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Although the term “glyco code” has only recently come into use 
[1-4], recognition of the carbohydrate signatures of microbes was 
documented nearly a century ago. In 1917, Dochez and Avery [5] 
found that when Pneumococci were grown in fluid media, there was a 
substance in the culture fluid that precipitated specifically with antisera 
to the same Pneumococcus. Heidelberger and Avery [6] showed 
that the substance recognized by the antibodies was a carbohydrate 
molecule and not a protein, as previously thought. It was later found 
that almost every microorganism expresses such glyco codes that are 
recognized by the host immune systems and are effective in stimulating 
specific antibody responses [7,8]. Such immunogenic carbohydrate 
moieties often serve as key targets for development of vaccines against 
infectious diseases [9-13]. Tumor glycomics research in recent years 
has uncovered a large panel of tumor-associated carbohydrate antigens 
[14,15] and evidence of immune recognition of tumor-derived aberrant 
carbohydrates [16-20].  

Carbohydrates are capable of generating structural diversity in 
multiple ways and are prominently displayed on the surfaces of cell 
membranes or on the exposed regions of macromolecules. Unlike 
proteins, which are connected solely by a peptide bond, carbohydrates 
utilize many possible glycosidic linkages so as to extensively diversify 
their structures. Two amino acid residues, such as two alanines, can 
produce only one possible dipeptide; however, two molecules of 
glucose have the potential to generate 11 different disaccharides. A 
trimer of any of the nine common sugar residues of the human body 
theoretically can give rise to 119,736 different structural isomers; this 
is in striking contrast to the maximal construction of 8,000 tripeptides 
using 20 different amino acid residues. Theoretically, sugar chain 
structures can have unlimited variation.

Importantly, there are multiple carbohydrate-recognition systems 
in living species that “read” the biological information of complex 
carbohydrates. Two examples are the numerous anti-glycan antibodies 
produced by many animal species that play key roles in protecting a 
host from microbial infections [13,21,22] and the families of lectin-like 
glycan-binding proteins (GBPs) that are evolved for carbohydrate-
mediated cell-cell communication [23-25]. Thus, carbohydrates are 
uniquely suitable for storing biological signals in the forms that are 
identifiable by other biological systems. 

In the immunological and glycobiological literature, “glyco-
epitope” is often used to specify the carbohydrate moiety that is 
recognized by an antibody or by a GBP. The antibody-binding glyco-
epitopes are also classified as B cell epitopes or antigenic determinants. 
Conceptually, “glyco-epitome” refers to the entire repertoire of glyco-
epitopes, including the B cell epitopes and those that are recognized 
by GBPs. Differing from “glycome,” which covers all the existing 
carbohydrate molecules in living organisms, glyco-epitome refers to a 
unique subset of carbohydrates that serve as the sugar signatures for 
molecular recognition and bio-signal transmission. “Glyco-epitomics” 
is, thus, an evolving area of glycomics research focusing on identifying, 
characterizing, and understanding the carbohydrate moieties that 
serve for multiple levels of bio-communication. 

The structural aspects of glyco-epitomics focus on the elucidation of 
the glycan structures that display glyco-epitopes. This research area has 
been substantially enhanced by the development of advanced profiling 
and structural characterization strategies. Notably, these include high-
resolution chromatography methods coupled with exoglycosidase 
digestions [26,27], modern mass spectrometry [28-30] and nuclear 
magnetic resonance spectroscopy analyses [31-33] of carbohydrates, 
and the state-of-art methods of glycan structural modeling [34,35]. 

However, availability of carbohydrate structural information alone 
is not sufficient in defining a glyco-epitope unless its specific binding 
by an antibody or a GBP is also demonstrated immunochemically 
and/or crystallographically. For example, chemical determination of a 
tetrasaccharide that decorates the spore of Bacillus anthracis appears 
to be an important discovery in microbial glycomics [36]. Based on the 
past knowledge of immunogenic carbohydrate moieties, this structural 
glycomics progress may suggest that this unique sugar moiety may 
have potential in an immunological application [37,38]. However, 
whether such a carbohydrate moiety preserves a B cell epitope or a 
potent antigenic determinant must be determined immunologically, 
including at least demonstration of its antibody binding specificity 
and capacity in eliciting immune responses in vivo [10]. It was the 
integrated structural and immunological investigation with the 
support of carbohydrate microarray technologies [10,13] that has 
revealed anthrose-tetrasaccharides as key immunological targets of B. 
anthracis. Its applications may include identification of the presence 
of B. anthracis spores, surveillance and diagnosis of anthrax infection, 
and development of novel vaccines targeting the B. anthracis spore.

Modern carbohydrate microarrays emerged in 2002 [39-42] and 
introduced new glycomics tools to decipher the biological information 
content in the glycome. These technologies are especially useful in 
exploring the repertoire of glyco-epitomes. Given the structural 
characteristics of the carbohydrates displayed on chips, carbohydrate 
microarrays are classified into monosaccharide chips, oligosaccharide 
chips, and microarrays of carbohydrate-containing macromolecules. 
The latter includes polysaccharides and various glycoconjugates. 
These different sugar chips or arrays were developed to accommodate 
multipurpose applications in carbohydrate research. For example, 
the mono- and disaccharide microarrays are suitable for screening 
and characterizing carbohydrate-binding proteins or carbohydrate-
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catalyzing enzymes and for identifying inhibitors of carbohydrate-
protein interaction [43,44]. However, some lectins and many anti-
glycan antibodies recognize larger and more complex carbohydrate 
ligands or antigenic determinants. The mono- and disaccharide sugar 
chips are not sufficient for investigations involving such molecular 
targets. The oligosaccharide  [10,45,46], polysaccharide [47,48], and 
glycoconjugate [49-53]  microarrays come to fill this gap by displaying 
carbohydrates of complex structures or longer sugar chains on the 
chips.  

One of the important research areas in glyco-epitomics is the 
understanding of the nature and characteristics of the immunogenic 
sugar moieties that render them key targets for immunological and 
clinical applications. Figure 1 illustrates an example that common 
sugar residue glucose can form either non-immunogenic or highly 
immunogenic polysaccharide molecules. The α(1,4)-linked glucosyl 
polymer illustrated is the digestible, non-immunogenic glycogen. A 
microbe-produced α(1,6)-dextran molecule is, however, immunogenic 
in human and many animal species. This is owing to the fact that α(1,6)
dextran, but not α(1,4)glycogen, is resistant to the host enzymatic 
digestion and persists in vivo to stimulate B cell responses. Thus, 
whether a carbohydrate molecule is immunogenic is determined by 
a complex process of antigen processing, host recognition, and the 
regulated immune response to a target molecule. 

A carbohydrate antigen, such as α(1,6)dextran (Figure 1, upper 
panel),  may display different types of epitopes, such as the terminal 
and internal chain glyco-epitopes [8,54], on its solvent-accessible 
surface. This can be attributed to the hydrophilic property of 
carbohydrates, which makes them strikingly different from proteins. 
In aqueous solution, proteins tend to fold to bring their hydrophobic 
side chains together, forming an oily core with polar side chains 
exposed. Surface moieties of a protein antigen may serve as antigenic 
determinants interacting with B-cell Ig-receptors; interior residues are 
generally not accessible to such interactions. Carbohydrates are built 
up by monosaccharides, whereby the enriched hydroxy groups readily 
interact with water molecules by hydrogen bonding. Their glycosidic 
linkages are more flexible than the peptide bonds in proteins, and 
protein-like folding patterns are not seen in polysaccharides. Thus, 
not only are the terminals of the carbohydrate chains accessible for 
molecular recognition but residues in the internal chain are also 
exposed in solvent and are frequently reactive. Many carbohydrate-
based vaccines focus on the terminal non-reducing end epitopes, 
leaving a large class of internal chain epitopes unexplored.

Identifying the immunogenic carbohydrate moieties of HIV-1 is, 
perhaps, one of the current challenges to carbohydrate researchers. 
Since the early 1980s when the acquired immunodeficiency syndrome 
(AIDS) and its etiologic agent, human immunodeficiency virus 
(HIV), were first described, the immunological complexity of this 
infectious disease has been recognized [55]. For example, discovery 
of an oligomannose cluster as the epitope of a broadly HIV-1–
neutralizing antibody, 2G12 [56], has stimulated substantial interest in 
such a carbohydrate moiety for the development of HIV-1 vaccines.  
However, induction of 2G12-like HIV-1 neutralization antibodies by 
active immunizations has been proven difficult [57]. For example, Ni et 
al. [58] immunized rabbits using the synthetic oligomannose clusters 
that express 2G12 glyco-epitopes and found that this 2G12-positive 
antigen elicited only a small fraction of antibodies to the carbohydrate 
moieties, with the majority of the IgG-type antibodies being directed to 
the linkers in the conjugates. The rabbit anti-sera showed weak cross-
reactivity to HIV-1 gp120.

However, demonstration of the poorly immunogenic 2G12-
oligomannose antigen does not necessarily lead to a conclusion that the 
oligomannose antigens are generally non-immunogenic in vivo. This 
is because of the fact that the same sugar chain may generate different 
glyco-epitopes when the sugar moiety is presented in different cluster 
configurations. In essence, the same sugar chains can be assembled 
into different antigens; these carbohydrate antigens may interact with 
immune systems in different ways. Figure 2A illustrates three examples 
of such glyco-epitomics diversity. (Man9)n-KLH (2.) is similar to 
(Man9)n-BSA (3.) in the linkage used for coupling oligomannoses 
to a protein carrier and in the molar ratio between the Man9 unit 
and corresponding carrier. By contrast, [(Man9)4]n-KLH (1.) was 
constructed by introducing a defined scaffold to display the tetra-valent 
oligomannose clusters. Only the latter mimics the high-density Man9-
clusters expressed by the gp120 glycoprotein of HIV-1 [58] and binds 
selectively to an HIV-1 neutralization monoclonal antibody (mAb) 
2G12 (Figure 2B, blue column).  However, a tumor vaccine-elicited 
mAb, TM10 [59], is highly reactive with the three Man9 clusters 
(Figure 2B, red column). Thus, these glycoconjugates express the TM10 
epitope in common but differ in expression of the 2G12 epitope.

Interestingly, the TM10-positive and 2G12-poorly reactive 
oligomannose antigens appear to be immunogenic in human and 
mouse under certain conditions. This is evidenced by the fact that 
autoantibodies targeting these oligomannose antigens were found to 
be significantly elevated in the blood circulation of men with aggressive 
prostate cancers [19,20], in the cerebrospinal fluid of patients with 
multiple sclerosis, and in the serum of mice with experimental 
autoimmune encephalomyelitis (EAE) [60]. Interestingly, Wang et 
al. [60] found that co-immunization of SJL/J mice with a Man9-KLH 
conjugate (2.) at the time of EAE induction elicited significant levels 
of anti-Man9-cluster autoantibodies (IgG and IgM). Nevertheless, this 
anti-glycan autoantibody response was associated with a significantly 
reduced clinical severity of EAE. Thus, much remains to be learned 
regarding the molecular and cellular mechanisms underlying the 

Figure 1: Schematics of microbial dextran and mammalian glycogen: 
glycosidic linkages make the difference. The only source of structural 
diversity in homopolysaccharides is the glycosidic bonds linking the 
monosaccharides. This figure illustrates two commonly found polysaccharides 
– one in microbes and another in mammals. The polysaccharide with α(1→6) 
linkage is dextran, which is found in many bacteria, including Lactobacillaceae. 
The polysaccharide with the α(1→4) is glycogen and it is found in mammals as 
one of the biological energy-storage molecules.
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differential antibody responses to oligomannose antigens of different 
cluster configurations.

It is noteworthy that “glyco codes,” the molecular targets of 
glyco-epitomics study, are not limited to the glyco-epitopes that 
are defined by anti-glycan antibodies or GBPs. Conceptually, any 
carbohydrate moiety that plays a role in molecular recognition and 
bio-communication belongs to this family of bio-communicators. 
These may include, but are certainly not limited to, the carbohydrates 
that serve as host receptors of microorganisms [61-64] and those that 
are specifically recognized by toxins of various origins [65-68]. Glyco-
epitope diversity is, therefore, an evolving area of glycomics research 
and biomarker discovery.   
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