22,57,58].The reducing end of arabinogalacton (AG) consists of α-3-
GlcNAc disaccharide, which is attached through phosphodiester
linkage to the muramic acids of peptidoglycan [59]. The arabinan of
AG contains 2 to 3 branched chain attached at 5-position to Galf
residue of the galactan chain nearby to its reducing end. D-arabinan
chain consists of 22 Araf residues [60]. The core structure of D-
arabinan consists of backbone of α-5-linked Araf with several α-3-
linked branch points and the non-reducing ends are always terminated
by β-2-Araf. This assembly leads to the characteristic hexa-arabinoside
(Ara6) motifs at the non-reducing ends of AG, of which the dimers [β-
D-Araf-2-α-D-Araf] constitute mycolic acid attachment sites. PG and
AG together forms an important covalently linked network located
between the plasma membrane and the mycolic acid layer. These
components of mycobacterial cell wall make the cell extremely robust
and difficult to penetrate [55].

Unlike AG, LAM is a non-covalently linked to the cell envelope
components and may be attached in the plasma membrane or mycolic
acid layer or both through the phosphatidyl-myo-inositol (PI) unit.
The reducing end of LAM shares structural similarities to the PI-
mannosides (PIMs) and the inositol residues of the PI of both the
PIMs and LAM are mannosylated at the 2 and the 6 positions (Figure
2) [55]. At present, there is limited information about the biological
functions of these components. The mycobacterial cell wall moieties,
i.e. lipoarabinomannan, binds to macrophage and glucans are able to
inhibit the binding of mycobacteria to complement receptor 3
expressed in CHO cells [61]. The capsular polysaccharides, mediated
the non-opsonic binding of M. tuberculosis H37Rv to CR3 [22,62].
The cell wall of Pseudallescheria boydii contains a vast amount of
glycogen, which shows structural similarity to the M. tuberculosis and
are involves in the infection or internalization of fungus by
macrophages. It is also capable to induce the innate immune response
by the involvement of toll-like receptor2, CD14 and MyD88 receptors
[63]. In another study, the M. tuberculosis capsular components were
revealed to contain compounds that displayed antiphagocytic
properties with certain types of macrophages [61]. Also, induce

Citation: Gupta AK, Singh A, Singh S (2014) Glycogenomics of Mycobacterium tuberculosis. Mycobact Dis 4: 175. doi:
10.4172/2161-1068.1000175

Page 5 of 8

Mycobact Dis
ISSN:2161-1068 MDTL, an open access journal

Volume 4 • Issue 6 • 1000175



monocytes to differentiate into altered dendritic cells that failed to
present lipid antigens to CD1-restricted T cells [64].

Glycogen based therapeutics and drug targets
The emergence of multidrug-resistant strains of M. tuberculosis

accentuate the need to identify novel drug targets or new drugs for
treatment of tuberculosis, which could act against the tubercular bacilli
that persists during prolonged therapy with currently available drugs
[65,66]. Enzymes involved in glycogen metabolisms (take part in
synthesis of essential components of the cell envelope in bacteria),
display auspicious drug targets for designing new drugs against
mycobacteria; glgB shows unique drug targets for M. tuberculosis. It
has been demonstrated that toxic polymers accumulated insight the
glgB autotrophs and finally induce cell death. The absence of glucan’s
did not affect the outcome of macrophage infections with
mycobacteria mutants, but its presence advise their protective role in
persisting stage of mycobacteria during chronic infections [67].
Additionally, an alternative pathway (glgE depended) of glucan’s
biosynthesis was identified in mycobacteria. The glgE gene transfers an
activated glucose residue to maltose1-phosphate via alpha 1-4 linkage.
The gene pep2 (Rv0127) would phosphorylate and activate maltose
reducing glucose and ultimately polymerization of glycogen initiated.
As similar to glgB mutant role, mutation in glgE gene displays
auspicious drug targets for mycobacteria, as it is part of earlier
unrecognized α-glucan pathway that has never been targeted to induce
death in mycobacteria. GlgE displays killing of bacteria by two
mechanisms, The first death mechanism (glgE dependent) is self-
poisoning by accumulation of the phosphosugar Maltose1phosphate
followed by feedback inhibition of glgE. The second death mechanism
(glgE independent) is based on essentiality of glgE pathway products.
Both the genes (glgB and glgE) seem to be in an operon and it was
assumed that the reason for their essentiality in mycobacteria was the
accumulation of toxic product. Thus, inhibiting GlgE has become an
exciting drug target [67].

Alternatively, Trehalose synthesis pathway from glycogen is widely
studies in mycobacteria and the enzyme involved in trehalose
metabolism shows promising drug targets for M. tuberculosis due to
its importance in bacterial cytoplasm and presence in toxic glycolipids
[66]. Several antibiotics, which inhibit the growth of M. smegmatis had
an effect on the trehalose biosynthetic enzymes. Disruption of
trehalose mycolyltransferase enzyme by 6-azido-6-deoxy-a,a-trehalose
shows inhibition of mycobacterial growth in vitro [68].

In summary, glycotransferase enzymes, which are involved in the
synthesis of essential components of the cell envelope in bacteria,
could be explored as novel drug targets for the development of new
drugs against bacterial pathogens.
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