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ABBREVIATIONS

PD-1: Programmed Cell Death Protein-1; PD-L1: Programmed 
Cell Death Protein-Ligand 1; CTLA-4: Cytotoxic T-Lymphocyte–
Associated Antigen 4; Mac: Macrophage; CBP35: Carbohydrate 
Binding Protein 35; LBP: A Non-Integrin Laminin Binding 
Protein In Macrophages; TIM-3: T Cell Immunoglobulin 
Mucin-3; UAT: Urate Transporter; LAG-3: Lymphocyte-
Activation Gene 3; LSECtin: Liver Sinusoidal Endothelial Cell 
Lectin; FGL-1: Fibrinogen-Like Protein 1; α-syn: α-Synuclein 
Fibrils; TIGIT: T Cell Immunoreceptor With Ig And Itim 
Domains; WUCAM: Washington University Cell Adhesion 
Molecule; VSTM3: V-Set And Transmembrane Domain-
Containing Protein 3; PVR: Poliovirus Receptor; Necl, nectin-
like molecule; PVRL2: Poliovirus Receptor-Related 2. BL: Burkitt 
Lymphoma; DLBCL: Diffuse Large B-Cell Lymphoma; CLL: 
Chronic Lymphocytic Lymphoma; ALL: Acute Lymphoblastic 
Leukemia; AML: Acute Myeloid Leukemia; CML: Chronic 
Myeloid Leukemia; MM: Multiple Myeloma; HTLV-1: The 

ABSTRACT
Despite that immunotherapy revolutionized cancer treatment, a considerable proportion of patients do not 
respond. While scientists continued to make perpetuating efforts in order to associate, glycans (carbohydrates) 
have come under scrutiny as the next frontier in pharmaceutical research. Immunologically speaking, tumor-
specific glycan signatures that mediate tumor cell recognition by the immune system offer novel immunotherapy 
targets for developing both specific and powerful therapeutic strategies against cancer. Notwithstanding that we 
are lately witnessing breakthrough discoveries in glycan‐targeting therapies for solid tumors being reported in a 
substantial number of studies, the utilization of these therapies in liquid tumors (i.e., leukemia, lymphoma and 
myeloma) continued to lag far behind. On the other hand, humoral and cellular immunotherapeutic agents were 
quite successful in selected hematologic malignancies, albeit patients with Relapsed/Refractory (R/R) disease 
and those crippled by financial and/or drug toxicities remain extremely disadvantaged. Between the currently 
employed immunotherapeutic modalities and the Overall Survival (OS) rate, the full potential of glyco-oncology 
creates a divide that must be continuously researched and bridged. Therefore, this review aims to contextualize the 
glycosylation landscape of liquid tumors within the field of hematologic oncology in order to establish ‘Glycobiology 
in Hematology’ as a new emerging paradigm in cancer research and therapeutics.

Keywords: Leukemia; Lymphoma; Multiple myeloma; Cancer-associated glycans; Selectins; Galectins; Siglecs.
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modality of immunotherapy [36]. ICB employs Immune-
Checkpoint Inhibitors (ICIs) such as ipilimumab, nivolumab, 
and pembrolizumab to block these co-inhibitory receptors on 
T-cells in order to release the potential of the anti-tumor immune 
response. Although reversing immune checkpoint inhibitor 
pathways have generated much excitement, these approaches still 
lack absolute success [37]. In fact, ICB was only effective in a 
minority of patients with heavily mutated tumors [38]. 

Additionally, managing immunotherapy-related severe adverse 
effects remains a challenge [39]. In fact, these immunotherpautic 
agents brought a new wave of unique toxicity profiles that are 
distinct from the toxicities of other cancer therapies (because they 
activate a broad range of immune cells) [40]. In particular, ICB 
induced novel toxicities that were labelled as immune-related 
Adverse Events (irAEs) including colitis, hepatitis, myositis, 
pneumonitis, endocrinopathies, kidney injury, and skin toxicities 
[41]. Moreover, a growing body of basic science, translational, 
and clinical evidence now suggests that myocarditis may be the 
tip of the iceberg in terms of cardiac irAEs, with ICI-induced 
acceleration of Atherosclerotic Cardiovascular Disease (ASCVD) 
contributing significantly to vascular toxicity in the long term 
[42]. Furthermore, CAR T-cell therapy induce potentially 
severe or even life-threatening immune-related toxicities 
including Cytokine Release Syndrome (CRS), Hemophagocytic 
Lymphohistiocytosis (HLH) and/or Macrophage Activation 
Syndrome (MAS) which often manifests following resolution 
of CRS (recently termed Immune Effector Cell-Associated 
Hemophagocytic Lymphohistiocytosis-Like Syndrome, IEC-HS), 
and the life-threatening albeit commonly occurring Immune 
effector Cell-Associated Neurotoxicity Syndrome (ICANS) [43]. 
CAR-T-associated neurotoxicity also include recent reports of 
encephalitis caused by reactivation of Human Herpesvirus 6 
(HHV-6) in patients receiving CAR T-cells [44-47]. 

Moreover, prolonged and persistent cytopenias, recently termed 
Immune Effector Cell-Associated Hematological Toxicity 
(ICAHT), leading to increased risk of infections, life-threatening 
bleeding, and long-term transfusion support have become a major 
therapeutic challenge added to the bill of CAR T-cell therapy 
[47-49]. One major limitation for broader applicability of CAR 
T-cell therapies is that more than 50% of patients who respond to 
CAR T-cell therapies eventually relapse [50]. For instance, more 
than half of patients with high-grade lymphomas will progress 
and require additional therapy after CAR T-cell therapy. Failure 
after CAR T-cell therapy is caused by a variety of factors that can 
be divided into 3 broad categories: Tumor intrinsic factors, other 
host factors, and inadequacies of the CAR T-cells [51]. 

To sum up, paucity of therapeutic targets, toxicities related to 
CAR-T cell therapy, and resistance to CAR-T cell therapy are 
the main challenges that hinder widespread commercialization 
of CAR-T cell therapy [52]. In a similar vein, although BiTEs- 
the concept of which dates to the 1960s when Alfred Nisonoff 
envisioned the potential of replacing one of the two identical 
antigen binding arms with a different antigen binding specificity 
have been proved to be efficient in many Relapsed Or Refractory 
R/R hematologic malignancies, a subset of patients still have 
no response to BiTEs [53,54]. Often overlooked, the financial 
toxicities of these agents can negatively affect patient outcomes 
and quality of life. In particular, CAR-engineered immune cells 
continue to remain a complex and extremely expensive technology 
hindering affordability and access to CAR T-cell therapy [55,56]. 

one of the 3 major members of the Mitogen-Activated Protein 
Kinase (MAPK) superfamily; the others are Extracellular Signal-
Regulated Kinase (ERK) and the p38 MAP kinase; TIM-3: T cell 
Immunoglobulin And Mucin-domain containing-3; NK cells: 
Natural Killer cells.

INTRODUCTION

Anti-tumor immunity is the basis for durable disease-free 
treatment-free survival in cancer patients [1]. Historically, the 
idea of controlling the immune system to fight cancer had been 
actively investigated since the early 1900s when William Cooley 
attempted to cure advanced sarcoma with heat-inactivated bacterial 
toxins [2,3]. After a century of intense efforts, immunotherapy 
is currently established as the fifth pillar of cancer therapeutics, 
joining surgery, cytotoxic chemotherapy, molecularly targeted 
therapy, and radiation therapy [4]. Currently, the main cancer 
immunotherapy constructs include Antibody–Drug Conjugates 
(ADCs), Bispecific Antibodies (bsAbs) such as Bispecific T cell 
Engagers (BiTEs), Dual Affinity Retargeting Antibodies (DARTs), 
and Bispecific Killer cell Engagers (BiKEs) and Chimeric 
Antigen Receptor (CAR)-T cells. Cancer immunotherapy, named 
‘breakthrough of the year 2013’ and ‘the cancer advance of the 
year 2016’, has led to unprecedented and durable response rates 
in several cancers [5-10]. Nonetheless, the majority of patients do 
not benefit from cancer immunotherapies and some responders 
relapse after a period of response [11]. Sharma et al., classified 
immune resistance into three main categories: Primary (a clinical 
scenario where a cancer does not respond to an immunotherapy 
strategy), adaptive (appearance of resistance mechanisms as a 
Darwinian mechanism of adaptation), and acquired/secondary 
(a clinical scenario in which a cancer initially responded to 
immunotherapy but after a period it relapsed and progressed) 
[12].

Remarkably, tumor cell-extrinsic mechanisms that lead to 
primary and/or adap tive resistance involve components within 
the Tumor Microenvironment (TME) (other than tumor cells) 
which contribute to inhibition of anti-tumor immune responses. 
The immunosuppressive TME had long been incriminated in 
chemoresistance as well as now considered the root cause of 
resistance to the majority of cancer immunotherapies leading to 
their failure [13-16]. Notably, T-cell exhaustion (including CAR 
T-cell exhaustion) is a cardinal feature of the TME that eventually 
result in tumor escape [17-21]. The sign of exhausted T cells is 
their expression of multiple co-inhibitory receptors that operate 
the immune escape of target tumor cells [22,23]. 

These co-inhibitory receptors (also referred to as inhibitory 
immune checkpoints or T-cell exhaustion markers) are the 
intrinsic brakes of the immune system that protect against 
autoimmunity under homeostatic conditions. Mechanistically, 
these T-cell exhaustion markers (Table 1) limit the strength and 
duration of immune responses by negatively regulating T cell 
responses, thereby curbing immune-mediated tissue damage, 
regulating resolution of inflammation, and maintaining tolerance 
to prevent autoimmunity [33,34]. Interestingly, tumors hijack the 
mechanisms of these immune checkpoints as protection against 
anti-tumor immune responses elicited by CD4+ and CD8+ T cells 
in order to establish an immunosuppressive TME, hindering 
their eradication [35]. 

Consequently, restroring T-cell effector fuctions via Immune 
Checkpoint Blockade (ICB) had become an established 
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Table 1: The main T cell exhaustion markers and their ligands.

T cell exhaustion marker   Also known as         Ligand    Also known as References

PD-1 CD279
PD-L1 CD274 (B7-H1) [24]

PD-L2 CD273 (B7-DC)

CTLA-4 CD152

CD80 B7.1 [25]

CD86 B7.2

Galectin-31 Mac-2 antigen, CBP-35, and 
LBP

[26]

TIM-3 CD366 HAVCR2 Galectin-9 Ecalectin and UAT [27]

LAG-3 CD223

MHC class II2

 [28]

Galectin-3

LSECtin

FGL-1

α-syn

TIGIT3
WUCAM CD155 PVR, Necl-54     [29-31]

VSTM3 CD112 PVRL2, Nectin-2 [32]

Note: 1Galectin-3 was found to interact with two clinically-relevant immune checkpoint molecules: CTLA-4 and LAG3. In the first case, galectin-3 
associated to complex branched N-glycans, increasing CTLA-4 retention on the cell surface and downregulating TCR signal strength. On the other 
hand, galectin-3 has been found to promote CD8+ T cell dysfunction by engaging LAG-3: 2Major histocompatibility complex (MHC) class II on 
antigen-presenting cells (APCs) is the canonical LAG-3 ligand: 3TIGIT is a co-inhibitory molecule and a novel member of the CD28 family (was 
first identified in 2009). Similar to LAG3 and TIM3, belongs to the immunoglobulin superfamily: 4Nectins and nectin-like (Necl) molecules are a 
family of 9 adhesion molecules that belong to the immunoglobulin superfamily. They play a key role in different biological processes such as cell 
polarity, proliferation, differentiation and migration in epithelial, endothelial, immune and nervous systems. Some of these molecules also function 
as receptors for poliovirus and herpes simplex viruses.

their use for other malignancies is still challenging [65]. For 
instance, CAR T-cell therapy does not work for Acute Myeloid 
Leukemia (AML), mainly due to high incidence of CRS and 
relatively poor clinical efficacy [66]. In addition, generating 
autologous CAR T-cells from patients with T-cell malignancies 
has been particularly problematic and quite challenging [67,68]. 
So far, none of the immunotherapeutic modalitis can completely 
replace allogeneic Hematopoietic Stem Cell Transplantation (allo-
HSCT) despite of the remarkable advances in immunotherapy for 
blood cancers over the past decades [69]. It is worth noting that 
allo-HSCT is one of the oldest forms of cancer immunotherapy 
for hematologic malignancies. However, this approach was 
prohibitive as the first choice in any treatment strategy due to 
its inherent risks of Transplantation-Related Mortality (TRM) 
and morbidity including the development of Graft-versus-
Host Disease (GvHD) [70]. On the other hand, achieving and 
maintaining CR before allogeneic HSCT is important, but it 
remains a significant hurdle. Moreover, viral pathogens are a 
significant source of morbidity and mortality after allo-HSCT 
[71]. Indeed, many post-HSCT patients eventually enter a deadly 
vicious cycle of GvHD and viral infections. In addition, invasive 
fungal infections are a major cause of morbidity and mortality 
among HSCT recipients [72]. Strikingly, HSCT still often fails 
due to the relapse of the malignancy [73]. Please note that details 
on hematologic malignancies (Figure 1), are beyond the scope of 
this article but are summarized elsewhere [74].

Despite that, B-cell Acute Lymphoblastic Leukemia (B-ALL) has 
an excellent prognosis in children with long-term survival of 80%–
90% the event-free survival for pediatric B-ALL has plateaued 
over the past decade leaving approximately 25% of patients with 
R/R disease [57,58]. Patients with R/R B-ALL especially in the 
post-transplant setting continue to have a dismal prognosis [59]. 
On the other hand, there seems to be no way out where Multiple 
Myeloma (MM) exists. MM a B-cell malignancy and the second 
most frequently diagnosed hematologic cancer- remains incurable 
despite significant advances in treatment due to the lack of 
appropriate antigen(s) for targeted-cell killing [60]. Despite many 
new approved drugs and numerous combinations of these agents, 
including the use of proteasome inhibitors, immunomodulatory 
drugs, and mAbs, resistance eventually ensues and most patients 
will die from their disease [61]. Currently, CD19 and the B-Cell 
Maturation Antigen (BCMA) are the most common targets 
for CAR-T cell therapy in B-cell malignancies. Although initial 
CAR T-cell activity shows potential response rates, especially 
in diffuse large B cell lymphoma DLBCL and B-ALL, only a 
minority of patients attain long-term disease remission [62]. 
For instance, resistance or relapse after CD19-directed CAR-T 
cell therapy occurs in the majority of patients within 1–2 years 
[63]. Approximately, 30%–60% of patients relapse after CD19-
directed CAR T-cell therapy, and 10 to 20% of relapsed patients 
experience CD19-negative relapse [64]. Although CAR T-cell 
therapy is considered the game-changer for B-cell malignancies, 
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is also a universal feature of tumor cells with fundamental role in 
oncogenesis and metastasis [78]. In fact, aberrant glycosylation is 
causally associated with the acquisition of all signs of cancer [79]. 
“Hallmarks of Cancer”-a phrase originally coined by Hanahan et 
al., define a set of cell biological processes frequently dysregulated 
in tumors, contributing to their progression [80]. In particular, 
changes in sialic acid glycosylation allow cancers to participate 
in ‘immune evasion’ by engaging inhibitory sialic-acid-binding 
immunoglobulin-like lectins (Siglecs) on the surface of immune 
cells [81,82]. Noteworthily, sialic acid residues terminate cell-
surface glycans and serve as Self-Associated Molecular Patterns 
(SAMPs). Similar to the Cytotoxic T-Lymphocyte–Associated 
Antigen 4 (CTLA-4) and Programmed cell Death protein-1 (PD-
1) checkpoint proteins, Siglecs contain signaling domains capable 
of preventing immune activation which render overexpressing 
tumor-associated sialoglycans (sialic acid-containing glycans) a 
strategy employed by tumors to evade the immune system. Hence, 
there is compelling evidence supporting that the sialoglycan-
Siglec axis have become a powerful and appealing target for 
cancer immunotherapy [83,84]. Moreover, glycans expressed 
in malignant cells, known as Tumor-Associated Carbohydrate 

Despite that, glycans (carbohydrates) have been overlooked in 
drug discovery strategies for many centuries; glycobiology has 
recently come to the forefront of biomolecular and biomedical 
research. Every cell in our body is virtually surrounded by a 
dense coating of complex and diverse glycans (the “glycocalyx”) 
which have essential role in the interaction between cells and 
the microenvironment [75]. Glycosylation, the process by which 
sugars are post-translationally added to proteins or lipids with the 
aid of certain enzymes, is an integral part of cellular function 
governing innumerable biological processes. Glycans bind several 
Pattern Recognition Receptors (PRRs) on immune cells, the so-
called lectins. 

Lectins are a diverse group of non-antibody Glycan-Binding 
Proteins (GBPs) that are found abundantly in nature (the other 
group of GBPs, sulfated Glycosaminoglycan (GAG)-binding 
proteins is not addressed here) [76]. Through binding to lectins, 
glycans regulate key biological processes including protein 
folding, cell adhesion, molecular trafficking and clearance, 
receptor activation, signal transduction, and endocytosis [77]. 
As glycosylation is universal in living organisms, aberrant 
glycosylation as a result of changes in glycan synthetic pathways 

Figure 1: Simple classification of hematologic malignancies. Note: Chronic Lymphocytic Leukemia (CLL); Small Lymphocytic Lymphoma (SLL); 
Diffuse Large B-Cell Lymphoma (DLBCL); Mantle Cell Lymphoma (MCL); Follicular Lymphoma (FL); Waldenström Macroglobulinemia (WM); 
Hairy Cell Leukemia (HCL); Splenic B-Cell Lymphoma/Leukemia with Prominent Nucleoli (SBLPN).



5

Saad AA OPEN ACCESS Freely available online

J Glycobiol, Vol.13 Iss.1 No:10000118

a cell with neighbouring cell(s), cell matrix, other proteins, or 
with a pathogen are mediated mainly by glycans [116]. Glycans 
are sensed by glycan binding receptors expressed on immune 
cells, such as C-type lectin Receptors (CLRs) and Siglecs that 
respond to specific glycan signatures by triggering tolerogenic or 
immunogenic signaling pathways [117]. Noteworthily, the term 
“glycomics” refers to studies that profile the glycome, while the 
term “glycome” describes the complete repertoire of glycans and 
glycoconjugates that cells produce under specified conditions of 
time, space, and environment [118]. On the other hand, the term 
“glycoproteomics” describes this glycome as it appears on the 
cellular proteome. Correspondingly, glycoproteomics determines 
which sites on each glycoprotein of a cell are glycosylated and 
ideally includes the identification and quantitation of the 
heterogeneous glycan structures at each site [119]. Remarkably, 
the cell-surface glycome, termed glycocalyx, is a dense layer 
combining glycoproteins and sugar moieties on cell surfaces, can 
extend more than 30 nm from the plasma membrane. It is worth 
noting that all cells in the Bone Marrow (BM) are surrounded 
by a glycocalyx, which regulates such cell-cell and cell-matrix 
interactions [120].

The process by which oligosaccharides are added to the proteins 
or lipids to form glycoconjugates in the Endoplasmic Reticulum 
(ER) and Golgi apparatus are called glycosylation. Noteworthily, 
the Golgi apparatus is home to a multitude of glycosyltransferases, 
glycosidases, and nucleotide sugar transporters that function 
together to complete the synthesis of glycans from founding 
sugars covalently attached to protein or lipid in the ER [121]. 
Mechanistically, the primary mechanisms by which glycans 
can be linked to proteins or lipids are N-glycosylation and 
O-glycosylation, where glycans are added sequentially to the 
amide group of an Asparagine (Asn) residue and the hydroxyl 
oxygen of Serine/Threonine (Ser/Thr) residues respectively. 
Although N- and O-glycans are often found on the same proteins, 
they differ strongly in their compositions and biosynthesis [122]. 
It is important to note that in most of the cases both N- and 
O-linked glycans are capped at the terminal position with sialic 
acids, Lewis blood group related antigens or ABO (H) blood group 
determinants. Furthermore, glycosylation of proteins and lipids 
in mammals is essential for embryogenesis and the development 
of all tissues [123]. Expectedly, glycosylation is the most common 
Post-Translational Modification (PTM), dynamically shaping the 
glycans on proteins and lipids traveling through the secretory 
pathway, and comprising an extensive glycocalyx on the cell surface 
[124]. The three major classes of cell surface glycoconjugates 
execute numerous functions, including fine-tuning of molecular 
interactions, intra- and intercellular communications, and 
immune modulation [125-126]. Mechanistically, glycosylation 
modification of proteins or lipids provides a vital stabilizing force 
for proteins within their microenvironment, thereby modulating 
their biological functions [127]. For instance, glycans added to 
proteins play a pivotal role in protein folding, oligomerization, 
quality control, sorting, and transport [128]. These glycoproteins 
represent the majority of the key molecules involved in the innate 
and adaptive immune response [129].

Dysregulated (aberrant) glycosylation plays an important role in 
disease processes, including oncology. The aberrant glycosylation 
occurs because of cellular and metabolic variations leading 
to variant expressions of integrated glycans [130]. Aberrant 
glycosylation results in various functional changes of glycoproteins, 
which confer the unique characteristic phenotypes, associated 

Antigens (TACAs), are abundantly and uniquely expressed 
on tumor cells. TACAs are strongly implicated in malignant 
transformation and tumor progression. As cancer-specific 
antigens, TACAs serve as ideal targets for the development of 
novel modalities in cancer diagnostics and therapeutics [85,86].

During the past decade, remarkable progress has been achieved 
in the application of glycan‐targeting therapies for solid 
tumors. Glycan-targeting approaches include monoclonal 
antibodies (mAbs), Antibody-Drug Conjugates (ADCs), 
bispecific antibodies, vaccination and recently lectibodies [87-
101]. Lectibody is a chimeric protein composed of lectin and 
crystallizable Fragment (Fc) of IgG antibody that can act as a 
carbohydrate-targeting antibody [102]. The United States Food 
and Drug Administration FDA have approved two anti-glycan 
mAbs for high-risk neuroblastoma (dinutuximab/Unituxin and 
naxitamab/Danyelza) [103]. Despite that CAR-T cell therapy has 
enjoyed success in the clinic for liquid tumors (blood cancers), 
the broad effectiveness of CAR-T cell therapy for treating solid 
tumors remains disappointing [104,105]. In fact, the discrepancy 
in success of CAR-T cell therapy between liquid and solid 
tumors is attributable to the CAR-T cell’s ability to physically 
enter and penetrate deeply into the TME [106]. Surprisingly, 
however, targeting glycopeptides by CAR-T cells in solid tumors 
have yielded potential results [107,108]. Providing compelling 
evidence for the enormous potential of glycan‐targeting therapies 
to rejuvenate the field of tumor immunology. For example, GD2 
CAR-T phase I trial showed feasibility and safety in osteosarcoma 
and neuroblastoma [109]. Despite of the irrefutable potential 
of glycan‐targeting therapies in solid tumors, this field remains 
underexplored in liquid tumors. Undoubtedly, the expression 
of TACAs occurs in most hematological malignancies and their 
roles were reviewed in the literature [110,111]. Recent research 
has shown that changes in the glycosylation profile of T and B 
cells have been related to the development of leukemias including 
B-ALL, B-cell chronic lymphocytic leukemia (B-CLL), T-cell 
Acute Lymphoblastic Leukemia (T-ALL)] [112]. Unfortunately, 
glycobiology remains a very little commented subject in the 
classrooms of different biomedical courses, as it is an emerging 
field within immunology [113]. This study is detrimental when 
it comes to clinicians. Most hematologists are generally unaware 
of glycobiology. Therefore, the aim of this review is to make 
hematologists familiar with Tumor-Associated Carbohydrate 
Antigens (TACAs) and immune lectins within the context of 
hematologic oncology while focusing on mechanistic pathways 
that link lectin pattern recognition and potential tumor targeting 
strategies. 

UNTANGLING THE SWEET MECHANICS OF 
LIQUID TUMORS

Aberrant glycosylation: The sugar sculpting art of cancer

Glycobiology is the study of glycans and their recognition 
by motif-specific glycan-binding proteins or lectins [114]. 
Carbohydrates (glycans) are among the four major classes of 
biomolecules (besides nucleic acids, proteins, and lipids). Glycans 
are ubiquitous on the surface of all living cells and found on 
most secreted proteins. Glycans are essential structures that play 
remarkable roles in the immune system, cellular signaling, and 
host-microbe interactions. Glycans usually exist as glycoconjugates 
(glycoproteins, proteoglycans and glycolipids), rather than 
existing in a free state [115]. Nearly all initial interactions of 
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cell functions and contributes to cancer progression. Wide ranges 
of glycans are also involved in cancer cell mechanotransduction 
[134]. 

Cumulative evidence shows that cell surface glycosylation 
expression pattern is altered on cancer cells, leading to 
aberrant expression of cancer-associated glycans also called 
Tumor-Associated Carbohydrate Antigens (TACAs)-serving as 
biomarkers of cancer progression as well as ideal targets for novel 
anti-tumor immunotherapy approaches [135]. TACAs are created 
by the collaborative activities of glycosyltransferases, glycosidases, 
nucleotide-sugar transporters, sulfotransferases, and glycan-
bearing protein/lipid scaffolds [136]. 

In addition, TACAs contribute to shape unique glyco-codes 
with distinct mechanisms of immunosuppression through 
their interactions with endogenous lectin receptors expressed 
by immune cells such as the C-type selectins and the S-type 
galectins; and therefore, defining the glyco-code of each tumor is 
essential for understanding its immune evasion potential [137]. 
In this context, the best characterized TACAs in hematologic 
malignancies are shown in Figure 2. 

with cancer cells. In a similar vein, glycolipids play critical roles 
in various aspects of tumorigenesis as well as considered potential 
immunotherapeutic targets for cancer therapy [131]. Remarkably, 
cancer cells have adapted to the selection pressure exerted by 
the immune system through controlling their glycome to create 
an immunosuppressive environment that results ultimately in 
immune evasion. This is called aberrant glycosylation, a universal 
feature of cancer cells found in essentially all tumor cells [132]. 

Expectedly, emerging evidence highlighted that altered 
glycans play key roles in tumorigenesis and tumor progression. 
Moreover, glycosylation is currently a subject of much interest 
for its potential role in metastasis, which is responsible for 
90% of cancer-related deaths [133].  Noteworthily, the 
glycocalyx drives the interplay between cancer cells and the 
TME, a complex scaffold of Extracellular Matrix (ECM) and 
various cell types. Stiffening of the ECM, likely due directly 
to specific changes in glycan content or composition of the 
tumors, is common in cancer. Cancer cells sense and transduce 
mechanical stiffness of the ECM into intracellular responses by 
a process called mechanotransduction, which promotes aberrant 

Figure 2: The expression of cancer-associated glycans and glycoproteins in hematologic malignancies Glycoproteins require specific glycopeptide 
epitope (such as sLeX on a core 2 residue with nearby sulfated tyrosine on PSGL-1 and TF on MUC1) to bind their partner lectins. Therefore, 
these glycoproteins and their glycopeptide epitopes represent target antigens that can be controlled to treat hematologic malignancies. Note: 
Chronic Lymphocytic Leukemia (CLL); Chronic Myeloid Leukemia (CML); Multiple Myeloma (MM); Acute Lymphoblastic Leukemia (ALL); 
Burkitt's lymphoma (BL); Acute Myeloid Leukemia (AML); Hodgkin Lymphoma (HL); Diffuse Large B Cell Lymphoma (DLBCL); Chondroitin 
Sulfate Proteoglycan 4 (CSPG4). 
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GnT-5/MGAT5 (encoded by the GnT-5/MGAT5 gene) is a 
mammalian glycosyltransferase involved in complex N-glycan 
formation [157]. Mechanistically, GnT-5/MGAT5 was found to 
be critical for the formation of tri- and tetra- antennary complex 
N-linked glycans by catalyzing the attachment of β1,6-GlcNac to 
an α1,6-linked mannose residue of the nascent N-glycan core as it 
passes through medial Golgi [158].

Remarkably, GnT-5/MGAT5 is one of the most characterized 
cancer-associated glycosyltransferases that has long been implicated 
in tumor progression and metastasis [159,160]. An expanding body 
of research suggests that malignant transformation is associated 
with increased expression of β1,6GlcNAc-branched N-glycans, 
resulting from enhanced expression of GnT-5/MGAT5, which is 
regulated by the RAS/RAF/MAPK signaling pathway in cancer 
[161]. Strikingly, GnT-5-dependent N-glycans play important 
roles in cell-cell and cell-matrix adhesion. Mechanistically, GnT-
5 functionally modifies cell adhesion molecules, including the 
Epithelial cadherin (E-cadherin), and growth factor receptors, 
thereby promoting cancer cell migration and proliferation [162]. 
Within this context, the degree of N-glycan branching of several 
Receptor Tyrosine Kinases (RTKs) contributes to its capability 
to induce or arrest cellular proliferation [163,164]. Exceptedly, 
a wide variety of malignant tumors exhibits a high expression 
of MGAT5, and this characteristic has also been related to 
the acquisition of malignant potential [165]. In this vein, the 
increased expression of the β1,6-GlcNAc–branched N-glycans 
has been linked to tumor aggressiveness and poor prognosis in 
several cancers involving the breast, colon, oesophagus, stomach, 
liver, brain (gliomas) and endometrium [166-168]. Reciprocally, 
loss of MGAT5 has been associated with decreased tumor growth 
in multiple cancers both in vitro and in vivo, including Colorectal 
Cancer (CRC), breast cancer, nasopharyngeal carcinoma, lung 
adenocarcinoma, Hepatocellular Carcinoma (HCC) and gastric 
cancer [169-178]. Recently, Hollander et al., demonstrated that 
loss of MGAT5 results in tumor clearance that is dependent on 
T-cells and Dendritic Cells (DCs), with Natural Killer (NK) cells 
playing an early role [179]. Using a panel of murine Pancreatic 
Ductal Adenocarcinoma (PDAC) clonal cell lines that recapitulate 
the immune heterogeneity of PDAC, they found that MGAT5 is 
required for tumor growth in vivo but not in vitro which provides 
support for MGAT5 as a target for clinical translation.

Furthermore, the β1-6-GlcNAc branch initiated by GnT-5/
MGAT5 can be further elongated by the addition of galactose 
to the initiating GlcNAc to produce the ubiquitous building 
block Galβ1-4GlcNAc, referred to as a type-2 N-acetyllactosamine 
or “LacNAc” sequence. The sequential addition of LacNAc 
disaccharides gives tandem repeats known as poly-N-acetyl-
lactosamine (poly-LacNAc). This poly-LacNAc structure is a 
ligand for galectins (a family of conserved carbohydrate-binding 
proteins involved in a plethora of cellular activities), which bind 
to the carbohydrate structures of the receptors forming a lattice, 
which regulates their turnover on the plasma membrane, usually 
potentiating the signaling downstream [180,181]. Mechanistically, 
the ability of receptors to bind galectins is critically dependent on 
the degree of branching of their N-linked chains, in particular on 
the presence of the β1,6-branch synthesized by GnT-5/MGAT5. 
The functional role of branched N-glycosylation in cancer was 
later shown to be dependent on galectin binding and thereby 
altering the phenotype of the cell [182]. For instance, evidence 
revealed that the galectin lattice formation due to interaction 
with the β1,6 attached poly-LacNAc N-linked glycans on the 

Cancer-associated changes in glycosylation 

Genetic and epigenetic modifications of glycan biosynthesis result 
in the characteristic pattern of cancer-associated glycosylation. The 
most-widely occurring cancer-associated changes in glycosylation 
are sialylation, fucosylation, O glycan truncation, and N- and O 
linked glycan branching [138,139]. Mechanistically, TACAs arise 
from either incomplete synthesis (originating from truncated 
structures more common in early carcinogenesis) or neo-synthesis 
processes (de novo synthesis of neoantigens is more frequent in 
advanced stages of several cancers) [140-143]. Noteworthily, these 
changes affect how the immune system responds to malignant 
cell transformations [144].

Remarkably, aberrant glycosylation is under the regulation of 
glycosylation enzymes- glycosyltransferases and glycosidases. After 
N-glycosylation or O-glycosylation, a series of fucosylation and 
sialylation are required to complete the assembly. The addition 
of sialic acid or fucose moieties to the N-linked or O-linked 
glycoproteins, the so-called glycan capping is one of the most 
frequently occurring modifications in cancer [145-147]. It worth 
noting that these terminal variations have produced highly 
antigenic epitopes with species-specific functions. Aberrant 
sialylation and fucosylation are closely associated with the 
development and progression of cancer [148]. In particular, 
aberrant sialylation is one of the most common changes in 
glycosylation occurring in cancer that have been shown to 
correlate with tumor progression and metastasis [149]. In this 
vein, the most widely occurring changes in glycosylation linked 
to cancer progression include an enhancement of N-glycan 
branching due to increased activity of the glycosyltransferase 
β1,6-N-acetylglucosaminyltransferase-5 (GnT-5 or MGAT5), 
and alterations to α2-6 sialylated N-glycans a modification 
driven by the sialyltransferase enzyme β-galactoside α-2,6-
sialyltransferase 1 (ST6GAL1) [150]. Despite that, alterations in 
glycosylation have emerged as a significant player in malignant 
transformation and tumor progression cancer-associated glycans 
and glycosyltransferases remain largely unexplored as potential 
biomarkers or therapeutic targets [151,152].

N-linked glycosylation: N-glycosylation allows tumor cells to 
resist cell death induced by chemotherapy [153]. Biochemically, 
N-glycans consist of N-acetylglucosamine (GlcNAc) attached by 
a β1-glycosidic linkage to the nitrogen atom of the amino group 
of Asn (N) at the consensus glycosylation motif Asn-X-Ser/Thr 
(in which X denotes any amino acid except for proline). These 
Asn-linked glycoconjugates contain a GlcNAc 2 mannose (Man) 
3 core, to which a variable number of other monosaccha- rides 
can be added or removed. Additions determine whether the final 
structure is classed as a high-mannose N-glycan (in which only 
mannose residues are attached to the core), a hybrid N-glycan 
(addition of galactose or fucose residues along with mannose 
in the Golgi complex) or a complex N-glycan (addition of 
GlcNAc further extends the chain in the Golgi complex) [154]. 
Significantly, one of the major factors conferring structural 
variation of N-glycans is the variable number of GlcNAc branches 
[155]. Branching of the nascent N-linked glycan chain is initiated 
in the medial Golgi through a family of enzymes known as N 
acetylglucosaminyltranferases (GnTs), which are encoded by 
MGAT genes. Remarkably, the degree of branching of N-linked 
glycans is dictated by the collective action of GnTs and ranges 
from hybrid glycans with a single antenna to complex N-glycans 
with bi-, tri-, or tetra-antennary structures [156]. In this context, 
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for coupling of many unique signaling inputs to intracellular 
tyrosine phosphorylation but, importantly, this diversity is 
further increased by the fact that multiple ligands can typically 
interact with the same receptor [206]. On the other hand, the 
transmembrane domain plays a key role in the formation and 
stabilisation of the dimer of the receptor chains [207]. Notably, 
one of the factors that contribute to the diversity of RTK activities 
are post-translational modifications, including glycosylation of 
RTKs and their ligands. This post-translational modification 
may directly modulate RTK stability, ligand binding and cellular 
trafficking, deciding about strength, specificity and duration of 
the signals [208]. Exceptedly, the glycosylation pattern of RTKs’ 
extracellular ligand binding domains may largely differ between 
normal and cancer cells. Remarkably, a highly abundant RTK-
attached glycans constitute multiple binding sites for galectins. 
Mechanistically, interaction of receptors with galectins and 
their consequent entrapment in a lattice promotes retention of 
receptors at the cell surface [209].

Interestingly, most of RTKs are subjected to extensive site-specific 
N-and O-glycosylation. Depending on the receptor type and 
structure of the extracellular domain there is a great diversity in 
the number and type of glycan structures attached to RTKs. For 
instance, Fujitani et al., found that the extracellular domain of 
ErbB2 possesses eight sequons, suggesting that ErbB2 is highly 
N-glycosylated. In addition to N-glycans, this study proposed a 
specific structure for the O-glycans that ErbB2 may possess, 
although the exact site was not definitively determined [210]. In 
a similar vein, Gędaj et al., showed that all FGFRs are heavily 
N-glycosylated in numerous positions within their extracellular 
domains; while 15 out of 22 members of their ligands Fibroblast 
Growth Factors (FGFs) are N-glycosylated and few FGFs are O- 
glycosylated [211]. Remarkably, N-linked glycosylation is a critical 
step in the maturation of transmembrane RTKs and plays a 
central role in RTK ligand binding, trafficking, and stability. For 
instance, the extracellular domain of the Vascular Endothelial 
Growth Factor Receptor-2 (VEGFR-2) is highly N-glycosylated 
and these N-linked glycans play a significant role in stabilizing 
the VEGFR-2 extracellular domain and may also influence ligand 
and drug binding to VEGFR2 [212]. In addition, the degree of 
N-glycan branching of several RTKs contributes to its capability 
to induce or arrest cellular proliferation. In this vein, it has been 
shown that growth-promoting receptors such as Epidermal Growth 
Factor Receptor (EGFR), Insulin-like Growth Factor Receptor 
(IGFR) and Fibroblast Growth Factor Receptors (FGFR) exhibit 
a higher number of N-linked chains than inhibitory receptors like 
Transforming Growth Factor beta (TGF‐β) receptor (TGFBR) 
and Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) [213,214]. 

Significantly, EGFR is the most studied RTK and one of the 
four members of the Human Epidermal Growth Factor Receptor 
(HER) family receptors (EGFR/HER1/erbB1, HER2/erbB2, 
HER3/erbB3, and HER4/erbB4) [215]. Using the EGFR as a 
prototypical RTK, studies have shown that N-glycosylation is 
required for EGFR trafficking, efficient ligand binding, and 
receptor activation [216-220]. Mechanistically, N-glycosylation 
critically determines membrane interactions and structural 
arrangement of the ligand-binding EGFR ectodomain [221]. 
However, both fucosylation and sialylation of EGFR N-linked 
glycans has been shown to impact ligand binding and signaling 
[222]. As a result, it has been proposed that disruption of 
N-linked glycosylation could lead to a decreased expression 
level of mature RTKs and thus interfere with the RTK signaling 

T-Cell Receptor (TCR) forms a spatial barrier that restricts 
spontaneous clustering of TCR in the absence of T cell-specific 
antigen [183,184]. In addition to regulating TCR clustering 
and signaling, further studies revealed that GnT-5/MGAT5 is 
also critical to maintaining surface expression/retention of the 
inhibitory receptor CTLA-4/CD152 (cytotoxic T-lymphocyte–
associated antigen 4) on T cells due to enhanced CTLA-4-galectin 
lattice formation [185]. Not surprisingly, GnT-5/MGAT5 is a 
therapeutic target for cancer and immune-related diseases [186].

Notably, complex and hybrid N-glycans may also carry a 
“bisecting” GlcNAc residue that is attached to the β-Man of 
the core by MGAT3 or GnT-3 (encoded by the MGAT3 gene) 
[187]. Despite being involved in the suppression of cancer 
metastasis (contrary to GnT-5/MGAT5), bisecting GlcNAc are 
the commonest N-glycan alterations described in hematological 
malignancies. Mechanistically, it was suggested that this reduced 
metastasis was caused by functional alterations of E-cadherin by 
bisecting GlcNAc modification and suppression of Epithelial–
Mesenchymal Transition (EMT) by MGAT3 [188,189]. 
Intriguingly, MGAT3, the enzyme responsible for the addition 
of bisecting GlcNAc residues, has been reported to be elevated 
in MM and Chronic Myeloid Leukemia (CML) patients in blast 
crisis [190].The experimental upregulation of MGAT3 in K562 
leukemia cells enhanced resistance to NK cell’s cytotoxicity and 
spleen colonization via regulation of cell recognition by bisecting 
GlcNAc moieties [191,192].

Receptor Tyrosine Kinases (RTKs): Importantly, glycosylation 
adds a second level of proliferation regulation by mediating 
growth factor receptor activation and structural alterations 
[193]. Within this context, one of the major cell surface protein 
groups implicated in the cellular signal transduction include 
glycoprotein receptors with tyrosine kinase activity RTKs which 
control essential cellular processes like cell division, metabolism, 
differentiation, motility and death, ensuring homeostasis of the 
cell and the human body [194]. RTKs are important N-linked 
glycosylated proteins expressed by both immune cells as well as 
cancer cells which get activated by receptor modification and 
impact key features of metastasis like migration, invasion etc. 
Intriguingly, many RTKs linked to proliferation and survival are 
governed through glycosylation, including the Platelet-Derived 
Growth Factor (PDGF), Fibroblast Growth Factor Receptor 
(FGFR), Epidermal Growth Factor Receptor (EGFR), v-erb-b2 
avian erythroblastic leukemia viral oncogene homolog 2 (ErbB2), 
also known as human epidermal growth factor receptor 2 (HER2) 
and neu), mesenchymal-epithelial transition factor (Met or 
c-Met), or insulin-like growth factor receptor (IGFR, also known 
as CD221; IGFIR;IGF1R) [195]. These RTKs are all known to 
be regulated by cancer-associated glycans, glycosyltransferases and 
proteoglycans (major constituents of the extracellular matrices 
as well as the cell surfaces and basement membranes) [196-199]. 
Exceptedly, aberrant RTKs are associated with nearly all human 
cancers and RTKs constitute molecular targets for numerous 
selective therapies [200,201].

Typical RTK is composed of a highly glycosylated N-terminal 
extracellular ligand binding domain (ectodomain) which initiates 
receptor signaling upon binding to either soluble or membrane-
embedded ligands, a single helical transmembrane domain and 
an intracellular tyrosine kinase domain [202]. Nevertheless, there 
is a large diversity found within their extracellular domains, 
which enables the recognition of structurally different ligands 
[203-205]. The diversity of extracellular domain structures allows 
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is glycosylated to form a 150 kDa protein prior to translocation 
to the cell surface [242,243]. By contrast, the FMS-like tyrosine 
kinase-3 internal tandem duplication (FLT3-ITD), which confers 
a strong negative prognosis in AML patients, is mostly retained in 
the ER as the underglycosylated 130 kDa species due to impaired 
glycosylation and folding [244]. Mechanistically, Marcotegui et 
al., showed for the first time that the protein SET (I2PP2A/TAF-
Iβ) is involved in the transport of FLT3-WT to the membrane; 
however, FLT3-ITD mutation impairs the SET/FLT3 binding, 
leading to its retention in the ER [245]. Captivatingly, results 
also showed that the FLT3 inhibitor midostaurin promotes FLT3 
transport to the cytoplasmic membrane in part by facilitating 
FLT3 binding to SET. In this vein, the therapeutic induction of 
ER stress/UPR-mediated apoptosis has emerged as a potential 
avenue for the treatment of FLT3-ITD positive AML. In particular, 
2-deoxy-D-Glucose (2-DG), tunicamycin and fluvastatin have 
has anti-proliferative and pro-apoptotic effects on FLT3-ITD 
positive AML by inhibiting FLT3-ITD N-glycosylation which keep 
FLT3-ITD in the ER [246-248]. Captivatingly, 2-DG displays a 
significant anti-leukemic activity in AML with FLT3-ITD or KIT 
D816V mutations, opening a new therapeutic window in a subset 
of AML with mutated RTKs [249].

Furthermore, 2-DG and Tm have also produced ER stress/
UPR-mediated apoptosis in patients with T-ALL and B-ALL 
[250,251]. Significantly, 2-DG, because of its structural similarity 
to mannose, inhibits N-glycosylation via competition with 
endogenous D-mannose and misincorporation into the precursors 
of N-glycosylation [252]. Interestingly, Li et al., revealed that the 
combining 2-DG with imatinib resulted in a synergistic inhibition 
against CML cells, including those with T315I mutation that were 
otherwise resistant to imatinib alone [253]. Recently, Toshihiko 
et al., demonstrated that 2-DG-treated CAR T cells augmented 
the efficacy of CAR T cell therapy [254]. Mechanistically, 2-DG 
causes CAR T cells to resist immunosuppression in the TME via 
decreasing N-glycosylation of the heavily glycosylated immune-
inhibitory receptors (PD-1 and CTLA-4) on T-cells and thereby 
decreasing their affinities to their ligands released from tumor 
cells (PD-L1 and CD80/CD86 respectively). In a similar vein, 
treatment with 2-DG prevented T-cells from binding to galectin-3 
(a potent tumor antigen associated with T-cell anergy), resulting 
in suppression of galectin-3-induced T cell apoptosis. Notably, 
human T cells treated with 2-DG upregulated the NK-specific 
transcription factors TOX2 and EOMES, thereby acquiring NK 
cell properties, including surface marker expression and high 
levels of cytotoxic molecules, such as perforin/granzyme leading 
to enhanced cytotoxicity to tumor cells. Mechanistically, 2-DG-
treated T cells expressed higher levels of surface interleukin-2 
receptor (IL-2R) with increased sensitivity to IL-2, resulting in 
greater secretion of perforin and granzyme. Moreover, cancer cells 
expressing Natural Killer Group 2D (NKG2D) ligands were killed 
more effectively by 2DG-treated T- cells than by control T-cells 
[255]. Furthermore, it is important to note that N-glycosylation 
also directly regulates T cell function by altering the threshold 
of TCR activation [256]. The TCR, in association with CD8, 
recognizes a complex formed by antigenic peptides and class I 
MHC [257,258]. The association between the TCR and CD8 
depends on reduced TCR glycosylation. Conversely, interaction 
of galectin-3 with N-glycan impairs TCR clustering and decreases 
T cell activation by restraining lateral TCR movement [259]. 
Therefore, by disruption of this interaction, 2-DG promotes 
TCR clustering with CD8 while decreasing the threshold for 

cascades in cancers [223]. Displaying this, Contessa et al., found 
that nanomolar concentrations of the N-linked glycosylation 
inhibitor, Tunicamycin (Tm), reduced the tumor cell protein levels 
of four RTKs (EGFR, ErbB2, ErbB3 and IGF1R) that contribute 
to tumor cell proliferation and survival [224]. Mechanistically, 
disrupting this synthetic process impairs RTK signaling in 
tumor cells through retention of the receptors in the ER/Golgi 
compartments resulting in a reduction in RTK expression levels. 
Expectedly, there is growing interest in exploring glycans found 
on RTKs as potential therapeutic targets, aiming to overcome 
drug resistance and advance cancer treatment strategies [225].

The N-glycan-dependent quality control mechanism of 
glycoprotein folding: Newly made membrane and secreted 
proteins undergo quality control as they enter the ER lume to 
ensure proper protein folding and function. Proper protein folding 
and localization depend on efficient glycosylation, without which 
cells may respond to the presence of unfolded protein by pathways 
that lead to apoptosis. Mechanistically, N-glycosylation directly 
affects the folding of glycoproteins by altering their biophysical 
properties [226]. As part of a quality control system for protein 
folding, N-glycans are recognized by two homologous molecular 
chaperones in the ER: Calnexin (CNX) and Calreticulin (CALR) 
[227]. Both CALR and CNX are Ca++-binding L-type lectins 
that bind to monoglucosylated, high-mannose-type glycans. This 
binding keeps misfolded glycoproteins in the ER until they are 
correctly folded [228]. 

Captivatingly, mutations in CALR were added to the 2016 
version of the WHO classification for Myeloproliferative 
Neoplasms (MPNs) [229]. CALR mutations are the second 
most frequent mutation after Janus kinase 2 (JAK2) in Essential 
Thrombocythemia (ET) (25% of patients) and Primary 
Myelofibrosis (PMF) (35% of patients). Surprisingly, CALR-
mutant patients often have a more benign clinical course than 
those patients do JAK2 V617F-mutated disease [230]. Trials using 
INCA033989 (a fully human monoclonal IgG1 antibody that 
selectively binds to mutated CALR) in CALR-mutated ET and/
or patients with MF are expected soon [231]. Mechanistically, 
mutant CALR stabilizes the trans-membranous Myeloproliferative 
Leukemia Protein (MPL), also known as the Thrombopoietin 
Receptor (TPO-R), resulting in ligand-independent activation of 
MPL and downstream JAK–STAT signaling pathway activation 
[232-237]. Remarkably, mutations in CALR drive overstimulation 
of MPL signaling in a glycosylation-dependent manner. 
Specifically, mutant CALR binds the immature N-glycan form 
of the MPL in the ER. Subsequently, the complex is transported 
to the cell membrane, where MPL is constitutively activated by 
mutant CALR, leading to cytokine-independent proliferation 
and development of MPNs [238]. Captivatingly, elucidating the 
mechanisms by which mutant CALR causes MPN preparing for 
immunological targeting of this cell surface neoantigen (e.g., 
by mAbs) resulting in the abrogation of JAK–STAT signaling 
indicating successful inhibition of MPL activation [239].

It is worth noting that accumulation of un- or mis-folded proteins 
in the ER lumen induce ER stress that triggers the Unfolded 
Protein Response (UPR) which either restores the balance of 
protein homeostasis or induces apoptosis of the damaged cell 
if it is deemed unrepairable [240]. Remarkably, UPR signaling 
is often dysregulated in leukemias and represents a novel 
therapeutic target [241]. Normally, the wild-type FLT3 (FLT3-WT) 
is synthesized as a 130 kDa underglycosylated species but then is 
folded in the ER and exported to the Golgi apparatus, where it 
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is overexpressed in 96% of B-CLL cells when compared to normal 
B- cells [284]. GalNAc-T11mRNA was also present in Jurkat 
(leukemic T-cell lines) and T-cells, but was not detected in Daudi 
cells (leukemic B-cell lines). Because GalNAc-T11 is present in B–
CLL cells and in T-cells from healthy donors, while its expression 
is very low in normal B-cells, it seems that GalNAc-T11 could 
be included with Zeta-chain-Associated Protein kinase-70 (ZAP-
70) among markers normally expressed by T-cells, which are 
aberrantly expressed by B–CLL cells. These results suggest that 
GALNT11 constitutes a new molecular marker for CLL capable 
to act as surrogate marker for unmutated Immunoglobulin Heavy 
Chain (IGHV) genes with poor prognosis, and is associated with 
the progression status of the disease and LPL expression. In this 
vein, since there is not a perfect concordance between ZAP-70, 
LPL and the IGHV mutational status, further work is needed 
to better define whether the addition of GALNT11 expression 
could improve prognosis assessment in Chronic Lymphocytic 
Leukemia (CLL) patients.

Synthesis of Tn antigen is typically followed by transfer of 
Galactose (Gal), GlcNAc, or GalNAc to the Tn antigen to 
form core O-glycan structures 1-8. Cores 5-8 are rare structures, 
whereas cores 1-4 are common. Alternatively, the Tn antigen 
can be sialylated by N-acetylgalactosamine α2,6 sialyltransferase 
1 (ST6GALNAC1), which generates sialyl Tn antigen on 
O-glycans and prevents LacNAc formation on O-glycans (which 
inhibits galectin-3 binding; see below). Core 1 (Galβ1–3-
GalNAcα-Ser/Thr) is synthesized by the T-synthase (Core 1 
β3-galactosyltransferase, C1GalT1), which transfers Gal from 
UDP-Gal to Tn in the cis- and medial-Golgi. Core 1 is the most 
common O-GalNAc glycan that forms the core of many longer, 
more complex structures. It is antigenic and is also, named the 
Thomsen-Friedenreich (TF or T) antigen. The oncofetal TF 
antigen can also be expressed in various pathologies, such as 
cancer, as well as on activated B-cells during a germinal center 
reaction. Indeed, the TF carbohydrate antigen is a pan-carcinoma 
antigen highly expressed by about 90% of all human carcinomas 
(normally covered by more expanded glycosylation and sialylation 
in normal epithelium) [285]. Notably, MUC1 is amongst the few 
proteins known to express unsubstituted TF antigen [286,287]. 
Interestingly, core 1 is classically defined as a type 3 chain 
(Galβ1–3GalNAc-R) and can serve as a platform for blood group 
antigens, such as H, A, and B antigens, as well as for O-glycan-
specific modifications such as the Cad (Sda) antigen, which is 
also found on extended core 2, 3, and 4 structures. Core 1–4 
structures are often extended to form various structures. Core 
1- and core 2-based structures are ubiquitously expressed. On the 
other hand, core 3 is restricted to the GI tract in humans (most 
often found on mucins in the colon) and core 4 is formed from 
core 3 by the addition of GlcNAc to GalNAc with a β1,6-linkage. 
Strikingly, cores 3, 4, and their extended structures are generally 
not observed in cancer cell lines [288,289]. In fact, the expression 
of the core 3 is down-regulated in colon cancer tissues and colon 
cancer cell lines, while the expression of core 1 and core 2 is up-
regulated [290,291].

Extended core 1: Core 1 can be further converted to core 2 
O-glycan by one of three β1,6-N-acetylglucosaminyltransferases 
(Core 2 GlcNAc Transferases, C2GnT1–3) that add GlcNAc 
to the core 1 O-glycan [292]. Core 2 GlcNAc Transferases have 
recently been shown to be necessary for proper function of the 
innate immune system, since core 2 O-glycans are essential for 
selectin ligand biosynthesis [293]. C2GnT1 (GCNT1) and 

activation, resulting in a hyperimmune response.

O-linked glycosylation: Mucin-type O-glycans (O-GalNAc 
glycans) are a class of glycans initiated with N-acetylgalactosamine 
(GalNAc) α-linked primarily to Ser/Thr residues within 
glycoproteins and often extended or branched by sugars or 
saccharides. Mucin-type O-glycans were first observed on mucins. 
Mucins, the biomolecular components of mucus, are large and 
heavily glycosylated proteins (glycoproteins) that form a thick 
physical barrier at all tissue-air interfaces, forming a first line of 
defense against pathogens [260]. As they are carrying, the greatest 
number of O-GalNAc glycans, mucins constitue an important 
source of glycopeptides in cancer. However, most secretory and 
membrane-bound proteins also receive O-GalNAc glycans, which 
are important in regulating many biological processes. Notably, 
mucin-type O-glycosylation is present at the interface between 
cells where it has important roles in cellular communication 
[261]. 

Cancers express altered mucin-type O-glycans. Physiologically, 
these tumor O-glycans comprise: (1) oncofetal antigens, which 
are rare in normal adult tissue but expressed embryonically; (2) 
neoantigens, which are novel structures not appreciably expressed 
either embryonically or in normal tissues; and (3) altered levels of 
normal antigens. Normal adult tissues do not express oncofetal 
or neoantigens, which makes them ideal for targeted diagnostics 
and therapeutics. Chemically, tumor O-glycans consist of 
both relatively small-sized, truncated O-glycans including the 
truncated glycans Tn, sialyl Tn, and T as well as the extended 
glycans ABO(H) and sialylated Lewis antigens on poly-LacNAc. 
Truncated O-glycans tend to be tumor-specific, or only found in 
tumors but not in normal cells, while altered terminal structures 
tend to be tumor-associated, with distinct changes noted in 
tumors but the structures themselves present in some normal 
tissues. Importantly, alterations in O-glycan terminal structures 
are also observed on N-glycans and glycolipids, in contrast to 
truncated O-glycans found only on O-glycans.

Biochemistry: Mucin-type O-glycosylation initiates with transfer 
of N-acetylgalactosamine (GalNAc) from UDP-GalNAc to Ser/
Thr in a glycoprotein via an α-linkage to form GalNAcα1- Ser/
Thr, which is also recognized as the Tn antigen [262]. This 
reaction is catalyzed by a family of enzymes called polypeptide 
GalNAc-transferases (ppGalNAcTs or GalNAc-Ts), consisting of 
20 members in humans. Importantly, alterations in GalNAc-Ts 
expression patterns are associated with malignant transformation. 
In addition, some GalNAc-Ts have been have been characterized 
as diagnostic and prognostic markers [263-273].

Tn is a truncated form of the elongated cell surface O-glycan. 
The hypoglycosylation leading to Tn may occur when the 
enzyme responsible for O-glycan elongation-T-synthase or its 
associated chaperone-Cosmc becomes functionally inhibited 
[274]. Expression the Tn antigen may itself be involved in driving 
oncogenesis as its expression directly induces oncogenic features, 
including dysplastic morphology, increased invasive properties, 
and decreased cell-cell and cell-matrix adhesion [275-279]. The 
Tn antigen has been shown to modulate immune cell interactions 
through interactions with the Macrophage Galactose C-Type 
Lectin (MGL) [280-283]. Captivatingly, Libisch et al., found 
a Tn antigen expression in most of the CLL patients studied 
when the VVB4 lectin was used. Gene expression analysis 
showed for the first time that GALNT11, which encodes the 
polypeptide N-acetylgalactosaminyltransferase 11 (GalNAc-T11), 
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mucin protein expressed at the apical surface of epithelial cells 
at mucosal surfaces including the breast tissue, airways, and 
gastrointestinal tract where it has a barrier function against 
bacterial invasion [305]. MUC1 is is the most intensively studied 
transmembrane protein of the mucin family [306]. Interestingly, 
MUC1 was the first identified transmembrane mucin in 
many solid tumors and hematopoietic cancers, which is often 
upregulated and aberrantly glycosylated, making it a potential 
therapeutic target for cancer immunotherapy [307]. MUC1 
consists of a large extracellular domain, a transmembrane region 
and a short cytoplasmic domain/tail. The MUC1 extracellular 
domain contains Variable Numbers of 20-amino acid Tandem 
Repeat peptides (VNTR) that are heavily glycosylated (up to 50% of 
the MUC1 molecular weight) with complex O-linked mucin type 
glycans [308]. Physiologically, MUC1 forms a protective barrier 
through the mucosal surface and protects the cells from extreme 
environmental conditions. Pathologically, MUC1 loses polarity 
upon malignant transformation and becomes overexpressed 
and aberrantly glycosylated, revealing an immunogenic region 
of tandem repeats of 20 residues. The novel MUC1 glycoforms 
that arise carry shortened glycan moieties: Tn (GalNAc), T 
(Galβ1, 3GalNAc), sT (NeuAcα2, 3Galβ1, and 3GalNAc), and 
sTn (NeuAcα2, 6GalNAc) [309,310]. In this vein, numerous 
studies have shown that interactions of sialylated glycans of 
tumor-associated MUC1 with Siglecs promote tumor immune 
escape, ultimately affecting the body’s antitumor immunity 
[311,312]. Expectedly, MUC1 is commonly overexpressed (up to 
10-fold) in various epithelial adenocarcinomas including lung, 
liver, colon, breast, pancreatic, and ovarian cancer where it has 
intracellular signaling functions and plays a significant role in 
cancer development [313]. 

Remarkably, MUC1 interacts with various cellular 
proteins involved in regulating proliferation, adhesion and 
immunomodulation of epithelial cancers. One such interaction 
is with EGFR, an important regulator of epithelial cell growth and 
survival in normal and cancerous tissues [314]. In this context, 
MUC1 is associated with EGFR in epithelial cancers such as 
breast, pancreatic, endometrial and lung. Of particular interest, 
EGFR mutations are the most common oncogenic drivers in Non-
Small-Cell Lung Cancer (NSCLC) [315]. EGFR exists normally in 
an inactive conformation but its activity is increased in neoplasia. 
Interestingly, Engel, et al. showed for the first time that MUC1 
increases expression and signaling of EGFR which indicates that 
MUC1-EGFR co-expression is associated with increased cellular 
proliferation in human tumors, highlighting the importance of 
MUC1-driven EGFR expression and signalling [316]. Expectedly, 
EGFR has become a principal therapeutic target for cancer 
treatment. Examples of established EGFR inhibitors include the 
reversible inhibitors (gefitinib and erlotinib) and the irreversible 
inhibitors (dacomitinib, osimertinib, and poziotinib) which have 
become prominent and effective treatments for EGFR-driven 
NSCLC [317].

Furthermore, MUC1 promotes the migration and invasion 
of a variety of cancers and can lead to the emergence of drug 
resistance during cancer therapy [318]. MUC1 appears in many 
hematological malignancies, including T and B cell lymphomas 
and myelomas [319], and is a potential prognostic marker and 
therapeutic target for several types of Non-Hodgkin Lymphomas 
(NHLs) [320,321]. 

Fucosylation: The process of transferring fucose from GDP-
fucose to their substrates catalyzed by fucosyltransferases is 

C2GnT3 (GCNT4) only modify core 1 to form core 2 structures, 
whereas C2GnT2 (GCNT3) can also modify core 3 to form core 
4 structure. Noteworthy, the expression of C2GnT1 (GCNT1) is 
associated with the progression of several cancers [294].

Notably, core 1 is most often sialylated by ST3GAL1 (responsible 
for adding α2,3-linked sialic acids to substrates to generate α-2,3 
sialylated core 1 O-glycans) and/or ST6GALNAC 1-4 to form 
mono or disialyl core 1. In addition, core 1 can be elongated 
or extended by Core 1 β3-N-acetylglucoaminyltransferase (Core 
1 GnT) by transferring GlcNAc from UDP-GlcNAc to form 
extended core 1, GlcNAcβ1–3Galβ1–3GalNAcα1-Ser/Thr. 
This can be further modified by other glycosyltransferases to 
form sulfated sLeX structures on extended core 1. Noteworthily, 
extended core 1 O‐glycans are expressed by specialized endothelial 
cells within the High Endothelial Venules (HEVs) and these 
contain sulfated GlcNAc residues within the sLeX motif (6‐sulfo‐ 
sLeX) [295]. 

Extended core 2: Extended core 2 are quite common and 
mediated by alternating activity of β4GalTs and β3GnTs, 
which form polyLacNAc chains based on type 2, repeats 
(3Galβ1–4GlcNAcβ1-)n. These structures can be expressed as 
linear (nonbranched) chains, branched by I-branching β-1,6-N-
acetylglucosaminyltransferase (Gcnt2, also known as β1–6GnT-I 
or IGnT) to form branched structures, and/or modified by 
fucosyltransferases, ST3Gal- and ST6Gal-sialyltransferases, 
sulfotransferases, etc., to form various blood group antigens 
as well as Lewis, sialyl Lewis, and sulfo sialyl Lewis structures. 
Intriguingly, these linear and branched polyLacNAc chains 
represent the fetal i antigen and the adult “I-branches” (I-blood 
group antigen) respectively. The blood group I antigen is present 
on adult human erythrocytes and many mucins, whereas the i 
antigen is expressed on fetal human erythrocytes. Interestingly, 
the blood group I antigen is found in N-glycans and glycolipids, 
in addition to O-glycans [296].

Mucins: Mucins-barrier glycoproteins that form mucus and 
other gel-like secretions-are densely O-glycosylated glycoproteins 
that play critical roles in a host of healthy and disease-driven 
biological functions [297]. Glycoproteomics and prediction 
algorithms identified mucin-type O-glycans on ~83% of proteins 
entering the ER–Golgi secretory apparatus, including many non-
mucin proteins [298]. This indicated that mucin-type O-glycans 
are ubiquitous [299]. In particular, mucins are dominant carriers 
of cancer-associated carbohydrates and they are able to amplify 
changes at the surface of the cancer cells [300]. Mechanistically, 
cancer-associated mucins form nanoscale material barriers that 
resist attack by immune cells, including NK cells and CAR-T 
cells. Interestingly, glycocalyx editing with mucin degrading 
enzymes including sialidases (enzymes that cleave terminal sialic 
acids from glycoproteins and glycolipids) and mucinases (enzymes 
capable of degrading mucins) can overcome the glycocalyx armour 
of cancer cells [301]. Expectedly, mucins have long been a target 
of interest in oncology [302]. Within this context, the mucins 
MUC1, MUC2, MUC4, and MUC16 are mucins associated with 
cancer progression, whereas MUC1 (also known as CA 15-3, the 
most widely used serum marker in breast cancer), MUC4, and 
MUC16 (also known as Ovarian cancer-related tumor marker 
CA125) serve as circulating biomarkers of different types of 
cancer [303,304].

MUC1/ CD227 (also known as episialin, EMA, PEM, CA15–3 
and DF3) is a a large and heavily glycosylated transmembrane 
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it has been shown that O-GlcNAcylation plays an important role in 
a broad range of cellular functions by modifying nuclear, cytosolic, 
and mitochondrial proteins. Chemically, O-GlcNAcylation 
is a ubiquitous form of intracellular glycosylation that results 
when the amino-sugar GlcNAc made in the hexosamine 
biosynthetic pathway (HBP) is covalently attached to Ser/Thr 
residues in thousands of proteins in the nucleus, cytoplasm 
and mitochondria by the glycosyltransferase O-linked GlcNAc 
Transferase (OGT). O-GlcNAcylation is an abundant protein 
post-translational modification. There are known to be at least 
8000 human proteins modified and regulated by this dynamic 
sugar modification of proteins [357,358].

Furthermore, O-GlcNAcylation has extensive crosstalk with 
phosphorylation both at the site level on polypeptides and by 
modifying many kinases. O-GlcNAcylation also cross-talks to 
regulate ubiquitination, methylation, acetylation, and other 
post-translational modifications [359]. Like phosphorylation 
and ubquitination, O-GlcNAcylation regulates many different 
cellular processes [360]. Captivatingly, O-GlcNAcylation appears 
to be particularly abundant on proteins involved in signaling, 
stress responses, and energy metabolism [361]. Expectedly, 
O-GlcNAcylation is highly sensitive to nutrient availability and 
stress, and levels of protein O-GlcNAcylation change in response 
to nutrient availability and metabolic, oxidative, and proteotoxic 
stress [362]. In addition, O-GlcNAcylation plays a role in a broad 
range of biological processes, such as transcription, translation, 
enzyme activity, cell division, protein localization and degradation 
[363]. Intriguingly, the dynamic and reversible modification of 
nuclear and cytoplasmic proteins by O-GlcNAcylation has the 
potential to significantly alter immune responses. For instance, 
O-GlcNAcylation is essential in the process of lymphocyte 
activation in both B- and T-lymphocytes [364]. Therefore, 
understanding the precise molecular mechanisms involving 
O-GlcNAcylation in the immune system is critical for developing 
new therapeutics for immune and inflammatory diseases, as well 
as for lymphoid and myeloid cancers [365].

The donor sugar for O-GlcNAcylation, Uridine-Diphosphate 
N-acetylglucosamine (UDP-GlcNAc), is synthesized from glucose 
through the (Hexosamine Biosynthetic Pathway) HBP. Two 
highly conserved and ubiquitous nucleocytoplasmic enzymes 
that carry out its addition and removal mediate the recycling 
of O-GlcNAc on proteins. OGT is the only enzyme capable 
of adding O-GlcNAc to proteins, and O-GlcNAcase (OGA) 
removes it [366]. By the way, the UDP-GlcNAc metabolite is 
a common substrate for O-GlcNAcylation and for N-glycan 
branching. Furthermore, despite being a type of protein 
glycosylation, O-GlcNAc is very different from other N-linked 
and O-linked glycans [367]. Firstly, O-GlcNAcylation occurs 
mostly on intracellular proteins (confined to nucleocytoplasmic 
and mitochondrial compartments). Secondly, O-GlcNAc moiety 
remains as a monosaccharide (i.e., not generally elongated 
or modified). Thirdly, in contrast to the dynamic nuclear/
cytoplasmic O-GlcNAcylation, O-glycans in the secretory pathway 
are stable throughout the life of the glycoprotein (unless acted 
upon by glycosidases, such as sialidases/neuraminidases derived 
from pathogens during infection).

Cancer cells, including lymphoid and myeloid malignancies, 
display enhanced levels of O-GlcNAcylation, likely due to 
their relatively higher levels of glucose flux and altered growth 
kinetics [368]. Within this context, evidence indicates that the 
HBP, specifically through O-GlcNAcylation, helps fuel cancer 

referred to as fucosylation. Fucosylation is a nonextendable 
modification and generally sub divided into terminal fucosylation 
(giving rise to specific Lewis blood-group antigens) and core 
fucosylation. Pathologically, abnormal fucosylation is associated 
with various cancers. The process of fucosylation relies on a 
series of fucosyltransferases (FUT1-11). Fucosyltransferase 8 
(FUT8) is the most important FUT in mammalian cells, which 
catalyzes the transfer of GDP-β-L-fucose to the N-sugar chain of 
Asn in the adjacent GlcNAc residues to form core Fucose (Fuc) 
[322]. Captivatingly, FUT8 is the only enzyme responsible for 
core fucosylation of N-glycans during glycoprotein biosynthesis 
[323]. Core fucosylation directly modulates the biological activity 
of glycoproteins, such as the bioactivities of several tyrosine 
kinase receptors and the Antibody-Dependent Cell-Mediated 
Cytotoxicity (ADCC) of IgG antibodies [324-326]. For instance, 
the expression of FUT8 is important for the biological functions 
of TGF-β receptors, keeping in mind that TGF-β is a major 
inducer of EMT in different cell types, and TGF-β-mediated EMT 
is thought to contribute to tumour cell spread and metastasis 
[327]. In fact, over 90% of N-glycans from human serum IgG 
are core fucosylated [328]. Intriguingly, removal of core Fuc from 
therapeutic IgG was found to raise its ADCC by about 100-fold 
and this approach is now used clinically. In addition, FUT8 
has been reported as a responsible factor for the synthesis of 
cancer-associated N-glycan structures [329-331]. Not surprisingly, 
enhanced core fucosylation is often associated with cancer 
progression [332]. Showcasing this, the upregulated expression 
of FUT8 has been reported in several cancers, including lung 
cancer, prostate cancer, Hepatocellular Carcinoma (HCC) and 
Chronic Research Consortium (CRC), for which FUT8 was 
discovered as a prognostic marker in patients with stage II and 
III CRC, demonstrating that FUT8 is involved in biological 
tumor characteristics and patient outcomes [333-338]. Besides, 
the upregulated expression of FUT8 increased the fucosylation of 
the TGFBR and its downstream signaling, promoting the breast 
cancer tissue invasion and metastasis [339]. It is worth noting 
that core fucosylation of alpha-fetoprotein (AFP-L3 fraction) due 
to the upregulation of FUT8 in HCC cells is a FDA-approved 
serum tumor marker for the specific diagnosis of HCC [340,341].

Among the family of FUTs, there are six α-1,3-FUTs that 
specifically modify terminal lactosaminyl glycans, the last step in 
biosynthesis of Lewis X antigens (i.e. ‘‘Lewis X’’ (Le X; CD15) 
and ‘‘sialyl Lewis X’’ (sLeX; CD15s) [342]. Notably, upregulated 
α-1,3-FUTs activity, resulting in the overexpression of LeX 
and sLeX determinants, is etiologic in several human diseases 
including cancer and autoimmune conditions [343-348]. The 
principal α -1,3-FUTs that mediate sLeX creation (the canonical 
binding determinant for selectins) are FUT6 and FUT7 with 
FUT9 dominating LeX synthesis [349,350]. FUT7, which makes 
only sLeX, was significantly upregulated in AML M5. FUT7 
fucosylation has also been reported to play an important role 
in the generation of PSGL-1 (also called CD162), expressed on 
the surface of most leukocytes, is a counter-receptor for P-selectin 
[351]. Remarkably, Adult T-cell Leukemia/Lymphoma (ATLL) 
cell lines strongly express sLeX, which is dependent on FUT7 
[352-355]. Mechanistically, HTLV-1, the etiologic agent of ATLL, 
encodes a Transcriptional Activator Protein (TAX), which 
regulates the FUT7 gene [356].

O-GlcNAcylation: O-GlcNAcylation was discovered in the 
1980s, overturning the previously accepted dogma that protein 
glycosylation did not occur in the nucleus and cytoplasm. Indeed, 
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into three types: α2-3-, α2-6-, and α2-8-sialylation [389].

As sialic acids decorate the majority of mammalian glycans at the 
cell surface and in the extracellular space, they are considered 
as SAMPs [390,391]. Physiologically, sialic acids confer a 
negative charge to the sialylated glycoproteins and glycolipids 
that contribute to glycoconjugates biophysical and physiological 
functions. Pathologically, sialylation modifies the conformation 
of essential proteins to promote cancer cell proliferation, 
invasion, and migration. Recently, Tharp et al., found that the 
physical properties of the microenvironment influence immune 
surveillance via compositional and topological dynamics of the 
sialic acid-containing glycocalyx [392]. Aberrant sialylation is 
the most critical change in glycosylation occurring in cancer. 
Aberrant sialylation is not only a consequence of tumor 
transformation but is a driver of the malignant phenotype. 
Therefore, aberrant sialylation is an established sign of several 
types of cancer. The alterations of sialic acid processing lead to 
mainly two implications: Hypersialylation a general upregulation 
of sialoglycans (sialylated glycans) on cell surfaces of tumors. 

Sialoglycans including sialyl-Tn (sTn), sialyl-T (sT) and sialyl-Lewis 
antigens, polysialic acid, and gangliosides are often exploited as 
tumor-associated antigens (i.e., as markers for cancer detection 
and monitoring) [393,394]. By interaction with sialoglycan-
binding lectins, including Siglecs and selectins, hypersialylation 
has been linked to immune evasion, drug resistance, tumor 
invasiveness, and metastasis. In fact, the ability of tumor cells 
to metastasise correlates with total sialic acid levels [395]. An 
increased introduction of the non-human sialic acid Neu5Gc 
instead of Neu5Ac into cell surface glycans. 

Sialyltransferases: Hypersialylation is the result of dysregulated 
expression of sialyltransferases. Sialyltransferases are categorized 
under inverting glycosyltransferases, i.e., enzymes that invert 
the stereochemistry of the donor’s anomeric bond (α → β). In 
the Golgi apparatus, these enzymes catalyze the transfer of sialic 
acid moiety from an activated sugar nucleotide donor, that is, 
CMP-Neu5Ac (Cytosine 5′-monophosphate N-acetylneuraminic 
acid) to non-reducing positions of acceptors such as galactose, 
N-Acetyl galactosamine, and other sialic acid residues [396]. 
Altered sialyltransferase expression leads to the formation of 
specific sialylated structures [397]. Notably, an increase in α2,6 
sialylation on N-glycans (the addition of α2,6-linked sialic acids 
onto subterminal galactose residues of lactosaminic chains of 
N-glycans), a modification driven by ST6GAL1 is a common 
change in tumor cell glycosylation [398]. In this vein, Munkley 
et al., have recently revealed the mechanisms underlying how 
ST6GAL1-mediated aberrant sialylation of N-glycans promotes 
prostate cancer bone metastasis and provided proof-of-concept 
data to show that sialic acid blockade can inhibit bone metastasis 
which is a common, debilitating and incurable consequence of 
advanced prostate cancer [399].

In addition, the α2-3 sialyltransferases (ST3Gal) family transfer 
sialic acid residue in an α2,3-linkage to terminal Gal residues 
present on glycolipids or glycoproteins resulting in the synthesis 
of gangliosides (ST3Gal2 and 5), the tumor-associated sialyl-T 
(sT) (ST3Gal1) and the sialylated derivatives of Lewis antigens 
(sialyl-Lewis X [sLeX]), sialyl-Lewis A [sLeA]). Within this context, 
ST3Gal3, ST3Gal4 and ST3Gal6 are involved in the synthesis 
of sLeX, while sLeA (also known as carbohydrate antigen 19-9 
[CA19-9] which serves as a tumor marker) is predominantly 
generated by ST3Gal3 [400]. 

cell metabolism, growth, survival, and spread [369]. Cancer 
cells also show increased OGT expression, which increases 
O-GlcNAcylation and promotes cancer cell proliferation and 
resistance to chemotherapy [370]. Consequently, elevated 
O-GlcNAcylation (hyper-O-GlcNAcylation) is a signature 
of cancer-specific metabolism and linked to various signs of 
cancer, including cancer cell proliferation, survival, invasion, 
and metastasis; energy metabolism; and epigenetics [371]. Not 
surprisingly, hyper-O-GlcNAcylation has emerged as a new sign 
of cancer [372]. Hyper-O-GlcNAcylation is a general feature of 
several cancers including breast, prostate, pancreas, lung and 
colon but also occur in hematologic malignancies. In this context, 
MM cells resistant to bortezomib were found to have higher 
concentration of UDP-GlcNAc and OGT levels as compared 
to bortezomib-sensitive cells [373,374]. Jin et al., showed for 
the first time an increased GlcNAcylation in the BM of MM 
patients, and by using AANL6, a mutant [375]. Agrocybe aegerita 
GlcNAc-specific lectin, found that the combined expression of 
two secreted glycoproteins (FBLN1and DKK1) can be used as a 
novel clinical biomarker for the diagnosis of MM. These findings 
suggest that increased GlcNAcylation is associated with the 
pathogenesis of MM, which could potentially have therapeutic 
implications. Converesly, CLL cells express high levels of 
O-GlcNAcylated proteins, such as p53, c-Myc, and Akt but are 
unpredictably associated with with an indolent clinical behaviour 
[376]. This observation is somewhat paradoxical as important 
signaling pathways in CLL including the NFκB, MEK/ERK, 
PI3K/AKT/mTOR, JAK, and Notch pathways can all be affected 
by O-GlcNAcylation. Reasons for the inverse correlation between 
total O-GlcNAcylated protein levels and clinical course in CLL 
are still unclear [377].

Aberrant sialylation: In 1957, a 9-carbon acidic (based around 
an alpha-keto acid core) monosaccharide was designated “sialic 
acid” and is one of the ten monosaccharides used in the 
enzymatic process of glycosylation in mammals [378]. All jawed 
vertebrates have cell-surface glycans that terminate with sialic 
acid residues [379]. Moreover, sialic acids have a pivotal role 
in infection (viruses, bacteria, protozoa) [380]. The sialic acid 
family consists of nearly 50 members that are derivatives of 
N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid 
(Neu5Gc), and 3-deoxy-d-glycero-d-galacto-non-2-ulopyranosonic 
acid (deaminoneuraminic acid; 2-keto-3-deoxy-d-glycero-d-galacto-
nononic acid; Kdn). However, Neu5Ac is the most abundant 
sialic acid in humans and serves as a key marker of self in glycan-
coding sequences [381,382].

Sialic acids are predominantly found at the non-reducing end 
of N-linked and O-linked glycans attached to glycoproteins or 
glycolipids. Sialylation is defined as the terminal addition of sialic 
acid to the oligosaccharide and glycoconjugates. This enzymatic 
process is tightly regulated by Sialyltransferases (STs) and sialidases 
or Neuraminidases (NEUs) in normal cells. There are twenty Golgi 
localised sialyltransferases with different substrate and linkage 
specificity in charge of protein and lipid sialylation in humans 
[383]. On the other hand, only 4 mammalian sialidases (NEU1, 
NEU2, NEU3 and NEU4) release sialic acids from sialylated 
glycoconjugates [384]. However, the accumulation of sialylation 
in tumors is due to the high expression of sialyltransferases 
and the altered expression of sialidases [385]. Expectedly, both 
sialyltransferase inhibitors and sialidases have emerged as novel 
anticancer therapeutic interventions in cancer [386-388]. Based 
on the category of glycosidic linkage, sialylation can be classified 
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pathway [415]. In fact, MDR is conventionally regarded as the 
consequence of overexpression of ABC transporters in tumor 
cells which lead to lower intracellular drug accumulation and 
hence reduce cellular toxicity of chemotherapeutic agents 
[416]. While there is strong evidence that activation of the 
phosphoinositide 3 kinase (PI3K)/Akt signaling network plays 
a significant role in rendering AML blasts drug resistant, data 
confirmed the correlation of the ST6GAL1-mediated PI3K/
Akt signaling pathway with multidrug resistance [417,418]. It has 
been reported that the PI3K/Akt signaling enhances drug efflux 
by transporter proteins belonging to the ATP binding cassette 
(ABC) family in order to maintain MDR of tumor cells [419]. 
In fact, MDR is conventionally regarded as the consequence 
of overexpression of ABC transporters, which lead to lower 
intracellular drug accumulation and hence reduce cellular 
toxicity of chemotherapeutic agents. The two main members 
of ABC transporters frequently used as markers to screen 
MDR patients clinically are P-glycoprotein (P-gp) and 
MDR-associated protein 1 (MRP1). While the membrane 
glycoprotein P-gp actively pumps cytotoxic agents out of cells 
and decreases their intracellular concentration MRP1 plays 
an active role in protecting cells by its ability to efflux a vast 
array of drugs to sub-lethal levels [420,421]. Interestingly, 
ST6GAL1 was found to increase the expression of P-gp and 
MRP1 through PI3K/Akt pathway, thereby mediating MDR 
of leukemia cells [422]. Table 2, delineates the role of several 
sialyltransferases in hematologic malignancies.

Sialyltransferases are implicated in cancer and immune 
suppression by synthesizing sialoglycans, which act as ligands for 
siglec receptors [401]. Moreover, the tumor markers sLeA and 
sLeX are ligands for selectins [402]. Since selectins are one of 
the main mediators of leukocytes trafficking, it is conceivable 
that sLeA and sLeX are potentially involved in the malignant 
behavior of cancer cells as they both promote tumor metastasis 
[403,404]. In a similar vein, the dysregulated expression of the 
sialyltransferase ST3GAL6, a key regulator of selectin ligand 
synthesis, is implicated in disease progression and survival in 
MM [405]. Mechanistically, the upregulation of sialyltransferases 
promotes tumor metastasis via several routes, including 
stimulating tumor invasion and migration through integrin-
mediated processes, inhibiting Fas-mediated apoptosis and 
evading immunosurveillance [406]. For instance, ST6GAL1–
mediated sialylation of EGFR influences integrin-dependent 
adhesion and cell mechanics across different cancer cell lines 
[407]. Interestingly, studies have shown that inhibition of 
sialyltransferases reduces cancer metastasis [408,409].

Furthermore, sialyltransferases can promote resistance to 
chemotherapy and radiotherapy [410-413]. Within this context, the 
expression of sialylated antigens on the cell surface is emerging as 
an important feature of cancer cell Multidrug Resistance (MDR). 
MDR is a well-established cause of chemotherapy failure and 
disease progression in patients with leukemia [414]. The efflux 
of cytotoxic drugs mediated by transporter proteins belonging to 
the ATP Binding Cassette (ABC) family is the "classical MDR" 

Table 2: The role of selected sialyltransferases in hematologic malignancies.

Enzyme elevated Antigen Significance References

ST6GALNAC41 disialyl-T2 
As disialyl-T antigen protects CLL B-cells from NK cell cytotoxicity, disialyl-T antigen is a 

potential prognostic marker of CLL
[423]

ST6GAL1
α2–6 sialylated 

N-glycans
Overexpression of this glycotope is detected in patients with MDR AML and CML [424]

ST3GAL1 3 
Sialylated TF 

antigen
Increased expression of ST3GAL1 (either alone or combined with increased expression of 

ST3GAL6) identified a subgroup of MM patients with particularly poor outcome
[425]

ST3GAL4 sLeX 4

Elevated expression was found in CML cells with imatinib resistance [426]

Upregulated in M5 AML 5 Associated with poor survival in AML patients [427]

Significantly upregulated in patients displaying MDR phenotype

ST8SIA4 Polysialic acid Cellular MDR phenotype in CML positively correlated with ST8SIA4 and ST8SIA6 levels 7 [428, 429]

ST8SIA6 disialic acids (specifically on O-linked glycoproteins)6

ST3GAL5 and 
ST8SIA4

sialylated 
N-glycans

Overexpressed in association with MDR of AML cells [430]

ST6GALNAC4 disialyl-T 
Associated with chemoresistance in AML cell lines and AML patients    ST6GALNAC4 

showed a significant upregulation in M6 AML

ST3GAL6 8 sLeX
ST3GAL6 expression is positively correlated with homing and engraftment of MM cells
High expression of ST3GAL6 in MM cell lines and patient samples is associated with 

inferior outcomes 
[431]

ST6GalNAc IV sialyl-T antigen The major enzyme controlling the expression of sialyl-T antigen in leukemia cell lines [432]

ST8Sia I                         
(GD3 synthase)

GD3 Upregulated in HTLV-I -positive adult T-cell leukemia cell lines [433]

ST3GAL5                               
(GM3 synthase)

GM3
Upregulated ST3GAL5 (and ST6GAL1) positively correlated with the high risk of pediatric 

ALL
[434]

ST8Sia II and           
ST8Sia IV

Polysialic acid Found on the unidentified proteins in basophilic leukemia cell lines [435]

ST3GAL3 sLeA and sLeX

Several cases of lymphoma displayed strong cytoplasmic staining [436]

ST3GAL3 is one of the genes that showed an increase in methylation in MDS/secondary 
AML compared with de novo AML specimens

[437]
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which affected its affinity for its counter-receptor as well as greatly 
reduced the ability of MM cells to interact with E-selectins, 
Vascular Cell Adhesion Molecule 1 (VCAM-1) and Mucosal 
Vascular Addressin Cell Adhesion Molecule 1 (MADCAM-1), 
which altered adhesion and rolling mediated by α4β1 and α4β7 
integrins respectively [451]. Intriguingly, 3Fax-Neu5Ac reduced 
the tumor burden, increased survival and showed a synergistic 
therapeutic effect in combination with bortezomib. Noteworthily, 
both α4β7 and α4β1 integrins are highly expressed on MM cells 
and the expression levels of β7 integrin (2 known members: 
α4β7 and αEβ7) on MM cells correlates with poor survival in 
MM patients [452-454]. Therefore, inhibiting sialylation may 
represent a new therapeutic strategy to overcome BM-mediated 
chemoresistance [455].

O-Acetylation of sialic acids: Sialic acids found in mammalian 
organisms vary in their substituent at C5, which in Neu5Ac is 
an acetylated amino group, in Neu5Gc a glycolylated amino 
group, and in Kdn a hydroxyl group [456]. The 5-amino group 
can also exist in nature in non-N-acylated form, giving rise 
to Neuraminic acid (Neu). Neu5Ac, Neu5Gc, Kdn, and Neu 
collectively comprise the four ‘core’ sia molecules. The four ‘core’ 
sia molecules can also undergo various natural modifications that 
impart a second level of diversity as they sometimes carry one or 
more additional substitutions on the hydroxyl groups at C-4, C-7, 
C-8, and C-9 (O-acetyl, O-methyl, O-sulfate, or O-lactyl groups). 
The most common modification of sialic acids is O-acetylation 
preferentially occurring at the C-4, C-7, C-8, and C-9 hydroxyl 
groups of the nonulosonic acid and sialic acid foundation. 
However, because O-acetyl esters from C-7 and C-8 positions are 
known to spontaneously migrate to C-9 even under physiological 
conditions, O-acetylation at C-9 is considered the most common 
biologically occurring modification. For example, N-acetyl-9-
O-acetylneuraminic acid (Neu5Ac9Ac) is the most frequent 
postsynthetic change in humans [457].

Neu5Gc: The two most common forms of sialic acid found in 
mammalian cells are Neu5Ac and its hydroxylated derivative, 
Neu5Gc. The enzyme cytidine monophospho-Neu5Ac 
hydroxylase (Cmah, encoded by the CMAH gene) catalyzes the 
convertion of Neu5Ac to Neu5Gc. However, in humans this 
enzyme is inactive [458]. In spite of this, Neu5Gc-sialoconjugates 
have been detected in human tissues, particularly in tumors 
with dietary incorporation of Neu5Gc being currently the most 
accepted hypothesis [459,460]. The higher proliferation of 
malignant cells would explain the preferential expression of these 
antigens in tumors also favored by the increased uptake under 
hypoxic conditions [461-463]. Neu5Gc expression in human 
tissues enhances inflammation due to an anti-Neu5Gc immune 
response, which can potentially influence inflammation-
induced cancer and cancer-associated inflammation [464]. 
Since expression of Neu5Gc in humans being associated with 
malignant transformation, therefore, Neu5Gc is an attractive 
target for cancer immunotherapy [465].

O-linked modifications in epidermal growth factor repeats on 
Notch: Two unusual forms of O-linked glycans, namely, O-fucose 
and O-glucose, were initially described on the Epidermal Growth 
Factor (EGF) repeats of mouse Notch1 [466]. Later, evidence 
resolved that the signaling pathway best known to be regulated 
by O-glycans on EGF repeats is the Notch signaling pathway. 
Intriguingly, Notch is an evolutionary-conserved signaling system 
that regulates cell fate decisions through local cell-cell interactions 
[467]. In this context, the available evidence indicates that 

1Patients with high MYC expression are also likely to have high 
ST6GALNAC4 expression. High ST6GALNAC4 expression, 
among all sialyltransferases, is the strongest predictor of adverse 
patient outcomes in BL, DLBCL, CLL, and T-ALL, which notably 
all have high MYC activity
2This glycotope is recognized by Siglec-7. CD162/PSGL-1 and 
CD45 are the major carriers of disialyl-T antigen on CLL B-cells.
3The primary role of ST3GAL1 is to catalyze the attachment 
of Neu5Ac and Thomsen-Friedenreich (TF) antigens (Gal-β1,3-
GalNAc), resulting in the production of sialylated TF antigens.
4ST3GAL4 contributes to the synthesis of either Siglec-9 or 
selectin ligands. ST3GAL4 is one of three sialyltransferases 
attaching sialic acid to N-glycans via α2,3 linkage in mammals 
(along ST3GAL3 and ST3GAL6), with ST3GAL4 likely to play 
a major role. 
5Based on ST3GAL4/FUT7 expression, M3 cells may also be a 
subtype with elevated sLeX levels.
6This is the first report of a mammalian α2,8-sialyltransferase that 
preferentially sialylates O-glycans.
7This study indicated that α-2,8-sialyltransferases involved in the 
development of MDR of CML cells probably through ST8SIA4 
regulating the activity of phosphoinositide-3 kinase (PI3K)/Akt 
signaling and the expression of P-gp.
8ST3GAL6 contributes to formation of Siglec and Selectin 
ligands.

Hypersialylation: Hypersialylation is an established sign of 
several cancers where it is directly proportional to their metastatic 
phenotype and poor prognosis [438,439]. Tumor cells commonly 
mask themselves by hypersialylating their surface glycans leading 
to the enhanced expression of sialoglycans, which through the 
interaction with Siglec receptors, leads to immune evasion by 
shutting down anti-tumor responses. Mechanistically, sialoglycans 
on the hypersialylated cancer cell surface bind to Siglecs on 
immune cells to mediate immunosuppression, inhibiting 
the cytotoxicity of Natural Killer (NK) cells and the activation 
of T-cells, and inducing a Tumor-Associated Macrophage 
(TAM) phenotype, to promote continued tumour growth. 
Hypersialylation can also induce immune evasion by interference 
with the complement system via a “molecular cloaking” 
mechanism mediated by Factor H sequestration and dampening 
of the complement-mediated cell lysis and opsonisation [440]. 
Conversely, sialic acid deficient tumors showed a favorable T-cell 
landscape characterized by enhanced CD8+ T-cells and decreased 
CD4+ regulatory T cells (Tregs). Noteworthily, CD8+ T-cells are 
end effectors of cancer immunity and hence, most forms of 
effective cancer immunotherapy involve CD8+ T-cell effector 
function [441]. Not surprisingly, targeting sialic acids synergizes 
with immunotherapy and can improve survival [442].

Additionally, sialic acids represent critical determinants of 
selectin ligands, which contribute to extravasation of immune 
cells to target organs and sites [443]. The expression of selectin 
ligands (SleA/X) on cancer cells seems to correlate with metastatic 
phenotype [444-448]. For instance, E-selectin ligands expressed 
on MM cells played a role in BM homing and possibly retention 
of the malignant cells in the BM [449,450]. In addition to the 
generation of selectin ligands, sialylation plays other roles in MM. 
In 2020, Natoni et al., reported that desialylation (removal of 
sialoglycans from cancer cells) by using a global sialyltransferase 
inhibitor (3Fax-Neu5Ac) impaired maturation of the α4 integrin 
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O-GlcNAc, and O-xylose [490]. Largely, the ligand-dependent 
Notch signaling pathway requires glycosylation of the NECD 
for signaling activation [491]. In particular, O-fucose glycans 
appear to function both directly and indirectly in the recognition 
of receptors by ligands. For instance, O-fucose glycans directly 
participate in the binding of Notch1-DLL4 and Notch1-JAG1 
[492-494]. In 2000, an entirely new field opened up with the 
discovery that the Fringe molecule is a glycosyltransferase that 
catalyzes the addition of GlcNAc to O-fucose and this discovery 
demonstrated an association of the Notch signaling pathway with 
glycobiology [495-497]. Before Fringe can act, EGF repeats must 
first be glycosylated with an O-fucose and this O-fucosylation 
is mediated by O-fucosyltransferase 1 (O-FucT-1) (encoded by 
Pofut1 in mammals), which then are elongated by Fringe, an 
N-acetylglucosaminyl transferase [498,499]. As fucosylation 
is one of the prevalent glycosylation types on Notch proteins, 
O-Fucosylation by POFUT1 is essential for Notch activation in 
mammals [500,501]. The O-Fucose monosaccharides can then be 
elongated with GlcNAc residues using Fringe, which is essential 
to promote Notch/Delta-binding, in preference to Notch/Serrate, 
whose interaction is inhibited by this modification [502,503]. 
Similarly, O-glycosylation of the EGF repeats is mediated by 
O-glucosyltransferase, Rumi in Drosophila or POGLUT1 (also 
known as hCLP46) in mammals and elongated by Shams, a 
xylosyltransferase. In humans, xylosyltransferase (GXYLT)1 and 
(GXYLT)2, that add first and second xylose residues to Notch 
EGF repeats, have been identified [504-508]. The O-glucose 
modification on Notch is essential for Notch signaling and 
embryonic development [509,510]. Remarkably, POGLUT1 is 
overexpressed in primary AML, T-ALL, and other leukemia cell 
lines [511,512]. In addition, EGF-specific O-GlcNAc-transferase 
(EOGT in Drosophila and Eogt1 in mammals) adds GlcNAc 
to EGF repeats. This unique non-nucleocytoplasmic O-GlcNAc 
modification mediate the ECM interactions of Notch [513,514].

Captivatingly, aberrant Notch activity has either tumor 
promoting (oncogenic) or tumor-suppressive roles or both in 
a context-specific manner [515]. In the hematopoietic system, 
while an oncogenic role of Notch has been described in 
several hematologic malignancies including T-ALL, CLL, B cell 
leukemias, and lymphomas, a tumor-suppressive role has been 
proposed in Chronic Myelomonocytic Leukemia (CMML) and 
suggested in AML [516-520]. Such dualism has been linked to the 
function of Notch in the regulation of cell fate choices during 
immune cell development [521]. Interestingly, aberrant Notch 
signaling also triggers anti-apoptotic program and drug resistance 
in T-cell Acute Lymphoblastic Leukemia (T-ALL), B-cell Acute 
Lymphoblastic Leukemia (B-ALL), Chronic Lymphocytic 
Leukemia (CLL), AML, Hodgkin and Anaplastic Large Cell 
Lymphoma (ALCL) and Multiple Myeloma (MM) [522-528]. In 
this vein, overwhelming evidence indicate that Notch signaling is 
instrumental in the pathological communication between tumor 
cells and BM leading to the reprogramming of surrounding 
microenvironment and the development of pharmacological 
resistance [529].

Remarkably, the Notch family of receptors and ligands has gained 
growing interest in the recent years due to their early dysregulation 
in MM and their ability to affect multiple features of the disease, 
including tumor cell growth, drug resistance, angiogenesis and 
bone lesions [530]. For instance, the dysregulation of Notch1 and 
JAG1 has been associated with progression from a pre-malignant 
stage termed Monoclonal Gammopathy of Undetermined 

Notch signaling has important roles in many cellular processes, 
including differentiation, proliferation, apoptosis, and stem 
cell maintenance [468]. Expectedly, dysregulation of Notch 
signaling leads to various human diseases, including cancer [469]. 
Interestingly, investigations into Notch predate the identification 
of almost all signal transduction systems [470]. The principal 
understanding of the interaction between Notch and its ligands 
was obtained through studies on Drosophila, flies with Notch-ed 
wing phenotype as originally observed by Dexter in 1914 [471]. 
However, the discovery of human-specific Notch genes has led to 
a better understanding of Notch signaling in development and 
diseases and will continue to stimulate further research in the 
future [472].

Notch is a large (> 300 kDa) cell-surface receptor that contains 36 
tandem EGF repeats comprising the majority of its Extracellular 
Domain (ECD). However, the Notch pathway core components 
include Notch receptors, Delta/Serrate/LAG-2 (DSL) family of 
ligands, the Notch receptor proteases Adam and γ-secretase, and 
the nuclear effector CSL (CBF1/RBPjκ/Su(H)/Lag-1) [473,474]. 
Both Notch receptors and the DSL Notch ligands are type-I 
transmembrane glycoproteins with a single transmembrane 
domain. Mammals have four Notch receptors (Notch1–4), all 
consist of an Extracellular Domain (ECD) or Notch Extracellular 
Domain (NECD) and an Intracellular Domain (ICD) or Notch 
intracellular domain (NICD) and two types of canonical Delta/
Serrate/LAG-2 (DSL) family ligands: Three Delta-Like Ligands 
(DLL1, DLL3, and DLL4) and two Serrate-like (Jagged) ligands 
(JAG1 and JAG2). The ECD of DSL ligands contain a conserved 
N-terminal DSL domain and several EGF-like repeats, whereas 
NECD consists of a series of EGF repeats and a Negative 
Regulatory Region (NRR). Remarkably, Notch signaling pathway 
mediates cell to cell communication by transducing short-range 
signals via interactions between cell-surface receptors (Notch 1-4) 
with transmembrane ligands [475]. For signaling to occur, the 
transmembrane ligands from one cell bind the transmembrane 
Notch receptor in a neighboring cell, inducing the cleavage of 
Notch and the release of the Notch ICD into the cytoplasm, where 
it can translocate to the nucleus and promote the expression of 
its target genes [476]. Notch1-ICD comprises an RBPJ-associated 
molecule (RAM) domain, seven ankyrin (ANK) repeats, flanked 
by Nuclear Localization Signals (NLS), a Transactivation Domain 
(TAD) required for target gene activation, and a C-terminal PEST 
domain, a region rich in Proline (P), Glutamic acid (E), Serine 
(S), and Threonine (T), which regulates stability and proteasomal 
degradation of active Notch1-ICD [477-479]. While Notch1 
contains a strong TAD capable of autonomous transcriptional 
activation [480-482]. Notch2 has a weak TAD, while Notch3 and 
Notch4 have no TAD in the endodomain [483]. The EGF repeats, 
which are defined by the presence of six conserved cysteine 
residues forming three disulfide bonds modified with O-glycans 
at distinct sites, participate in receptor-ligand interactions [484].

The ECD of both Notch receptors and Notch ligands contains 
numerous EGF-like repeats, which are post-translationally 
modified by a variety of glycans. Inactivation of a subset of genes 
that encode glycosyltransferases, which initiate and elongate these 
glycans inhibits Notch signaling and cause Notch signaling defects 
of varying severity [485]. Importantly, strong evidence indicates 
that deregulation of the components involved in glycosylating 
Notch proteins are implicated in human developmental disorders 
and Notch-induced tumorigenesis [486-489]. Specifically, the 
EGF repeats of NECD are modified by O-fucose, O-glucose, 
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matter of fact, T-ALL is primarily a Notch1-driven disease with 
somatic gain-of-function mutations in NOTCH1 contributing to 
almost 60% of the cases [550]. Despite the high prevalence of 
activating NOTCH1 mutations in T-ALL, NOTCH1 mutations 
are not associated with unfavorable outcome and in some series, 
they may even confer better prognosis [551,552]. On the contrary, 
NOTCH1 mutations confer a dismal prognosis with a reduction 
in the OS in CLL patients. Based on current knowledge, 
NOTCH1 mutations occur in 11% of CLL patients and are 
mutually exclusive with tumor protein 53 (TP53) disruptions in 
90% of the cases [553]. Captivatingly, their frequency increases in 
advanced disease phases, as exemplified by the case of RT [554]. 
Unlike T-ALL, the most common NOTCH1 mutation in CLL 
affects the C-terminal PEST domain causing prolonged half-
life of the cleaved protein [555]. Unsurprisingly, several studies 
support that NOTCH1 mutations as a negative predictor factor 
for CLL patients [556,557]. Accumulating evidence suggests that 
an anti-Notch1 treatment might be able to kill not only mature 
CLL cells but also their corresponding LSCs, favoring disease 
eradication for a definitive cure [558]. 

As mentioned earlier, Notch signaling is an important pathway 
with both oncogenic and tumor-suppressive potential in AML 
[559]. Based on current knowledge, NOTCH1 is mutated in 
12% of AML patients but its impact on the OS is a debating 
matter [560,561]. Nevertheless, recent research showed that 
Notch signaling promotes chemoresistance in FLT3-amplified 
AML [562]. Intriguingly, Li et al., demonstrated that the 
combined inhibition of Notch and FLT3 produces synergistic 
cytotoxic effects in FLT3-ITD positive AML [563]. In addition, 
Fischer et al., uncovered the oncogenic relevance of the Notch1 
pathway in leukemia with rearrangements of the KMT2A 
(Lysine methyltransferase 2A) gene (KMT2A-R) [564]. By using 
the Notch1 inhibitor CAD204520, their study demonstrated 
the successful inhibition of the Notch1 pathway, resulting in 
convincing anti-leukemic effects, which provides a potential target 
in the treatment of KMT2A-R AML. Mechanistically, Notch 
signaling alters the levels of glycosyltransferases that are involved 
in O-fucosylation and O-glucosylation, which is eventually 
resulting in a positive feedback loop in AML [565-568].

Furthermore, Notch2 signaling has been shown to play a key role 
in marginal zone B-cell development in the spleen, and to be 
dispensable for the development of other B-cell lineages [569,570]. 
In this context, NOTCH2 mutations have been found in other 
B-NHL subtypes, such as Splenic Marginal Zone Lymphoma 
(SMZL) and Diffuse Large B Cell Lymphoma (DLBCL). In 
DLBCL, NOTCH2 mutations affect approximately 8% of 
patients with some cases having increased copies of the mutated 
NOTCH2 allele [571]. In SMZL, NOTCH2 mutations represent 
the recurrent genetic lesion accounting for approximately 20–
25% of cases [572-574]. Unfortunately, Notch-related therapies 
have not gathered momentum due to the toxicities seen with 
current therapeutic strategies and the difficulty of targeting 
multiple Notch ligand-receptor interactions [575]. Hence, believe 
that there is a great hope with the employment of glycobiology in 
creating novel Notch-related therapies. 

Structures common to different glycans

Polysialic acid (PSA): Polysialic acid is a linear polymer of sialic 
acid, with α2,8 and α2,9 linkages and a length ranging from 8 to 
400 units. In mammalian cells, three sialyltransferases (ST8Sia 
II, ST8Sia III, and ST8Sia IV) are responsible for the extension 

Significance (MGUS) to MM [531]. Mechanistically, Notch 
signaling mediates the pathological communications between 
Bone Marrow Stromal Cells (BMSCs) and MM cells, which 
favors MM progression by increasing MM proliferation promotes 
chemotherapy resistance and stimulates angiogenesis [532,533]. 
Captivatingly, Notch communication increases osteoclast 
differentiation and function and induces apoptosis of osteocytes 
to further promote bone resorption and destruction [534,535]. 
In addition, Notch signaling also takes part in the migration 
of MM cells through the expression of the CXCR4/SDF-1 axis 
system [536]. Unlike other Notch-related malignancies, where the 
majority of patients carry gain-of-function mutations in Notch 
pathway members, Notch signaling is aberrantly activated in 
MM cell due to an increased expression of Notch receptors and 
ligands [537]. The first outcome of Notch receptors and ligands 
dysregulation in MM is the activation of Notch signaling within 
tumor cell due to homotypic interaction among nearby myeloma 
cells or to the engagement of Notch receptors by ligands expressed 
on the surrounding Bone Marrow Stromal Cells (BMSCs) which 
is heterotypic interaction. The latter contributes to myeloma cell 
proliferation, survival and migration, as well as to bone disease 
and intrinsic and acquired pharmacological resistance [538]. To 
elucidate further, Notch activation in malignant plasma cells 
may occur in two distinct ways: MM cells simultaneously express 
Notch-1, -2, -3 and their ligands (JAG1 and JAG2) resulting in an 
autonomous pathway activation (homotypic; among MM cells), 
or Notch activation can be triggered by BMSCs expressing DLL1 
or Jagged ligands (heterotypic; between MM cells and host cells). 
Indeed, in vitro and animal studies show that this dual mechanism 
of Notch signaling activation increases MM cell proliferation and 
decreases apoptosis in both human and murine MM cell lines 
and primary cells from patients [539-543]. In a similar vein, Xu et 
al., demonstrated that BMSC-derived DLL1 can activate Notch 
signaling mostly through Notch2 receptor and can contribute to 
drug resistance to bortezomib, both in murine and human MM 
cells, through the upregulation of CYP1A1 (a member of the 
cytochrome P450 family involved in drug metabolism) [544]. In 
line with these data, the combined treatment of Notch inhibition 
with bortezomib resulted in increased bortezomib sensitivity 
and OS in the 5T33MM mouse model. Within this context, 
it was shown that DLL1/Notch interaction promotes MM-cell 
proliferation predominantly in CD138+ MM cells [545]. As a 
conclusion, the multifunctional role of Notch communication in 
MM provides a strong rationale to block Notch signaling in the 
MM tumor niche [546]. In this context, it was shown that Notch 
inhibition with γ-secretase inhibitors (GSIs) decreases MM tumor 
growth. Mechanistically, the inhibition of Notch pathway causes 
decreased MM cell proliferation, induces MM cell apoptosis, and 
inhibits osteoclastogenesis [547]. In addition, Notch inhibition in 
MM cells increases their sensitivity to pro-apoptotic compounds 
such as Bcl-2/Bcl-xL inhibitors. In fact, the pro-survival effect of 
Notch in MM is due to upregulation of anti-apoptotic proteins 
like Bcl-2 and Bcl-xL, and downregulation of Bax and Bak, pro-
apoptotic proteins [548]. Captivatingly, Notch blockade causes 
an increase of MM cells sensitivity to standard chemotherapies 
such as doxorubicin and melphalan both in vitro and in vivo, 
which ultimately prevents the development of BM-derived drug 
resistance [549].

Notably, an oncogenic role of Notch has been described in 
both T-ALL and CLL. Historically, T-ALL is the hematological 
neoplasia most closely related to Notch signaling pathway. As a 
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4GlcNAc-R) of O-glycans, N-glycans, and glycolipids. Type 
1 chains contain Lewisa/b, while type 2 chains contain Lewis 
X/Y. The fucosyltransferases are responsible for synthesizing the 
Lewis antigens [596]. Lewis antigens can also be sialylated and/
or sulfated to form sialyl and sulfo Lewis antigens. Sialylation 
most often occurs at the 3 position of the terminal galactose of 
the type 1 or 2 chain to form sLeA/X. Sulfo, sialyl, and sulfo 
sialyl Lewis antigens are important in physiological processes 
such as inflammation, in particular, because of their role in 
leukocyte rolling and as selectin ligands. These antigens also play 
an important role in cancer, which additionally express dimeric 
Lewis antigens such as sialyl-dimeric Lewis x [597]. LeY antigen 
is overexpressed by malignant myeloid cells. A second-generation 
Chimeric Antigen Receptor (CAR-T) anti-LeY evaluated in 
AML, had already demonstrated feasibility and durable in vivo 
persistence [598].

The increased expression of the sialylated Lewis antigens sLeX 
and its isomer sLeA, has been vastly documented in the majority 
of cancer types mainly due to the expression of sialyltransferases 
involved in their intracellular biosynthesis [599]. Noteworthily, 
sLeA and sLeX are the E-selectin glycan ligands. In particular, 
overexpression of sLeX is associated with poor prognosis and 
malignant relapse [600]. Mechanistically, sLeX can promote 
metastasis by inducing overexpression of E-selectin, resulting in 
hematogenous metastasis [601]. In fact, by mediating tumor cell 
attachment to endothelia, platelets, and leukocytes. sLeA and 
sLeX enable cancer cells to leave the bloodstream and colonise 
other organs [602-606]. Precisely, attachment to endothelia 
contributes to vessel invasion, whereas attachment to platelets, 
and possibly leukocytes, contributes to survival in the vasculature. 
Interestingly, the leukocyte adhesion deficiency II (LAD II) and 
also known as congenital disorder of glycosylation IIc (CDG 
IIc), in which almost complete deficiency of sLeX expression 
can be observed, leads to immunodeficiency resulting from 
interrupting the selectin-mediated leukocyte tethering and rolling 
on endothelium [607]. In addition, loss of sLeX led to reduced 
trafficking of lymphocytes to inflamed peritoneum, and reduced 
lymphocyte homing to lymph nodes [608,609]. Remarkably, 
the major carriers of selectin ligands are mucins that are heavily 
O-glycosylated (i.e., the majority of selectin ligands are presented 
on mucins) [610]. However, the spectrum of selectin ligands on 
tumor cells is rather broad, encompassing glycolipids, proteins, 
and glycosaminoglycans [611]. Not surprisingly, the degree of 
selectin ligand expression by cancer cells is well correlated with 
metastasis and poor prognosis in cancer patients [612].

E-selectin, a cytoadhesive glycoprotein, is expressed on venular 
endothelial cells and mediates leukocyte localization to inflamed 
endothelium, the first step in inflammatory cell extravasation into 
tissue. Constitutive marrow endothelial E-selectin expression, a 
key endothelial cell factor, also supports BM hematopoiesis via 
NF-κB-mediated signaling. As an adhesion molecule expressed 
exclusively by endothelial cells, studies indicate E-selectin as 
a promoter of the proliferation of Hematopoietic Stem Cells 
(HSCs) [613]. 

Experiments involving administration of an E-selectin antagonist 
or observation of E-selectin knockout mice reported improvement 
in the dormant state of HSCs as well as potentiation of the self-
renewal capacity, strengthening the idea that E-selectin plays a 
central role in the proliferation of HSCs [614]. In a similar vein, 
a growing body of literature indicates that binding of E-selectin 
to sLeX/sLeA on LSCs activates multiple pro-survival signaling 

of polysialic acid glycans [576]. Polysialylation is an essential 
glycosylation modification of several important glycoproteins, 
including the Neural Cell Adhesion Molecules (NCAMs), 
chemokine receptor 7 (CCR7), CD36 and E-selectin ligand 1 
(ESL-1) [577-582]. Because of the large negative charge of PSA, 
presence of PSA attenuates the adhesive property of NCAM 
(CD56) and increases the cellular motility. In addition, PSA 
plays important roles in formation and remodeling of the neural 
system through regulation of the adhesive property of NCAM. 
In tumor cells, the level of polysialic acid chains correlates with 
an aggressive phenotype and the resistance of cancer treatment 
[583]. Expression of the polysialated form of NCAM has been also 
demonstrated in some malignant tumors, such as Wilms’ tumor 
and small cell lung cancer [584]. The polysialic upregulation in 
tumors is seen in breast, astrocytoma, and CML [585]. In general, 
polysialic acid expression correlates with metastatic disease and 
poor clinical prognosis [586-590].

Type 1 and 2 glycan structures: Type 1 and 2 structures are present 
on O- and N-glycoproteins as well as on glycolipids. A Type-2 unit 
composed of Galβ1-4GlcNAc also called N-acetyllactosamine 
(LacNAc) and a Type-1 unit composed of Galβ1-3GlcNAc. Type 
2 structures are ubiquitous, while type 1 structures are found in 
the GI tract. Types 1 and 2 can both be found in polymers of 
(Type 1) n and (Type 2) n, with the latter forming polyLacNAc 
chains, also called i blood group [591].

Poly-LacNAc (poly-N-acetyl-lactosamine) structures: Poly-
LacNAcs occur in mammalian glycoproteins in both N- 
and O-linked glycans. Enzymatically, the action of β-1,6-N-
acetylglucosaminyltransferase V enzyme (GnT-5/MGAT5) 
which catalyzes the addition of ß1,6-N-acetylglucosamine to the 
α-linked mannose of biantennary N-glycans and core 2 β-1,6-
N-acetylglucosaminyltransferase 1 (C2GNT1/GCNT1) which 
create the ß1,6 branch on Core 2 O-glycans provide added 
antennae scaffolds for LacNAc formation. Biochemically, both 
GnT-5/MGAT5 and C2GNT1 enhance the avidity for galectins 
by promoting poly-N-acetyllactosamine production. N-Glycans 
generally have longer poly-LacNAc extensions than O-glycans, 
and both may receive sialic acid or Fuc residues or sulfate. Poly-
LacNAcs represent a foundation for additional modifications 
by fucosyltransferases, sialyltransferases and sulfotransferases. 
Poly-LacNAcs have been suggested to be involved in biospecific 
interactions with selectins and galectins [592]. Poly-LacNAcs are 
more commonly found on core 2 O-glycans and serve as scaffolds 
for synthesis of glycan functional groups such as sLeX.

Remarkably, the human blood group i and I antigens are 
determined by linear and branched poly-N-acetyllactosamine 
structures, respectively. In erythrocytes, the fetal i antigen (linear 
Poly-LacNAc chain) is converted to the I-blood group antigen 
(branched Poly-LacNAc chain) by Gcnt2 during development. 
Dysfunction of the I-branching enzyme may result in the adult 
i phenotype in erythrocytes [593]. GCNT2 is the gene encoding 
Gcnt2 responsible for formation of the blood group I antigen. 
Gcnt2 is an N-acetylglucosaminyltransferase but does not exhibit 
core 2 activity. Nevertheless, GCNT2 has a critical biological 
function in modulating EMT and promoting breast cancer 
metastasis [594]. 

Lewis antigens: Lewis antigens are synthesized primarily by 
endodermal epithelia, such as GI epithelia, but are found 
in endodermal epithelia and Red Blood Cells (RBCs) due 
to transfer of glycolipids to RBCs [595]. Lewis structures are 
found on type 1 (Galβ1–3GlcNAc-R) and 2 chains (Galβ1–
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examined the role of lipid rafts in physical properties and 
signalling [633]. Glycosphingolipids (GSLs) are a subclass of 
glycolipids composed of carbohydrates covalently linked to a 
ceramide (Cer, N-acylsphingosine) lipid tail that anchors the 
molecule within the cell membrane. Biologically, these ceramide-
linked glycans are major components of the outer cell plasma 
membrane that play essential roles in cell signaling, apoptosis, 
adhesion, receptor modulation, growth and differentiation [634-
636]. Cellular differentiation and malignant transformation 
are often accompanied by dramatic changes in GSL expression. 
Many GSLs are capable of inducing differentiation, apoptosis, 
BM suppression and metastasis [637-639]. Abnormal GSL 
expression is associated with the development of many types of 
cancers including leukemia [640].

GSLs are usually divided into two major families, known as 
galactosylated (galactocerebroside; GalCer) or glucosylated 
ceramides (glucocerebroside; GlcCer). Further extension and 
modifications of these core structures, including elongation, 
sulfation, and sialic acid acetylation, contributes to the diversity 
of the repertoire expressed in (immune) cells. Glucosylceramide-
related GSLs are further divided into three major classes based on 
the action of specific glycosyltransferases; (iso) globo- (A4GALT), 
ganglio- (B4GALNT1 and ST3GAL5), and (neo-) lacto (B3GNT5)–
series [641]. The (iso)globosides globotriaosylceramide (Gb3) and 
isoglobotriaosylceramide (isoGb3) are generated by the addition 
of a galactose to lactosylceramide (LacCer) (also known as CD17/
CDw17) in α1,4 and α1,3 linkages by α1,4-galactosyltransferase 
(A4GALT) and α1,3-galactosyltransferase 2 (A3GALT2) 
respectively. The B3GNT5 gene encodes the glycosyltransferase 
β1,3-N-acetylglucosaminyltransferase (β3Gn-T5), a 
lactotriaosylceramide (Lc3Cer) synthase, is a key enzyme for 
the biosynthesis of (neo)lacto-series GSLs (Lc3 and nLc4) [642]. 
Lc3Cer is a precursor structure for lacto-/neolacto-series glycolipid 
and polylactosamine chains elongated on Lc3Cer. β3Gn-T5 
exhibits the strongest activity to transfer GlcNAc to glycolipid 
substrates, such as LacCer and neolactotetraosylceramide 
(nLc4Cer; paragloboside), resulting in the synthesis of Lc3Cer 
and neolactopentaosylceramide (nLc5Cer) repectively [643]. 

β3Gn-T5, together with its associated glycosidic product (Lc3), 
plays critical roles in embryonic development and differentiation. 
Its expression in leukemia cell lines has been reported previously 
[644]. It has also been suggested as a differentiation-associated 
GSL in the BM of AML patients with corresponding elevated 
B3GNT5 expression [645]. Previous studies have indicated that 
certain GSLs play a critical role in the differentiation of AML 
cells. Within this context, the best described myeloid-specific 
GSL is nLc4 (a fucosylated neolacto-series GSL which is known 
as the CD65 antigen) [646-648]. CD65 is expressed on most 
myeloid cells during development, highly on granulocytes and 
weakly on monocytes in Peripheral Blood (PB). The sialylated 
form of CD65 (CD65s) is expressed when the myeloid progenitor 
antigen CD34 disappears, indicating that CD65s expression 
marks a turning point in myeloid cell differentiation [649].

Gangliosides: GSLs are further subclassified as neutral (no 
charged sugars or ionic groups), sialylated (having one or more 
sialic acid residues), or sulfated. Traditionally, all sialylated GSLs 
are known as “gangliosides” regardless of whether they are based 
on the ganglio-series neutral sugar core [650]. Gangliosides 
participate in the regulation of various cellular functions, 
including cell proliferation, apoptosis, migration and invasion. 
Moreover, they have been shown to regulate RTK signaling and 

pathways and promotes chemoresistance in AML [615-617]. 
Mechanistically, the upregulation of endothelial E-selectin 
in response to TNF-α released by AML blasts was shown to 
provide leukemic cells with a pro-survival signal through Akt/
NF-κB signaling, conferring chemoresistance [618]. These 
findings support that constitutive expression of E-selectin in the 
vascular compartment of BM is a key vascular niche component 
mediating leukemia survival and chemoresistance via E-selectin 
ligand or receptors [619]. Expectedly, the expression of E-selectin 
or its binding epitopes sLeX/sLeA may predict the clinical 
course and patient outcomes in AML [620-622]. Within this 
context, elevated sLeX/sLeA levels is a sign of AML M5 that 
positively correlated with the expression of transcription factors 
CEBPA/SPI1. Captivatingly, high expression of sLeX-associated 
fucosyltransferases FUT3, FUT6, FUT7 and ST3GAL4 have 
been linked to dismal prognosis in AML in monovariate analyses 
[623]. Significantly, ST3GAL4 is the main sialyltransferase 
involved in the synthesis of sLeX in myeloid leukocytes [624]. 
In this vein, transcriptome profiling of multiple genes involved 
in the synthesis of sLeX from 1074 pediatric patients treated in 
COG AAML 1031 identified that the increased expression of 
FUT7 and ST3GAL4 is associated with increased cell surface 
E-selectin ligand expression and poor prognosis [625]. This 
renders ST3GAL4/FUT7 as well as their biosynthetic products 
potentially targets for the development of novel glycan-targeting 
therapies, especially to prevent or overcome the resistance to 
treatment of high sLeX-expressing AML subtypes such as AML 
M5 [626]. Expectedly, the sLeX/E-selectin axis is an attractive 
target in AML. One approach employed to target this axis was 
to exploit the glycomimetic drug uproleselan (GMI-1271), a 
carbohydrate analog of sLeX that blocks its interaction with 
E-selectin, which by disrupting the vascular niche-mediated 
chemoresistance improved survival of AML patients. In vitro 
mechanistic studies demonstrated that cytarabine-sensitive AML 
blasts become chemoresistant upon adherence to E-selectin, 
but that chemosensitivity can be restored with concomitant 
incubation with uproleselan. Additional studies showed that 
the uproleselan-mediated inhibition of E-selectin binding 
inhibited the activation of NF-κB and Akt and resulted in the 
attenuation of pro-survival pathways in the leukemic blasts [627]. 
After showing potential results in a phase I/II study enrolling 
R/R AML patients (NCT02306291), a phase 3 trial is currently 
underway to evaluate the efficacy of uproleselan administered 
with chemotherapy versus chemotherapy alone in patients with 
R/R AML (NCT03616470) [628-630]. In addition, uproleselan 
may reduce severe and other adverse events associated with AML 
chemotherapy and HSCT conditioning including including 
mucositis and diarrhea [631]. 

Furthermore, it was shown that MM cells enriched for E-selectin 
ligands recognized by the mAb Heca452 (MMHeca452Enriched) 
were resistant to bortezomib treatment in vivo, and this resistance 
was reversed by a small glycomimetic molecule, GMI-1271, which 
inhibits E-selectin/E-selectin ligand interaction [632]. Currently, 
E-selectin inhibition in MM, by using the specific E-selectin 
inhibitor GMI1271, is also in clinical trials (NCT02811822).

Glycoconjugates

Glycosphingolipids: Glycosphingolipids are found in the outer 
leaflet of the plasma membrane of all vertebrate cells and are 
thought to play functional roles in the regulation of cellular 
proliferation and differentiation. A number of studies have 
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in malignant cells is regulated by the enzyme activity of GM2/
GD2 synthase, the amount of precursor structure present in 
individual cell lines is also a very important factor in determining 
the ganglioside profile [661]. Within this context, ATLL cell lines 
specifically express GD2 but not GM2 [662]. On the other hand, 
GM2 is an ideal target for anti-cancer therapy since normal cells 
express little GM2. Interestingly, DMF10.167.4, a hamster anti-
GM2 mAb raised against a murine T-cell lymphoma cell line, has 
been shown to induce apoptosis in vitro [663].

O-acetylation: O-acetylation of the sialic acid residues is one of the 
most common modifications of gangliosides [664]. O-acetylated 
ganglioside species represent therapeutic targets of interest as 
an alternative strategy to non-O-acetylated ganglioside species. 
For example, targeting OAcGD2 rather than GD2 seems to be 
a better strategy due to exclusive OAcGD2 expression in cancer 
tissue [665]. In a similar vein, targeting 9-O-Ac-GD2 ganglioside, 
a modified GD2 ganglioside that is expressed in neuroblastoma, 
SCLC, melanoma, renal carcinoma and lymphoma, cirmcumvent 
the significant neuropathic pain secondary to complement 
activation on anti-GD2 bound peripheral nerves that limited 
the therapeutic application of anti-GD2 mAbs [666-668]. In 
particular, the 9-O-acetylation of gangliosides has been extensively 
associated with cancer, and hence considered as a marker of cell 
and tissue growth. The most prominent one is 9-O-Ac-GD3 (also 
called CD60b), which is considered as an oncofetal marker in 
animal and human tumors like neuronal tumors, melanoma, 
basalioma or breast cancer, as well as in psoriatic lesions [669]. 
Similar to melanoma and glioblastoma, O-acetyl-GD3 seems to 
contribute to drug resistance capacity in ALL cells [670]. As a 
matter of fact, the survival and drug resistance of lymphoblasts 
critically depend on 9-O-acetylation, which was found on both 
GD3 and sialoglycoproteins [671,672]. Specifically, pre-B ALL 
cells surviving chemotherapy have increased cell surface 9-O-Ac-
GD3 and 9-O-acetylated α2,3 or α2,6-linked sialoglycoproteins 
as reported by CCA lectin. Later, Joo et al., identified Nucleolin 
(NCL), a multifunctional nucleolar protein, as a sialoglycoprotein 
modified by 9-O-acetylation in pre-B ALL, and proposed it as a 
possible therapeutic target. Interestingly, recent clinical and 
experimental evidence suggested that overexpression of NCL is 
linked to drug resistance in B-ALL [673,674].

Glycosaminoglycans and proteoglycans: Rather than existing in 
glycoconjugates, glycans can also be secreted without conjugation 
to other macromolecules in the form of Glycosaminoglycans 
(GAGs). GAGs are a family of highly sulfated, complex, 
unbranched (linear), often long, polysaccharides with a repeating 
disaccharide unit. GAG chains, the essential functional parts, 
are often highly sulfated, with resulting capability to bind 
cytokines, chemokines, or growth factors. As such, GAGs are 
extremely important biomolecules of the ECM, as they modulate 
protein function and stability. GAGs can tether ligands to RTKs, 
resulting in constitutive activation independent of protein/RNA 
levels. GAGs regulate a variety of cellular interactions in the BM 
because they are expressed by both the BM stroma and by normal 
hematopoietic cells [675,676]. In industry, incorporating GAGs 
into biomaterials has emerged as a widely adopted strategy in 
medical applications, owing to their biocompatibility and ability 
to control the release of bioactive molecules [677].

Based on the difference of repeating disaccharide units, GAGs 
can be categorized into four main groups: Heparin/Heparan 
Sulfate (HS), Chondroitin Sulfate (CS)/Dermatan Sulfate (DS), 
Keratan Sulfate (KS) and Hyaluronic Acid (HA). GAGs can be 

their expression changes during malignant transformation, both 
at the quantitative and qualitative levels [651,652]. Gangliosides 
are a family of glucosylceramide-related GSLs characterized by an 
α2-3 linked sialic acid that is added onto the core GSL structure 
lactosylceramide (Lac-cer) by the sialyltransferase ST3GAL5 
[653].The product of ST3GALT5 action known as GM3, serves 
as a precursor for most of the more complex ganglioside species 
(GM3 is the parent structure for a-, b-, and c-series gangliosides). 
Moreover, β1,4-N-acetylgalactosaminyltransferase (GM2/GD2 
synthase) is a key enzyme which catalyzes the conversion of GM3, 
GD3 (disialolactosylceramide) and lactosylceramide (LacCer) 
to GM2, GD2 and asialo-GM2 (GA2), respectively. This step is 
critical for the synthesis of all complex gangliosides enriched in 
the nervous system of vertebrates [654].

Irresistible evidence indicate that AML cells have high expression 
of GM3 which was found to induce monocytic differentiation 
in leukemia cells [655]. In a recent study by Wang et al., GSLs 
with Neu5Gc were found in most AML cell lines, including GM3 
(Neu5Gc), GD3 (Neu5Gc), GM1a (Neu5Gc), and two glycans in 
the (neo) lacto-series [656]. However, the abundance of glycans 
with Neu5Gc varied between cell lines. The cell lines of the M6 
subtype showed a high expression of gangliosides with α2,3-
sialylation and Neu5Gc, as compared to the M2 and M5 subtypes 
which were characterized by high expression of (neo)lacto-series 
glycans and Lewis A/X antigens (an average Neu5Gc expression 
of 2.3% in M6 cell lines vs. only 0.8% in the rest of the AML cell 
lines). The authors conclude that glycans with Neu5Gc could be 
potential therapeutic targets for M6-stage AML. In a similar vein, 
the GSL and gangliosides expression profiles were analyzed in the 
BM samples of AML patients in previous important study (Table 
3). Interestingly, AML patients had 16-fold higher expression of 
the Lc3 synthase β3Gn-T5 than healthy subjects (p<0.05). The 
authors suggested the exploitation of Lc3 as a potential biomarker 
and a target for therapy since it is highly expressed in primary 
AML cell lines [657]. 

Table 3: Expression GSLs and gangliosides according to the AML FAB 
subtypes.

AML subtype Glycosphingolipids Ganglioside(s)

M1 Gb3, Lc31, and nLc4 GM3

M2a2 nLc4  

M3a Lc3 and nLc4  

M4 nLc4  

M5 Gb33, Lc3, and nLc4 GM3

Note: 1The significantly higher expression of Lc3 in the M1 subtype 
than other subtypes indicates that the expression of Lc3 is closely 
related to cell differentiation in human bone marro: 2Acute myeloblastic 
leukemia with granulocytic maturation: 3Gb3 did not differ significantly 
between the control and AML groups, whereas Lc3, GM3 and nLc4 had 
significantly higher expression in the bone marrow samples of AML 
patients. 

Furthermore, GD3 is increased in lymphoblasts with a T-cell 
immunophenotype compared to non-T-ALL blasts. Consequently, 
GD3 expression was observed in T-ALL and ATLL cells [658-
660]. Depite that the differential expression of GM2 and GD2 
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at the cell surface and ECM in all the animal species. HSPGs 
are key regulators of the BM niche of normal hematopoietic 
stem cells [696]. In addition, HSPGs can be roughly divided 
into into three groups according to their location: Membrane 
HSPGs, such as syndecans and glycosylphosphatidylinositol-
anchored proteoglycans (glypicans), the secreted ECM HSPGs 
(agrin, perlecan, type XVIII collagen), and the secretory vesicle 
proteoglycan, serglycin [697]. In addition, cell surface HSPGs 
act as coreceptors for growth factor-mediated RTK signaling, 
where the HS chain aids in the formation of a ternary complex 
of growth factor, receptor tyrosine kinase, and the GAG chain, 
which substantially promotes and enhances mitogenic signaling 
promoting tumor growth [698]. Expectedly, HSPGs have emerged 
as key molecules in tumor progression and communication [699]. 
Tumor-specific HSPGs differ in composition from HSPGs in 
corresponding normal tissue that suggests that agents that bind 
HS or modify its synthesis could lead to selective targeting of 
tumor cells and tumor microvasculature [700]. Overexpression of 
HSPGs is associated with increased tumorigenesis, angiogenesis 
and invasiveness in several cancers including, MM, breast, and 
pancreatic cancer [701,702].

Serglycin is emerging as the dominant proteoglycan species 
expressed by immune cells that play important roles in diverse 
immunological processes. Despite being originally regarded as a 
hematopoietic cell proteoglycan, serglycin is expressed by several 
nonhematopoietic cell types. A unique property of serglycin is 
its ability to change its structural and functional characteristics, 
likely because of its remarkably variable glycosylation pattern in 
different serglycin-expressing cell types [703]. Notably, heparin is 
the the most well known serglycin-associated GAG and heparin 
PG serglycin occurs in the granules of connective-tissue-type 
mast cells. However, serglycin may also contain CS chains. 
Whereas the connective-tissue-type mast cells predominantly 
synthesize GAG chains of heparin type, the mucosal-type mast 
cells synthesize mainly CS chains [704]. Interestingly, serglycin 
bearing CS chains occur in most blood cells. Strikingly, serglycin 
exclusively carrying CS side chains is constitutively secreted by 
MM cells. Noteworthily, serglycin is the major proteoglycan 
secreted by MM cells, but is also present on the cell surface of 
myeloma plasma cells and affects bone mineralization [705,706]. 
Moreover, serglycin can be a useful marker in the diagnosis of 
AML where it was more specific than Myeloperoxidase (MPO) 
in distinguishing AML from Philadelphia chromosome-negative 
chronic myeloproliferative disorders [707].

Furthermore, syndecans and glypicans are the two major 
families of cell-surface HSPGs. Syndecans (SDCs) are a family 
of four transmembrane HSPGs that act in cooperation with 
key transmembrane receptors and ECM molecules mediating 
pleiotropic functions, such as signaling, adhesion, proliferation, 
migration, apoptosis, and differentiation [708]. Syndecan-1 
(CD138) is highly expressed in MM cells [709]. In fact, syndecan-1 
is the dominant HSPG expressed on the surface of myeloma 
cells and is used as a standard marker by many laboratories for 
identification and purification of these tumor cells [710-713]. 
In addition, cell surface syndecan-1 is shed from myeloma cells 
and is present at high levels in the serum of some myeloma 
patients [714]. Due to the high levels of syndecan-1 on the 
surface of myeloma cells and the abundance of shed syndecan-1 
that accumulates within the TME, myeloma cells in the BM 
are literally bathed in biologically active HS [715]. Seidel et al., 
demonstrated that high levels (approximately five times the level 

covalently connected to a core protein forming Proteoglycans 
(PGs) or secreted, like HA. HA does not form covalent links with 
proteins but instead interacts noncovalently with proteoglycans 
via hyaluronan-binding motifs [678,679]. HA and HS are two 
typical GAGs found in the ECM and on the cell surface with 
the basic repeating disaccharide unit composed of a uronic 
acid residue and a glucosamine residue [680]. CD44, a type I 
transmembrane protein and member of the cartilage link 
protein family, is the principal cell surface receptor for HA 
[681]. Interestingly, the discovery of CD44 as a receptor for HA 
made possible to understand why one of the HA physiological 
functions was to capture circulating cells such as lymphocytes and 
lead them to inflamed sites. The interactions between HA and 
CD44 leads to cell survival, cell growth, invasion, and metastasis 
via signaling networks include; RhoGTPases and PI3K/AKT 
pathway and other chemoresistance pathways via ROK activation 
[682]. Remarkably, heparin, the most acidic macromolecule of 
human body acting as an anticoagulant, is a highly sulphated 
variant of HS [683]. Despite that heparin and heparan sulphate 
differ significantly with regard to their chemical composition 
heparin is often considered an analogue of heparan sulphate that 
commonly substitutes it in experimental models studying HS 
[684,685]. HS is produced by virtually all cells in the body; in 
contrast, heparin is confined to connective-tissue-type mast cells 
[686]. Moreover, HS regulates a wide array of functions, during 
both developmental and physiological processes, including cell 
adhesion, migration, proliferation and differentiation, cellular 
signaling, (Extracellular Matrix) ECM assembly, and during 
numerous pathological disorders, such as cancer or infectious 
and neurodegenerative diseases [687]. On the other hand, KS 
is involved in a range of biological processes such as cornea 
transparency, embryonic development, wound healing, cell 
adhesion, and migration; and dysregulation of its biosynthesis 
has been associated with a poor prognosis of various cancers 
[688].

Ubiquitous on cell surfaces and within the ECM in higher 
eukaryotes, proteoglycans are large biomolecules that consist of 
a protein part, the so-called core protein, which is glycosylated 
with sulfated and thereby negatively charged GAGs. By 
participating in the organization of ECM and regulating 
its mechanical properties, proteoglycans provide structural 
support in connective tissues such as cartilage. In addition, 
proteoglycans are well established as key players in supporting 
the dynamic ECM. In this regard, proteoglycans interact with 
growth factors, cytokines and chemokines protecting them from 
degradation and form effective gradients of these components 
in ECM [689]. Mechanistically, proteoglycans act as co-receptors 
for these molecules promoting their signaling. In fact, the vast 
majority of signaling events between cells or with the ECM are 
modulated by the associated GAG chains [690]. For instance, 
growth factors, neurotrophic factors and chemokines can be 
recruited to target cells through GAG binding sites, rendering 
proteoglycans important determinants for development 
[691,692]. Furthermore, proteoglycans regulate cell behavior 
and phenotype, and are involved in cell proliferation, adhesion, 
migration and invasion [693]. It is worth noting that changes 
in proteoglycans and GAGs modulate virtually all the signs of 
cancer, highlighting their relevance to malignant disease [694]. 
A textbook example is the role of cell surface Heparan Sulfate 
Proteoglycans (HSPGs) in sustaining proliferative signaling, 
the first sign of cancer [695]. HSPGs are ubiquitously found 
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addition to enhancing heparanase expression, chemotherapy also 
caused release of heparanase by tumor cells into the conditioned 
medium. This soluble heparanase was taken up by macrophages 
and triggered an increase in TNF-α production. Heparanase 
is also taken up by tumor cells where it induced expression of 
HGF, VEGF and MMP-9 and activated ERK and Akt signaling 
pathways. These changes induced by heparanase are known to be 
associated with the promotion of an aggressive tumor phenotype 
[744]. On the other hand, heparin-derived compounds with 
heparanase inhibitory activity have been shown to effectively 
attenuate myeloma tumor growth and bone metastasis [745,746]. 
Interestingly, the development of these compounds began by 
observing heparin capacity to inhibit HPSE activity because 
of its competition with HS for binding to the enzyme [747]. In 
this context, targeting heparanase activity using Roneparstat 
(SST0001), a chemically modified non-anticoagulant heparin 
(that is devoid of any significant anticoagulant activity) with 
potent anti-heparanase activity, blocks the multiple pathways 
that are stimulated by heparanase (e.g., syndecan shedding, 
angiogenesis) resulting in decreased drug resistance and 
inhibition of myeloma growth in vivo [748]. Analysis of myeloma 
tumors from animals treated with Roneparstat demonstrated 
that these tumors have diminished levels of Vascular Endothelial 
Growth Factor (VEGF), Hepatocyte Growth Factor (HGF) and 
Matrix Metalloproteinase-9 (MMP-9), reduced angiogenesis and 
reduced levels of shed syndecan-1 compared to animals treated 
with vehicle. This highlights that the mechanism of action of 
Roneparstat is consistent with it having anti-heparanase activity 
in vivo [749]. However, heparanase inhibition is not expected to 
cause direct MM cell killing as demonstrated in phase I, first-in-
human trial designed to assess the safety and tolerability profile 
of Roneparstat in patients with R/R MM (NCT01764880) [750]. 
Instead, exploration of roneparstat in combination regimens 
for the treatment of MM should be the next step in this field. 
In this vein, Ramani et al., demonstrated the synergistic effect 
of Roneparstat when associated with bortezomib or melphalan 
[743]. By using an in vivo model of disseminated myeloma, 
where MM cells expressing a high level of heparanase home 
and grow exclusively in bone, Roneparstat in combination 
with either bortezomib or melphalan, significantly decreased 
both the number of animals with detectable tumors and tumor 
burden compared to animals treated with either of these drugs 
alone. Weissmann et al., found that heparanase is expressed by 
human follicular and diffused non-Hodgkin's B-lymphomas, and 
heparanase inhibitors restrain the growth of tumor xenografts 
produced by lymphoma cell lines [751].

It is worth noting that Pixatimod (PG545) is another potent 
inhibitor of heparanase as well as a novel clinical-stage 
immunomodulatory agent, which was found to stimulate innate 
immune responses against tumors in preclinical cancer models. 
Pixatimod is capable of inhibiting the infiltration of TAMs 
via the inhibition of heparanase yet it also activates NK cells 
through toll-like receptor 9 (TLR9)-dependent stimulation of 
DCs [752,753]. Pixatimod is a cholestanol-sulfo-tetrasaccharide 
conjugated small molecule compound. The oligosaccharide 
foundation of pixatimod is derived from starch, and retains 
the amylose structure of α(1 → 4)-linked glucose residues. 
Coupling the sulfated oligosaccharide to a lipophilic cholestanol 
aglycone significantly increased the elimination half-life in vivo, 
while reducing the unwanted anticoagulant activity associated 
with similar compounds but retaining the potent inhibition 

of normal controls) of syndecan-1 in the serum of MM patients 
are an independent predictor of poor prognosis [716]. Extremely, 
high-serum syndecan-1 enhances both the growth and metastasis 
of myeloma tumors [717,718]. Syndecan-1 exerts its growth-
promoting effects by regulating the activity of many effector 
molecules important for myeloma growth and survival, including 
Hepatocyte Growth Factor (HGF), a growth factor known to be 
up-regulated in many myeloma tumor that binds to the heparan 
sulfate of syndecan-1 and helps potentiate signaling via the cMET 
receptor with resulting cell proliferation [719,720]. 

Heparanase (HPSE): Heparanase is the only mammalian 
endoglycosidase that cleaves heparan sulphate releasing 
biologically active fragments of heparan sulfate. Acting together, 
heparanase and heparan sulfate facilitate tumor cell arrest, 
extravasation and metastasis. Heparanase is upregulated in 
essentially all human tumors in which the severity of tumor 
metastasis is directly proportional to heparanase levels [721]. 
Mechanistically, the enzyme promotes metastasis by degrading 
HSPGs in basement membranes, facilitating passage of tumor cells 
through the vascular wall [722]. As the enzyme releases HS-bound 
angiogenic factors from the ECM, heparanase upregulation also 
correlates with increased tumor vascularity and poor postoperative 
survival of patients with cancer [723]. Expectedly, heparanase is 
considered a master regulator of the aggressive cancer phenotype 
[724-727]. Significantly, heparanase is upregulated in response 
to chemotherapy, which promotes chemoresistance coupled 
with poor prognosis. Mechanistically, the surviving cells with 
heparanase upregulation acquire chemoresistance, at least in 
part, due to autophagy. Consequently, heparanase inhibitors 
used in tandem with chemotherapeutic drugs overcome initial 
chemoresistance, providing a strong rationale for applying anti-
heparanase therapy in combination with conventional anti-
cancer drugs [728,729]. In fact, several studies have shown that 
heparanase inhibition by heparin derivatives attenuates tumor 
growth and metastasis [730-734]. 

Captivatingly, heparanase activity has been strongly implicated 
in the progression of MM [735,736]. Mechanistically, heparanase 
synergizes with syndecan-1 in promoting myeloma progression 
[737]. Heparanase also enhances myeloma progression via 
CXCL10 down-regulation, suggesting that this chemokine 
exerts tumor-suppressor properties in myeloma [738]. In a 
similar vein, heparanase promotes myeloma progression by 
inducing mesenchymal features and motility of myeloma cells 
[739]. Further, heparanase promotes myeloma stemness and 
in vivo tumorigenesis [740]. Extremely, heparanase promotes 
the spontaneous metastasis of myeloma cells to the bone [741]. 
Heparanase is present in the BM of most MM patients where 
high levels of heparanase enzyme activity correlates with elevated 
angiogenic activity, an important promoter of myeloma growth 
and progression [742]. Ramani et al., discovered that gene 
expression profiling of tumor cells from myeloma patients revealed 
that heparanase expression was high in the cells that survived and 
grew following chemotherapy [743]. Remarkably, tumor cells that 
survive intensive chemotherapy in myeloma patients express high 
heparanase. They also found that heparanase enhances myeloma 
drug resistance while blocking heparanase-driven ERK signaling 
sensitizes myeloma cells to chemotherapy. Mechanistically, 
frontline anti-myeloma drugs, bortezomib and carfilzomib activate 
the NF-κB pathway to trigger heparanase expression in tumor 
cells. Activated NF-κB signaling was also found to drive high 
heparanase expression in drug resistant myeloma cell lines. In 
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including tumorigenesis, growth, metastasis and prognosis [775]. 
As CD44 contributes to the cancer stem/initiating phenotype, 
CD44 was identified as stem cell marker of HSCs [776], as 
well as a universal CSC marker in many cancers [777,778]. 
Not surprisingly, cells overexpressing CD44 possess several 
CSC traits, such as self-renewal and Epithelial-Mesenchymal 
Transition (EMT) capability, as well as a resistance to chemo- 
and radiotherapy [779]. The importance of adhesive interaction 
between CD44 and HA (which is a component of the BM ECM) 
to maintain Leukemia-Initiating Cells (LICs) in the BM niche has 
been confirmed using an anti-CD44 antibody, soluble HA, or 
hyaluronidase [780,781]. In AML, the CD44 cell surface antigen 
is expressed on leukemic blasts in all subtypes. As a CD44 is a key 
regulator of AML LSC function, targeting of CD44 eradicates 
human acute myeloid leukemic stem cells [782]. In a similar vein, 
CD44 is also involved in the arrest of myeloid differentiation; 
Charrad et al., demonstrated that CD44 ligation (by HA as well 
as CD44 antibodies) can reverse the differentiation blockage in 
AML M1/2 to AML M5 subtypes, and in this scenario CD44-
targeted differentiation was comparable to that obtained in AML 
M3 with retinoic acid [783]. In ALL, high CD44 expression is seen 
in high risk T-ALL while CD44 expression was significantly lower 
in the TEL/AML1 (ETV6-RUNX1) ALL subtype (expressed from 
the t(12;21) translocation) that defines a subgroup of patients 
with an excellent prognosis [784]. In addition, CD44 signaling 
plays a pivotal role in regulating the proliferation of CML cells 
by modulating the expression and activity of the Wnt/β-catenin 
signaling pathway [785]. 

The full-length CD44 gene consists of 20 exons in mice but 19 
exons in humans (exon 6 is missing in humans. Exons 6–14 of 
the CD44 gene in humans known as variant or variable exons, 
CD44v2-v10) undergo extensive Alternative Splicing (AS) via 
excision or inclusion in various combinations in the membrane-
proximal stem region to generate splicing variants (CD44v 
isoforms) [786]. The smallest and the most expressed CD44 
isoform is the CD44 standard (CD44s), constructed of ten 
constant exons with no variant exons [787]. CD44s, referred to 
as hematopoietic CD44 (CD44H), is expressed mainly on cells of 
lymphohematopoietic origin; while, CD44v are predominantly 
expressed on epithelial cells including epithelial-type carcinomas, 
particularly those in advanced stages [788-790].

Furthermore, serum soluble CD44 (sCD44) levels can be used 
as as circulating tumor markers. Elevated levels of sCD44s and 
sCD44v6 were associated with an advanced disease in B-CLL 
[791]. Patients with higher than median sCD44 levels had a more 
advanced clinical disease stage, and had a median Progression-
Free Survival (PFS) of 36 months, whereas patients with an 
sCD44 level <642 ng/ml experienced a longer PFS of the average 
of 8 years. This indicated that serum sCD44 levels may represent 
a reliable prognostic marker that might be used for predicting 
the risk of disease progression in patients with early B-CLL [792]. 
Elevated levels of serum soluble CD44 (sCD44) were also reported 
in adult lymphomas and leukemias with a poorer treatment 
outcome [793,794]. Similarly, Tacyildiz et al., found that serum 
sCD44 levels were significantly high in pediatric patients with 
Hodgkin Lymphoma (HL) and Non-Hodgkin Lymphoma (NHL) 
who were in advanced stages of disease in contrast to significantly 
low levels in patients who were in Complete Remission (CR) 
[795]. 

Despite that CD44 blockade can lead to the elimination of 
leukemia initiating cells, anti-panCD44 can interfere with 

of heparanase [754]. Due to lack of objective responses using 
pixatimod as a monotherapy pixatimod has been tested in 
combination with a number of approved anti-cancer drugs 
demonstrating its clinical potential, including with gemcitabine, 
paclitaxel, sorafenib, platinum agents and an anti-PD-1 antibody 
[755,756]. Brennan et al., found that pixatimod had potent anti-
tumor activity in murine models of B-cell and T-cell lymphomas 
[757]. Investigation into the mechanism revealed that the in vivo 
anti-tumor effect of pixatimod was critically dependent on NK 
cell activation and that NK cell activation by pixatimod was 
mediated through myeloid differentiation primary response 88 
(MyD88)-dependent TLR9 pathway in vivo, thus suggesting the 
significance of capitalizing on pixatimod as a novel and effective 
NK-activating agent for the treatment of lymphomas. 

The cell surface proteoglycan CD44 (H-CAM): The most 
studied form of Tn antigen is found in mucins (particularly 
MUC1). However, Tn antigen is also expressed on the 
adhesion molecule CD44 that mediate the response of cells 
to their cellular microenvironment [758]. Activation of CD44, 
a cell surface adhesion receptor (referred to as the lymphocyte 
homing-associated cell adhesion molecule, H-CAM) that is 
highly expressed in many cancers is initiated by binding to its 
ligand HA [759,760]. In addition, the hyaluronate receptor 
CD44 also binds to other components of ECM including 
other GAGs, serglycin, fibronectin, collagen type I and type IV, 
laminin, and Osteopontin (OPN). In this way, CD44 functions 
as an adhesion molecule for cell-cell and cell-ECM interactions 
[761]. In particular, serglycin serve as a novel ligand for CD44 
to regulate lymphoid cell adherence and activation [762]. Guo 
et al., showed that serglycin is frequently overexpressed in lung 
adenocarcinomas, and functions in promoting NSCLC cell 
migration, invasion and stemness in a CD44-dependent manner 
[763]. In addition to tethering cells to extracellular ligands as cell-
adhesion molecule, CD44 also participate in cellular signaling 
cascades through association with the actin cytoskeleton [764].

Interestingly, CD44 is a heavily glycosylated protein (class I 
transmembrane glycoprotein). N-glycosylation and sialylation 
regulate CD44 binding to HA; CD44 O-glycosylation regulates 
the tumor aggressiveness, and fucosyltransferase-mediated 
CD44 fucosylation promotes tumor progression [765,766]. 
Hematopoietic cell E/L-selectin ligand (HCELL) is a specific 
glycated form of sialofucosylated CD44 that is characteristically 
expressed on human hematopoietic stem cells and is the most 
potent E-selectin and L-selectin expressed on human cell prime 
ligands [767]. HCELLs have been shown to be present at high 
levels in human malignant hematopoietic cells, including 
neonatal Acute Myeloid Leukemia (AML) cells and the AML-
derived primitive human hematopoietic progenitor cell line 
KG1a [768,769].

Strikingly, aberrant expression and dysregulation of CD44 
enhance tumor initiation and progression [770]. CD44 
can directly potentiate RTK signaling pathways and act as a 
coreceptor for several growth factors, such as Met, VEGFR-2 and 
EGFR, thus enhancing cancer cell proliferation and correlating 
with poor prognosis and metastatic potential [771]. Moreover, 
HA-CD44 interactions induce highly malignant, chemotherapy-
resistant cancer stem-like cells [772]. Mechanistically, HA-CD44 
interactions promote cancer cell migration through SRC-induced 
cortactin cytoskeleton function [773]. CD44 is overexpressed in 
many cancers of hematopoietic and epithelial origins [774]; where 
its expression is correlated with the tumor biological behaviour 
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The B cell receptor and immunoglobulins: The B-cell Receptor 
(BCR) and its secreted counterpart, Immunoglobulins (Igs) also 
called antibodies (Abs) are two important glycoproteins involved 
in B cell biology. It has been indicated that glycans expressed by 
these B cell-specific molecules can modulate immune activation 
via glycan-binding proteins [827]. Compelling evidence indicate 
that the BCR pathway is activated in CLL, DLBCL, Burkitt 
Lymphoma (BL), Follicular Lymphoma (FL), Mantle Cell 
Lymphoma (MCL), Marginal Zone Lymphoma (MZL), and 
Waldenstrom’s Macroglobulinemia (WM), which represent a 
potential therapeutic target [828]. Unfortunetely, BCR-targeting 
drugs often fail to produce durable responses despite their initial 
effectiveness [829].

It has been repeatedly demonstrated that the development and 
function of B-cells depend on signals from the BCR. Indeed, 
healthy B-cells depend on surface BCR for survival and metabolic 
fitness. To reiterate, there are two principal types of BCR signaling, 
antigen-dependent and antigen-independent or “tonic” BCR 
signaling. Tonic BCR signaling is a constitutive signaling that 
mainly relies on the PI3K/AKT pathway and is important for B-cell 
survival. By contrast, antigen-dependent BCR signaling relies 
on the NF-κB pathway and plays an important role in humoral 
responses inducing B cell proliferation, cytidine deaminase (AID) 
expression, affinity maturation and differentiation [830]. Similar 
to normal B-lymphocytes, B cell lymphomas including CLL and 
other NHLs also depend on the presence of an intact BCR signal 
transduction pathway encompassing both types of BCR signaling 
[831]. Structurally, the BCR is made of surface-bound Ig (either 
IgA, IgD, IgE, IgG or IgM) in association with a heterodimeric 
signaling unit comprised of Ig-α (CD79A) and Ig-β (CD79B), 
thereby combining antigen recognition with signal transduction 
[832,833]. In particular, surface IgM is a key component of 
the BCR and mediates intracellular signals important for 
proliferation or apoptosis [834]. The CD79A/B heterodimer 
transmits an activating signal when antigen binds to the BCR 
in CD20+ B cells and in CD20-negative plasmablasts and plasma 
cells [835,836]. In addition, CD79A and CD79B are essential for 
BCR assembly and expression in human B cells. Consequently, 
aberrant activation of BCR signaling plays a critical role in the 
pathogenesis of many B-cell malignancies.

Compelling evidence suggests that B-cell malignancies arising 
from mature B-cells usually retain BCR expression on the 
surface [837]. In fact, expression of surface Ig (sIg) appears to be 
critical for the majority of B-cell malignancies [838]. However, 
in agreement with previous reports suggesting that CD79A and 
CD79B are essential in lymphoma cell lines representing DLBCL 
the mechanistic link between the IgM surface level and B-cell 
survival was recently unveiled [839-841]. Through combining 
CRISPR/Cas9 deletion of CD79A or CD79B with studies of 
glycan maturation in MCL cell lines, Huse et al., demonstrated 
that CD79A and CD79B are equally required for surface IgM 
expression in human B cells, and if one of these proteins was 
deleted, it causes a block in N-glycan maturation of the other 
CD79 protein as well as IgM, resulting in subsequent blocked 
transportation of the IgM complex to the plasma membrane and 
accumulation of immature proteins in the ER [842]. Interestingly, 
MCL cells usually overexpress IgM as compared to normal B cells, 
which likely contribute to the pathogenesis of this lymphoma 
type [843]. As loss of IgM surface expression due to CD79A/B 
depletion reduced the survival and fitness of lymphoma cell lines, 
the CD79A/B signaling pathway is a potential therapeutic target. 

hematopoiesis. Hence, CD44v-specific targeting is a better 
option that targeting CD44 itself [796]. The extra domain 
formed by variant exons after distinct AS and assembly is able 
to interact with and sequester different growth factors, as well 
as cytokines, thus endowing CD44 with additional functions 
[797]. Mechanistically, CD44v displays a greater affinity to HA 
compared to CD44s [798]. In this context, compelling evidence 
indicates that major HA-CD44 signaling pathways involve a 
specific variant of CD44 isoforms. For example, HA/CD44v6 
interaction can drive tumor metastasis by activating RTKs 
signaling pathways [799,800]. Consequently, CD44v expression 
is directly proportional to increased metastatic spread in several 
hematologic and solid malignancies and poor prognosis [801]. At 
instance, CD44v surface levels in CLL can identify a subgroup 
of patients with significantly worse prognostic features [802]. 
Within this context, targeting and inhibiting CD44 through 
neutralizing antibodies was shown to be cytotoxic in CLL cells, 
particularly in patients with CLL that express ZAP-70, but had 
little effect on normal B cells [803]. 

Among the various CD44 isoforms, the v6 exon-containing 
isoforms (CD44v6) is implicated in tumorigenesis, tumor cell 
invasion and metastasis [804]. In fact, CD44v6 is currently the 
most established tumor antigen among the CD44 splice variants 
[805]. CD44v6 is found to confer metastatic potential to non-
metastatic tumor cells [806]. CD44v6 is relatively tumor restricted 
and associated with poor prognosis in AML and MM [807-809]. 
Interestingly, Casucci et al., showed that CD44v6 is required 
for AML and MM cell growth in vivo and appealing target to 
select in order to avoid immune evasion because of antigen-
loss variants [810]. In in vivo models of AML and MM, CD44v6 
CAR-T cells were found to provide significant anti-tumor activity 
without affecting either CD44v6-expressing keratinocytes or 
hematopoietic stem cells [811]. CD44v6 facilitates homing of MM 
cells to the BM and their adhesion to BM stroma is dependent on 
CD44v6 expression that is upregulated by contact of the MM cells 
to BM endothelial cells [812]. Furthermore, CD44v6 expression 
was observed predominantly in aggressive NHLs (aNHLs) where 
it display strong prognostic potential and identify patients with 
an unfavourable outcome [813-815]. For example, CD44v6 is 
particularly important for predicting worse prognosis in (Diffuse 
Large B-Cell Lymphoma) DLBCL [816]. Likwise, surface CD44v6 
expression was significantly correlated to poorer OS in B-CLL 
and ALL [817-819]. In addition to the Tn antigen, CD44v6 can 
also carry TF, sTn, and sLeA antigens; where it correlates with the 
metastatic potential of several cancers [820-822]. 

Captivatingly, overexpression of CD44v9 is related to an 
unfavorable clinical presentation in MM and high-grade 
NHL [823]. In MM, acquired CD44v9 expression can occur 
during disease progression [824]. The CD44v10 isoform 
displays prognostic relevance by being correlated to initial BM 
involvement and risk of relapse in Nodular Sclerosis Hodgkin 
Lymphoma (NSHL) [825]. In CML, Holm et al., showed that 
CD44v3 (containing variant exons 8–10) is elevated during CML 
progression from chronic phase to blast crisis. Furthermore, 
although CD44 mAb and dasatinib treatment significantly 
reduced blast crisis chronic myeloid leukemia stem cells (BC 
LSCs) self-renewal in the splenic niche and lowers self-renewal 
in BM, some BCR-ABL1– and CD44v3-expressing cells persist 
in the BM niche following combination therapy, suggesting that 
a CD44v3-specific mAb may be more effective at eradicating BC 
LSCs from the more recalcitrant BM niche in CML [826].
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binding specificity of the antibody is determined by the sequence 
and conformation of the Fab domain, its effector functions are 
largely determined by the Fc domain and its ability to interact 
with Fc receptors (FcγRs) expressed on discrete populations of 
immune and non-immune cells. Classical FcγRs can be broadly 
divided into activating or inhibitory depending on the presence 
of Immunoreceptor Tyrosine-based Activation Motif (ITAM) 
or Immunoreceptor Tyrosine-based Inhibition Motif (ITIM) in 
the cytoplasmic tail. Interestingly, all antibodies contain glycans 
that are linked to conserved motifs in the Fc region which are 
essential for their effector functions [861,862]. Mechanistically, 
immunoglobulin glycans affect the effector functions of 
antibodies depending on the branching of N-glycans and/or the 
terminal sugars of N-glycans or O-glycans, which include galactose 
and sialic acid [863].

As the most abundant class of antibody in serum, IgG plays a 
central role in systemic immunity. Interestingly, IgGs are the 
most abundant N-glycosylated proteins in human serum with the 
conserved N-glycosylation site at Asn297 of their constant region 
[864]. These Fc glycans have a substantial impact on the structure 
of soluble IgG molecules and without them IgG cannot bind to 
FcγRs or complement factors [865]. In a similar vein, it was shown 
that Siglecs limit the effectiveness of tumor-targeting antibodies by 
antagonizing FcγRs [866]. Notably, variation in N-glycosylation of 
IgG has physiological significance in hematologic malignancies. 
For instance, it is well known that M-proteins from MM patients 
have similar structure to antibodies. Interestingly, glycosylation, 
based on the attachment of an oligosaccharide to M-proteins, 
is the most prevalent PTM of M-proteins [867]. While the the 
exact role of Fab N-glycosylation remain poorly understood 
recent evidence has emerged suggesting that N-glycosylation of 
the M-protein variable (Fab) region contributes to M-protein 
pathogenicity, and that it is a risk factor for disease progression 
of plasma cell disorders [868,869]. In a similar vein, M-protein 
glycosylation may influence the development of amyloid deposits 
in patients with light chain amyloidosis [870]. In fact, monoclonal 
light chain glycosylation has been reported as a risk factor of 
progression to MM and amyloidosis [871,872]. In addition, 
IgG N-glycan profiles can stage plasma cell disorder disease and 
identify patients who relapse following treatment [873]. The IgG 
N-glycans present at each of these stages was found to correlate 
disease severity with increased agalactosylated and afucosylated 
N-glycan content [874]. MM in remission appeared to have 
recovered more of the normal galactose and fucose content, 
closely correlating with the traditional M-protein biomarker of 
MM. The agalactose content subsequently increased during MM 
relapse. In the SMM stage, more galactose and sialic acid was 
observed on IgG Fc regions compared to either MUGS or MM. 

Immune-related lectin receptors 

Lectins, non-enzymatic, non-immunoglobulin, sugar-binding 
proteins, selectively interact with small subsets of the vast set 
of possible glycoforms and thereby facilitate diverse biological 
processes [875]. In particular, lectin- glycan (protein-carbohydrate) 
interactions serve multiple functions in the immune system 
[876]. In oncology, Tumor-Associated Carbohydrate Antigens 
(TACAs0 interact with Antigen-Presenting Cells (APCs) through 
their engagement with several lectin families of the immune 
system. In addition to mediating tumor cell recognition by the 
immune system, these interactions also modulate the anti-tumor 
innate and adaptive immune responses (immunomodulatory 

Moreover, B-CLL depends on BCR signaling for survival and 
proliferation [844]. As the case with B-cell lymphomas, surface 
expression of IgM has an important influence on the clinical 
behavior of CLL [845]. However, contrary to DLBCL and MCL, 
low surface expression of IgM is a characteristic feature of B-CLL 
[846-848]. Mechanistically, the impaired glycosylation and folding 
of the mu and CD79a chains leads to the retention of both chains 
in the ER and lower levels of surface IgM expression [849].

Although the t(14;18) translocation disrupts one Ig allele, 
expression of sIg is retained, indicating that sIg of FL is vital 
for tumor cell survival. Initially this retention and the ongoing 
somatic hypermutation led to speculation about a role for 
persistent antigen in FL, which was difficult to explain, given the 
high variability of the Immunoglobulin Variable Region (IGV) 
gene usage and the sequence changes resulting from somatic 
hypermutation. A striking observation on the nature of sIg in FL 
has revealed a possible explanation both for retention of sIg and 
for an influence of microenvironmental factors. This involves a 
“universal” antigen-independent mechanism able to engage sIg 
of all cases of FL [850]. Specifically, one of the key features of 
FL is the almost universal acquisition of N-linked glycosylation 
sites in the Ig variable region, most commonly in the Ig 
Complementarity-Determining Regions (CDRs) of the heavy 
chains and less frequently in the light chains [851]. The acquired 
N-glycosylation sites are tumor-specific and are introduced during 
somatic hypermutation in FL [852]. Remarkably, the glycans 
acquired on the sIg variable region are unusual in that their 
biosynthetic processing terminate at the initial oligomannose-
type state, indicating that they do not fully mature in the Golgi 
apparatus, most probably due to their inaccessibility to the 
appropriate Golgi enzymes [853,854]. The presence of high-
mannose glycans in surface Ig elucidates the mechanism by which 
surface Ig may activate the malignant cells even in the absence 
of antigen, hence promote tumor progression. Mechanistically, 
mannosylated sIg (sIg-Mann) interacts with the C-type lectin 
Dendritic Cell–Specific Intercellular Adhesion Molecule 3 
Grabbing Non-Integrin (DC-SIGN) [855]. In contrast to normal 
B cells, exposure of FL samples to DC-SIGN triggered prolonged 
phosphorylation of AKT, Extracellular signal-Regulated Kinase 
(ERK), and phospholipase C-γ-2 (PLCγ2) and increased 
expression of cMYC, supporting the concept that DC-SIGN is 
able to activate and maintain proliferation signals that could 
promote disease progression [856,857]. Hence, lectins within the 
TME promote tumor survival and progression through antigen-
independent interactions with the BCR. Interestingly, Chiodin 
et al., report that the same modification is seen in a subset of 
DLBCLs, occurring in about 50% of germinal center B-cell 
(GCB)-type, but only 6% of activated B-cell (ABC)-type DLBCLs 
and conferring poor prognosis, which identifies an aggressive 
form of DLBCL that may be targeted therapeutically. Similar to 
FL, this modification facilitates a chronic antigen-independent-
BCR activation through interactions with microenvironmental 
DC-SIGN [858]. In conculsion, therapeutic approaches designed 
to selectively block interaction between DC-SIGN and high-
mannose residues would also be of potential relevance in FL and 
DLBCL patients.

Immunoglobulins: As the secreted form of the BCR antibodies 
are the most abundant glycoproteins in the blood. Antibodies 
are made up of two identical heavy and light chains and consist 
of a constant (Fc for Fragment crystallizable) and a variable (Fab 
for Fragment antigen binding) region [859,860]. While the 
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that leukemic blasts from B-ALL and T-ALL patients have 
increased binding with myeloid C-type lectins thereby affecting 
their immunological elimination [904]. The most important 
molecules from the C-type lectins family include:

Myeloid C-type lectin receptors:

Macrophage Galactose-type Lectin (MGL): It is also known as 
CLEC10A. MGL is a Type II C-type lectin, and is the only lectin 
that exclusively binds terminal GalNAc residues [905]. MGL is 
typically expressed by immature DCs and alternatively activated 
macrophages (subtype M2a) conferring immune-suppressive 
(tolerogenic) signaling. The main ligands of MGL in cancer are 
truncated O-glycans including the Tn antigen (α-GalNAc-Ser/
Thr) the TF antigen (Galβ1–3GalNAc) sTn as well as N-GalNAc 
and galactose and core 2 structures [906-911]. Interestingly, MGL 
is the only C-type lectin receptor that recognizes and exhibits 
a high binding specificity for terminal α- and β-linked GalNAc 
residues found in Tn, sTn and LacdiNAc antigens [912,913].

Expectedly, the binding of MGL to altered glycosylation 
prevents an anti-tumor immune response, allowing cancer cells 
to escape the immune system. In this context, the expression of 
Tn antigen on tumor cells engaging MGL on APCs creates an 
immunosuppressive milieu. This suggests that the MGL-Tn axis 
is an immunosuppressive checkpoint axis in cancer [914,915]. 
Mechanistically, Tn antigen engagement by MGL results in 
the polarization of tolerogenic DCs and immunosuppressive 
macrophages [916-918]. In addition, MGL upregulation on 
tolerogenic DCs contributes to dampening T-cell immunity in an 
MGL-dependent manner through interacting with a Tn antigen 
on the CD45 molecules of effector T cells. This binding suppresses 
the phosphatase activity of CD45 and inhibits lymphocyte 
protein tyrosine kinase (Lck) activation. In effector T-cells, CD45-
mediated dephosphorylation of the C-terminal tail of Lck leads 
to the formation of its active form, which in turn is required 
for the initiation of T-Cell Receptor (TCR) signaling [919,920]. 
Therefore, the suppression of CD45 activity by MGL reduces 
TCR signaling pathways, thus leading to the inhibition of T-cell 
proliferation, reduction in pro-inflammatory cytokine synthesis, 
and, therefore, the acceleration of T-cell apoptosis [921-923]. On 
the other hand, binding of MGL to its ligands contributes to 
immune suppression by increasing IL-10 (an anti-inflammatory 
cytokine) secretion and induction of T cell apoptosis [924]. 

Further, owing to its specificity for the truncated O-glycans, MGL 
is able to recognize the mucin MUC1. A study performed by 
Napoletano et al., showed that the interaction of MGL with the 
Tn-MUC1 glyco-peptide, with a high density of glycans (15 Tn 
residues), was stronger than MUC1 bearing lower amounts of 
GalNAc residues [925]. The binding of MGL to the truncated 
glycan structures on MUC1 leads to a defective T-helper (Th) 
cell-mediated response as well as to a reduction of Cytotoxic T 
Lymphocytes (CTLs) [926]. Besides, the tumor-associated MUC1 
glycoform bearing the sialyl TF antigen was shown to impair the 
DC function by enhancing spontaneous apoptosis or defective 
antigen presentation [927]. Therefore, the MGL-Tn-CD45 
and the MGL-Tn-MUC1 represent novel immunosuppressive 
checkpoint axes, especially in context of modulating the APC 
functions. In addition, the T cell leukemia model cell line Jurkat 
is known to have a high level of Tn antigens (due to a mutation in 
Cosmc) which rendered acute T-cell leukemia cells a model system 
to study the immunoregulatory properties of MGL and the effect 
of its ligand recognition [928]. Both CD43 and CD45 have been 

effects) [877]. Notably, glyco-immune interactions mediate T-cell 
immunosuppression. As a notable example, the interactions 
between endogenous lectins with two of the most abundant 
transmembrane glycoproteins on the T cell surface, the CD43 
and CD45, modulate several T-cell responses including 
migration, T-cell receptor signaling, and apoptosis in a glycan-
dependent manner [878]. It is worth noting that both CD45 and 
CD43 are considered as pan-hematopoietic markers in humans 
[879]. CD45, also known as protein tyrosine phosphatase 
receptor type C (PTPRC), is a large transmembrane glycoprotein 
expressed on all nucleated hematopoietic cells and an essential 
regulator of T- and B-cell receptor signaling through activation 
of various Src family kinases [880]. The leukocyte sialomucin 
CD43, also known as leukosialin or SPN (sialophorin), is one of 
adhesion inhibitory molecules that is abundantly expressed on 
most leukocytes [881]. In fact, there is substantial evidence for 
the the role of glycan-lectins interactions in immunosuppressive 
mechanisms that occur in tumor immune escape [882-885]. Such 
inhibitory glycan-lectin interactions constitute glyco-immune 
checkpoints that circumvent the potential drawbacks of CTLA-4, 
PD-1 checkpoints and offer potential novel and improved cancer 
immunotherapeutic modalities [886]. Furthermore, aberrant 
lectin binding is capable of altering critical cellular functions. 
For example, expression of sLeX and sLeA enables circulating 
cancer cells to bind C-type lectins such as endothelial E-selectin, 
attach to endothelial cells, infiltrate distant sites, and establish 
metastasis [887,888]. Human lectins are classified according 
to their subcellular location and the structures of the CRDs 
they contain [889]. The most important lectin families are the 
C-type lectins, the S-type lectins (galectins), and the I-type lectins 
(Siglecs).

C-type Lectin Receptors (CLRs): CLRs are Ca++-dependent lectins 
that are defined by having one or more characteristic C-type Lectin-
Like Domains (CTLDs) [890]. CLRs on APCs facilitate uptake 
of carbohydrate antigens for antigen presentation, modulating 
the immune response in infection, homeostasis, autoimmunity, 
allergy, and cancer [891]. Both macrophages and B cells can serve 
the antigen-presenting function. However, DCs are the superior 
professional APCs [892]. As professional APCs, DCs sense the 
microenvironment through different types of receptors to scan 
local environmental changes and eliminate incoming pathogens 
[893]. Interestingly, CLRs expressed by APCs and various non-
immune cells are considered as non-classical FcRs (sometimes 
referred to as Type II FcR) [894,895].

CLRs can be divided into two main categories: Selectins and 
myeloid CLRs (expressed by cells of the myeloid lineage, such as 
DCs, macrophages, neutrophils, and monocytes). Both categories 
can function as both adhesion molecules and endocytic receptors 
on APCs, thus are involved in the uptake of pathogens for 
antigen processing and presentation, and subsequent T cell 
activation [896-898]. Myeloid CLRs are further classified into 
four main groups depending on their intracellular signaling 
motifs [899]. Myeloid CLRs are important sensors of endogenous 
(self) or exogenous (non-self) that work in concert with other 
PRRs [900,901]. Several myeloid C-type lectins, such as DC-
SIGN and MGL contribute to tumor progression by inducing 
immunosuppressive responses upon sensing abnormal or 
altered tumor-associated carbohydrates [902]. Tumor-associated 
glycans recognized by myeloid CLRs in immune cells possess 
immunomodulatory properties, which enable tumor growth and 
immune response evasion [903]. Significantly, there is evidence 
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also known as human C-type lectin-like molecule-1 (CLL-1), is 
a myeloid cell-expressed C-type lectin. Since it is overexpressed 
in over 90% of AML blasts and the majority of LSCs while 
absent on normal HSPCs, CLL-1/CD371 is a potential target for 
immunotherapy in AML [953,954]. Currently, researchers from 
the Memorial Sloan Kettering (MSK) cancer center are studying 
a new CAR T cell therapy (CD371-CAR-IL18) that targets CLL-1 
to treat AML (NCT06017258).

Selectins: Selectins belong to group IV of the CLRs. They play 
important roles in regulating the trafficking of leukocytes. These 
proteins are responsible for the initial capture (i.e., “rolling”) 
of leukocytes from the circulation before extravasation across 
the vascular endothelium can occur. Selectins share a common 
ligand, the carbohydrate sLex, though their affinity is modulated 
by the nature of the carbohydrate scaffold and the foundation 
that carries sLex [955]. Each selectin is named according to its 
expression pattern. Overall, E-selectin (CD62E) binds leukocytes 
to activated endothelium, whereas P-selectin (CD62P) binds 
leukocytes to platelet-activated endothelium and platelets, and 
L-selectin (CD62L) binds leukocytes to lymph node Hepatitis 
E Virus (HEVs). Broadly, selectins can be divided into two 
functional categories:

• The interactions between P- and E-selectins with 
their ligands mediate leukocyte homing into non-lymphoid 
tissues in response to inflammation or tissue injury [956,957]. 
While P- selectin is stored in endothelial cell Weibel-Palade 
bodies and platelet storage granules, E-selectin expression is 
limited to endothelial cells but is not stored in any intracellular 
compartment. Hence, endothelial E-selectin expression is driven 
by inflammatory cytokines, whereas P-selectin secretion occurs 
via exocytosis of endothelial stores after stimulation by activated 
platelets [958,959]. P- and E-selectin ligands have a sLeX which 
contains a sialic acid bound to the terminal galactose of the Lewis 
antigen in an α2-3 linkage, catalyzed by the ST3Gal family of 
enzymes [960]. However, P-selectin recognizes with high affinity 
sLeX presented on Core2 O-glycans carried on threonine 57 of 
PSGL-1 [961]. 

• L-selectin is a type-I transmembrane glycoprotein and 
cell adhesion molecule that is expressed on most circulating 
leukocytes [962]. Captivatingly, L-selectin-ligands interactions 
mediate steady-state lymphocyte homing into to secondary 
lymphoid organs. In fact, lymphocyte homing is regulated via 
adhesive interactions between lymphocytes and 6-sulfo-sLeX 
on HEVs. Mechanistically, the first interaction between naive 
lymphocytes and HEVs (specialized blood vessels mediating 
lymphocyte trafficking to lymph nodes and other secondary 
lymphoid organs) is initiated by lymphocyte L-selectin that 
recognizes a family of sulfated mucin-like glycoproteins known as 
HEV sialomucins including glycosylation-dependent cell adhesion 
molecule-1 (GlyCAM-1), CD34, podocalyxin, endoglycan, 
endomucin, and nepmucin which become effective L-selectin 
ligands when they are modified with 6-sulfo sLeX structures 
by a group of glycosyltransferases and sulfotransferases highly 
expressed in HEV Endothelial Cells (HECs) [963]. Indeed, the 
expression of high levels of the L-selectin-binding HEV-specific 
glycoforms of HEV sialomucins is undoubtedly one of the most 
important features of the HEV endothelium [964]. Within this 
context, the tetrasaccharide 6-sulfo-sLeX, abundantly produced 
in HEVs and is present on both N-glycans and extended core 
1 and 2 O-glycans decorating HEV sialomucins is the critical 
carbohydrate determinant for L-selectin recognition [965-970]. 

described as the main carriers of the Tn antigen interacting with 
MGL in Jurkat cells [929]. Therefore, it can be inferred that both 
the Tn antigen and the MGL-Tn-CD43/ MGL-Tn-CD45 axes are 
potential therapeutic targets for treatment of T-ALL.

The dendritic cell-specific intracellular adhesion molecule 
3-grabbing nonintegrin (CD209, DC-SIGN): Similar to the 
MGL, DC-SIGN belong to the type II group of CLRs and is 
expressed on APCs (mainly immature DC and macrophages with 
M2 polarization) [930,931]. DC-SIGN is associated with antigen 
uptake and subsequent Major Histocompatibility Complex 
(MHC) presentation for the potentiation of adaptive immune 
responses [932-936]. DC-SIGN is known to bind the tumor-
associated Lewis antigens (LeX, LeY, LeA, LeB) [937,938]. DC-
SIGN is involved in tumor immune evasion as well as promoting 
tumor development [939,940]. Mechanistically, the interaction 
between DC-SIGN with Lewis X (LeX; CD15) antigens on tumor 
cells leads to immune suppression through various mechanisms 
driven by Transient Abnormal Myelopoiesis (TAMs), including 
increased PD-L1 expression [941,942]. As an example, the 
expression of DC-SIGN on DCs binds to LeX and LeY 
carbohydrates on tumor-associated carcinoembryonic antigens 
of colon cancer cells, suppressing the function of antitumor 
immunity of DCs and subsequently inducing immune evasion, 
which is in favor of the progression and metastasis of colon cancer 
cells [943,944]. In this context, CD15 was shown to be the ligand 
for DC-SIGN in some ALL cells. However, other ligands play a 
role in the interaction of ALL cells with DC-SIGN. It should be 
noted that B-ALL cells demonstrated increased binding to DC-
SIGN and Liver/Lymph node-Specific Intracellular Adhesion 
Molecules (L-SIGN) also called DC-SIGN-related or CD299, 
which correlated with poor prognosis, suggesting involvement of 
this interaction in pathogenesis [945]. Importantly, blockade of 
DC-SIGN can abrogate immunosuppressive activity from TAMs 
and increase anti-tumor activity of CD8+ T-cells, while working 
synergistically with PD-1 immunotherapies in vitro [946]. 

In addition, BCRs in several B-cell malignancies carry high-
mannose oligosaccharides which interact with mannose-binding 
lectins, especially with DC-SIGN, in the TME and initiate 
antigen-independent signaling that may drive tumor growth 
or survival. This lectin interaction with the BCR is critical for 
lectin-driven malignancies, particularly FL. At instance, the 
acquisition of new glycosylation motifs in the BCR due to gene 
rearrangement and/or somatic hypermutation is an early event 
in the genesis of FL [947]. In fact, most FL cases express a BCR 
that has acquired ≥ 1 N-linked glycosylation motifs (N-motifs) 
in their Fab portions by somatic hypermutation [948]. These 
N-motifs contain mannose-terminated glycans and can interact 
with lectins in the TME, activating the tumor BCR pathway [949-
951]. However, insertion of N-glycosylation sites in Ig variable 
region genes has been detected in other Germinal Center (GC)-
associated lymphomas, specifically in subsets of DLBCL and BL, 
suggesting involvement of altered glycans in pathogenesis of these 
malignancies as well. Expectedly, the BCR in CLL also carries 
high-mannose oligosaccharides, albeit in the heavy chain constant 
rather than variable region. The high expression level of the 
unique glycoform, particularly in the more aggressive unmutated 
CLL subset, suggests a functional significance for this glycan in 
CLL. Hence, targeting BCR-lectin interaction is considered to be 
an interesting therapeutic strategy [952].

Myeloid Inhibitory C-type Lectin (MICL): It is also known as 
CLL-1, CLEc12a, DCAL-2, and KLRL-1 Like MGL, MICL, 
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interactions also contribute significantly to tumor metastasis 
(both are essential for creating an inflammatory metastatic 
microenvironment once cancer cells intravasate and circulate in 
the bloodstream) [993,994]. In this vein, accumulating evidence 
indicates that P-selectin-mediated interactions contribute to 
cancer progression [995,996]. 

S-type lectins (Galectins): Galectins-previously known as “S-type 
lectins” and then named “galectins” in 1994- constitute an 
evolutionary conserved family of β-galactoside-binding lectins 
composed of one or two Carbohydrate-Recognition Domains 
(CRDs). Unlike Siglecs and selectins (mostly cell-surface-
bound receptors), galectins are soluble lectins [997]. Since their 
discovery in the 1970s, their biological roles, initially thought 
that were limited to recognition of carbohydrate ligands in 
embryogenesis and development, have expanded in recent years 
by the discovery of their immunomodulatory activities [998]. 
The minimal structure recognized by galectins is the disaccharide 
N-acetyllactosamine (lacNAc), which is found in N-glycans and 
O glycans and can be presented as multiple units (poly-lacNAc) 
on cell surface glycoconjugates [999]. LacNAc is 5-10 times more 
active than lactose and so N-glycans are good ligands for most 
galectins [1000,1001]. However, substantial differences exist 
in the glycan-binding preferences of individual members of 
the galectin family, particularly in the recognition of sialylated 
and sulfated glycans which might be the basis of functional 
differences in their biological activity [1002,1003]. The extent 
of N-glycan branching, the multiplicity of lacNAc residues and/
or modifications (e.g., sialylation or fucosylation) on LacNAc 
or poly-LacNAc structures may alter galectin-glycan interactions 
[1004]. For instance, incorporation of α2- 6-linked sialic acid to 
cell surface glycoconjugates interrupts binding of some members 
of the family, including galectin-1 [1005]. Of particular interest, 
the affinity of galectins for N-glycans increases in correlation with 
β1-6 branching (mediated by GnT-5/MGAT5) and extension 
with poly-lacNAc. 

Galectins are expressed in a plethora of tissues and cell types, 
and their functions are highly context-dependent [1006]. In 
contrast to other chemokines, cytokines, or transcription factors, 
galectins mediate a multitude of vital activities through binding 
to the outermost grouping of carbohydrates on a glycoprotein or 
glycolipid oligosaccharide rather than specific receptors [1007]. 
Nevertheless, galectins are peculiar in that they also mediate 
their functions intracellularly. There is compelling evidence 
that galectins might have non-carbohydrate binding partners 
and functions. These CRD-independent functions have been 
particularly well documented for the intracellular galectins 
[1008-1010]. By contrast, an important mechanism by which 
extracellular galectins regulate cellular events is by complexing 
with cell surface glycoprotein receptors to create galectin-
glycoprotein lattices [1011]. These lattices are vital for organization 
of glycoprotein assemblies on the cell surface as well as signaling 
[1012,1013]. Mechanistically, lattices can affect cell signaling in 
several ways. Galectin lattices can retain glycoproteins on the cell 
surface by retarding endocytosis and thus increase the effective 
concentration of the receptor, or galectins can alter signaling by 
the receptors [1014]. For instance, galectin-glycan lattice is known 
to regulate BCR signaling in lymphocytes. It is worth noting that 
in relation to BCR signaling, both BCR and CD45 are modified 
by N-glycans and act as galectin ligand. Interestingly, BCR 
interacts with CD45 (a ligand for both galectin-3 and galectin-1) 
through galectin bridging between the BCR and CD45. Since 

Consequently, it has been reported that GlcNAc6STs can control 
lymphocyte homing via the ligand 6-sulfo-sLeX synthesis on HEVs 
[971]. Significantly, L-selectin ligands expressed on HEVs in 
peripheral lymph nodes are collectively referred to as Peripheral 
Node Addressin (PNAd), which is defined by its reactivity to 
the HEV-specific mAb “Mouse Endothelial Cell Antigen-79” 
(MECA-79) [972,973]. In fact, MECA-79 is a fantastic tool for 
HEV studies that specifically recognizes 6-sulfo sLeX structures 
on extended core 1 O-glycans [974]. In addition, selectins have 
key role in trafficking of T-cells to tissues. L-selectin controls the 
capacity for naive and memory T-cells to actively survey peripheral 
lymph nodes, whereas P- and E-selectin capture activated T cells 
on inflamed vascular endothelium to initiate extravasation into 
non-lymphoid tissues. The capacity for T-cells to interact with 
all of these selectins depends on the enzymatic synthesis of 
complex O-glycans, and thus, this protein modification plays an 
indispensable role in regulating the distribution and homing of 
both naive and previously activated T cells in vivo [975].

The best characterized selectin ligand is P-selectin glycoprotein 
ligand-1 (PSGL-1) that is mostly expressed on the surface of all 
leukocytes where it facilitates rolling and tethering [976]. All 
three selectins bind to PSGL-1. However, binding of PSGL-
1 to P-selectin (CD62P), but not E-selectin, is dependent on 
posttranslational modifications. P-selectin requires a very specific 
glycopeptide epitope to engage its glycoprotein partner PSGL-1. 
This epitope includes sLex on a core 2 residue with nearby sulfated 
tyrosine [977-979]. PSGL-1 represents a marker of plasmacytic 
differentiation since it is constantly expressed in MM cells as 
well as in lymphoproliferative disorders showing plasmacytic 
differentiation [980]. Importantly, interactions between PSGL-1 
and P- and E-selectin regulate MM cell proliferation and homing 
and contribute to resistance to therapies [981]. PSGL-1 is also 
essential for hematogenous metastasis of lymphomas [982]. 
PSGL-1 can bind to V-domain Immunoglobulin Suppressor of T 
Cell Activation (VISTA) to mediate T-cell suppression in acidic 
environments, characteristic of many TMEs [983]. Consequently, 
blockade with antibodies specific to this PSGL-1/VISTA axis 
reversed immunosuppression in vivo, and ongoing clinical trials 
are assessing the blockade of VISTA. Considering of these 
findings, PSGL-1 could also be a potential therapeutic target to 
overcome T-cell suppression [984,985].

Physiologically, selectins are important for the interactions 
involving leukocytes, platelets, or endothelial cells and therefore, 
they play an essential role in tumor-promoting inflammation 
and cancer metastasis [986]. During the the metastatic cascade, 
adhesion of circulating cancer cells to the walls of blood vessels 
is the function of selectins [987]. Notably, the role of E-selectin/
ligand (sLeX and sLeA) interactions in initiating and enhancing 
the adhesion of cancer cells to the endothelium in tumor 
metastasis is well established [988]. For instance, it has also 
been shown that E-selectin drives cancer metastasis into the BM 
[989,990]. Significantly, Connolly et al., suggested that aberrant 
transcription of glycosylation genes, involved predominantly 
in selectin ligand synthesis, is associated with inferior survival 
outcomes and may help identify patients likely to benefit from 
treatment with agents targeting aberrant glycosylation, e.g. 
E-selectin inhibitor in MM [991]. It is important to note that 
binding of E-selectin to a cell requires the presence of sLeX or 
sLeA tetrasaccharides at the termini of cell surface glycolipids, 
or glycoprotein O-glycans (Ser/Thr-linked) or N-glycans (Asn-
linked) [992]. Strikingly, P-selectin and L-selectin-mediated 
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Mechanistically, cancer cells utilize extracellular galectins to 
induce lattices on the cell surface where activated growth factor 
receptors are trapped which leads to sustained activation of the 
signaling pathways by preserving a constant flow of proliferative 
stimuli. Hence, the RTK-galectin interplay constitutes an 
attractive target for development of anti-cancer therapies [1021].

Amongst the 12 galectins identified in humans so far, galectin-1, 
galectin-3, and galectin-9 were most intensively studied in context 
of cancer [1022]. Table 4, outlines the multiple roles of these 
gelectins in hematologic malignancies. Noteworthily, galectin-1, 
-2 and -3 have important roles in the regulation of the adaptive 
immune response particularly in T-cell activation and B-cell 
differentiation [1042,1043]. Galectin-1 and -3 are expressed by 
most cell types in nearly every tissue whereas galectin-9 is mainly 
expressed by gastrointestinal epithelial cells, the thymus and 
endothelial cells [1044-1048].

BCR, signaling is known to be involved in cell adhesion or 
migration, interaction between CD45 and BCR through the 
glycan-galectin lattice might be a foundation of BCR-mediated 
cell adhesion mechanism [1015].

In cancer, galectins play central roles in tumor progression as 
well as they are excellent negative regulators (checkpoints) of the 
immune cell functions, participating in the creation of a TME 
that promotes tumor escape [1016]. 

In the TME, the abundantly expressed galectins play essential 
role in the modulation of the antitumor immune response by 
regulating the innate and adaptive immune systems [1017-1019]. 

In addition, galectins are also important for RTK activation; 
the altered glycosylation changes observed in RTKs are known 
to allow galectin recognition (mainly galectin-1, -3, and -9) the 
latter are responsible for oncogenic activation of RTKs [1020]. 

Table 4: The multiple roles of galectins in hematologic malignancies.

Galectin Malignancy Significance Therapeutic value Reference(s)

Galectin-1

Multiple myeloma
Over-expressed in MM cells                

Cell invasion

Knockdown of galectin-1 in 
MM cells resulted in smaller 

tumor formation and less 
lytic bone damage in an 

intra-tibeal injection model

[1023, 1024]

Chronic lymphocytic 
leukemia

Secreted galectin-1 
contributes to stimulate 

the activity of CLL 
cells and may help to 

establish the appropriate 
microenvironmental 

conditions for leukemic 
progression

Selective manipulation 
of galectin-1 expression 

in nurse-like cells may be 
able to influence CLL 

differentiation and survival

[1025, 1026]

Hodgkin’s lymphoma

Play critical roles in 
disease progression                                                                                                                                     

Facilitates immune escape                                                                                      
High galectin-1 is correlated 

with poor outcome

Can serve as a predictive 
biomarker for R/R HL                                                                                           

In clinical studies, 
neutralization of galectin-1 
was an effective therapeutic 

strategy

[1027-1029]

B-cell precursor acute 
lymphoblastic leukemia

Given the strong 
upregulation of galectin-1 
in KMT2A-R cells, a cell 

surface remodeling towards 
higher levels of HS might 

also play an important role 
in KMT2A-R cell survival 

within the BM environment

PTX008 inhibits galectin-1-
regulated cell aggregation, 

adhesion, migration of 
B-ALL cells, and sensitizes 
the ALL cells to treatment 

with chemotherapy

[1030, 1031]

Leukemic cutaneous T-cell 
lymphoma 

L-CTCL–derived galectin-1 
may impair the viability, 
proliferation, and Th1 

responses of nonmalignant 
T cells, leading to a systemic 
Th2 bias that favors tumor 

survival and probably 
contributes to the observed 

susceptibility of these 
patients to infections

Inhibition of galectin-1/
ligand interactions may 

be an effective strategy for 
enhancing both anti-tumor 
and anti-pathogen responses 

in patients with L-CTCL

[1032]
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Galectin-3

Acute myeloid leukemia

High galectin-3 is 
important for MSCs to 
support leukemia cell 
survival in the TME                                                                                                                                      
High galectin 3 is an 

independent prognostic 
factor for poor survival

Kiromic Biopharma's 
novel galectin-3 inhibitor 

CBP.001 reduces AML cell 
viability in the presence 
of MSC and sensitizes 

AML cells to Ara-C in co-
culture suggesting targeting 

galectin-3 may be an 
effective microenvironment 

based strategy for AML 
therapy

[1033]

The GCS-100/ABT-199 
combination was effective 
against primary AML blast 

cells from patients with 
FLT3- ITD mutations

[1034]

Chronic myeloid leukemia
Cell proliferation regulation 

and antiapoptosis                                                                    
Drug resistance

[1035, 1036]

Acute lymphoblastic 
leukemia

The stromal derived 
galectin-3 is critical for 

chemoresistance
[1037]

Multiple myeloma

Adhesion and migration, 
Angiogenesis, Anti-

apoptotic, Invasion and 
metastasis, Regulation of 
bone homeostasis, Drug 

resistance

GCS-100, induces apoptosis 
in primary MM cells and 
HMCLs, reduces MM cell 
proliferation supported by 
adhesion to BMSCs and 
blocks HMCLs migration 

induced by VEGFA       
GCS-100 overcomes 

resistance to the proteasome 
inhibitor, bortezomib, and 

increases the apoptosis 
induced by dexamethasone 

treatment

[1038]

Diffuse large B-cell 
lymphoma

Expression and cell-surface 
localization of galectin-3, 
and interaction of cell-
surface galectin-3 with 

CD45 to regulate CD45 
phosphatase activity, is 
a novel mechanism of 
apoptosis resistance in 

DLBCL

Removal of cell-surface 
galectin-3 from CD45 

with the polyvalent glycan 
inhibitor GCS-100 rendered 
DLBCL cells susceptible to 
chemotherapeutic agents

[1039]

Galectin-9

Multiple myeloma

Galectin-9 has an 
antiproliferative effect on 
MM cell lines and patient-
derived myeloma cells by 

inhibiting the JNK and p38 
MAPK signaling pathways

Galectin-9 can be used as a 
new therapeutic option to 

treat MM
[1040]

Acute myeloid leukemia

Galectin-9 impairs the anti-
cancer activity of cytotoxic 
lymphoid cells including 

NK cells leading to immune 
evasion

The Tim-3-galectin-9 
secretory pathway 

presents sTim-3 and 
galectin-9 as biomarkers 
for AML diagnostics and 
potential targets for AML 

immunotherapy

[1041]
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activity (i.e., with antimetastatic and/or anti-invasive effects). This 
treatment significantly increased the survival of mice grafted with 
lymphoma and glioblastoma cells [1074,1075]. β-D-lactosyl-steroid 
belongs to a class of molecules capable of binding to the CRD 
and thus preventing further ligand binding. Galectin inhibitors 
based on these competitive interactions include Thiodigalactose 
(TDG) which underwent chemical modifications improve its 
inhibitory properties. The most advanced TDG in clinical studies 
is TD139 also called GB0139, developed by Galecto Biotech, 
which was initially evaluated in pre-clinical models of lung fibrosis 
[1076,1077]. TD139 recognizes galectin-3 CDR with high affinity 
(Kd 68 nM) but its absolute selectivity for galectin-3 is relative 
since it also binds to galectin-1 CDR (Kd 220 nM) and other 
galectins with lower affinities [1078]. Zetterberg et al., discovered 
a new class of 1,3-substituted α-d-monogalactopyranosides with 
surprisingly high affinity for galectin-3 [1079]. In this series, 
GB1107 and GB1211 shares a chemical template with GB1107 
have good affinity (Kd 37 nM) and bind to the CRD of galectin-3. 
In contrast to GB0139 has limited oral bioavailability, GB1107 is 
characterized by good biodisponibility upon oral administration 
[1080]. Mechanistically, GB1107 promotes tumor M1 macrophage 
polarization and CD8+ T-cell infiltration. In addition, GB1107 
potentiated the effects of a PD-L1 immune checkpoint inhibitor 
to increase expression of cytotoxic (IFNγ, granzyme B, perforin-1, 
Fas ligand) and apoptotic (cleaved caspase-3) effector molecules 
[1081,1082]. Furthermore, the Modified Citrus Pectin (MCP), 
which is obtained by partial hydrolysis of citrus pectin is one of 
the most studied galectin inhibitors. In vitro studies demonstrated 
that MCP binds galectin-3 through galactoside residues 
[1083,1084]. However, due to the high chemical variability of 
dietary MCP supplements on the market, more defined MCP 
variants have been described including: PectaSol-C, GCS-100, 
GM-CT-01 and GR-MD-02. Noteworthily, GCS-100 is a complex 
polysaccharide prepared from MCP and has been shown to 
have great potential to treat MM cells, including those resistant 
to dexamethasone, melphalan, or doxorubicin by La Jolla 
Pharmaceuticals. Mechanistically, GCS-100 detaches galectin-3 
from CD4+ and CD8+ tumor-infiltrating lymphocytes, boosts 
cytotoxicity and restores IFNγ secretion [1085]. Interestingly, the 
biological effects of both MCP and GCS-100 are carbohydrate-
dependent. Unfortunately, La Jolla Pharmaceuticals announced 
that they were discontinuing the development of GCS-100 in 
2015 after the FDA required a more complex characterization 
of the compound to advance into late-stage development 
(NCT00776802 and NCT00609817). The details of galectin 
inhibitors are beyond the scope of this article but are reviewed 
elsewhere [1086].

Galectin-1: Human galectin-1 is a 14-kDa protein that contains 
135 amino acids and is encoded by the LGALS1 gene [1087]. 
Galectin-1 is a proto-type member of the galectin family with a 
single CRD that was first discovered in 1975, after isolation from 
an electric eel and thus named as electrolectin [1088]. Galectin-1 
has protumorigenic activity. Given that the immunosuppressive 
TME is one of the major culprits accounting for the progression 
of cancer, galectin-1, an immunosuppressive biomarker, has 
received a great deal of attention. Mechanistically, cancer cells 
hijack galectin-1 to evade immune surveillance. That galectin-1 is 
a critical determinant of T-cell apoptosis has been demonstrated 
since 1995; and hence, targeting galectin-1 possesses a potent 
efficacy in immune-associated diseases from experimental data, 
such as cancer [1089]. In this context, elevations of galectin-1 in 

These galectins are strongly implicated in cancer progression 
and immune escape; the latter is mediated by regulating T-cell 
activation and T-cell exhaustion [1049]. Indeed, galectin-1, −3, 
and −9 can all regulate T-cell death. Galectin-1 regulates T- cell 
death only via the extracellular route. By contrast, galectin-3 
regulates cell death, both intra- and extracellularly. In this context, 
galectin-3 is the only family member with both pro- and anti-
apoptotic activity: Extracellular galectin-3 directly induces death 
of human thymocytes and T cells, while intracellular galectin-3 
blocks T-cell death (i.e., anti-apoptotic) [1050]. Mechanistically, 
the human TCRα/β-CD3 complex has 12 N-glycan sites [1051]. 
N-glycans on TCR binds both galectin-1 and galectin-3 [1052]. 
The galectin-glycoprotein lattice trengthened by GnT-5/MGAT5-
modified glycan negatively regulates T-cell activation thresholds 
by inhibiting ligand-dependent TCR clustering at the immune 
synapse (T-cell activation requires clustering of a threshold number 
of TCRs at the site of antigen presentation). Consequently, a 
deficiency in GnT-5/MGAT5, the enzyme important in the 
N-glycosylation pathway, lowers the T cell activation threshold by 
enhancing TCR clustering [1053]. On the other hand, galectin-9 
induces T-cell death by mechanisms distinct from galectin-1 or -3 
[1054,1055]. Furthermore, galectins were found to augment T-cell 
exhaustion induced by T-cell exhaustion markers or immune 
checkpoint receptors [1056]. For example, the engagement of 
galectin-3 and PD-1 leads to tumor-induced immune suppression, 
and both PD-L1 and galectin-3 have been implicated in M2-
macrophage polarization and reduced CD8+ T-cell recruitment to 
the tumor site [1057]. Galectin-9 also interacts with PD-1 which 
attenuates galectin-9/TIM-3-induced T cell apoptosis. This dual 
effect establishes galectin-9 as an important regulator of tumor 
immune response that can be targeted for cancer immunotherapy 
[1058].

In addition, some exhaustion markers are known ligands for 
galectins. Galectin-3 modulates the threshold of T-cell activation 
through binding to CTLA-4 and LAG-3/CD223 (lymphocyte 
activation gene 3) [1059,1060]. Noteworthily, LAG-3 is essential 
for galectin-3-mediated suppression of CD8+ T cell-secreted 
interferon gamma (IFNγ) in vitro (the capability of galectin-3 to 
bind activated antigen-committed CD8+ T cells in the TME is 
only possible through galectin-3 binding to LAG-3 [1061-1063]. 
Moreover, it is recognized that that galectin-9 is a ligand for 
TIM-3/CD366 (T cell immunoglobulin and mucin-domain 
containing-3) the latter plays a functional role in establishing 
T-cell exhaustion and is highly implicated in the regulation of 
anti-tumor immunity [1064,1065]. Hence, galectin-9 –TIM-3 
interaction is being developed as a new target for checkpoint 
blockade in cancer immunotherapy [1066]. To sum up, galectins 
have emerged as regulatory glyco-checkpoints that control anti-
tumor immunity by inducing T-cell exhaustion [1067,1068]. 
That said, the immunomodulatory role of these galectins has 
drawn attention to the possibility of targeting them and/or their 
ligands to overcome the mechanisms of tumor immune escape 
[1069,1070]. Within this context, literature indicated that galectin 
inhibition induces effective anti-tumor effects, especially when 
combined with other strategies (e.g., irradiation, anti-angiogenic, 
chemotherapies, etc.). In addition, galectin inhibition alone or 
in combination with ICB is an attractive therapeutic strategy 
to reverse the immune escape mechanisms induced by T-cell 
inhibition [1071-1073].

One of the first attempts to use galectin inhibitors in cancer 
consisted of administering a β-D-lactosyl-steroid with antimigratory 
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Galβ1, 3GalNAc sequences found in core 1 O-glycans was 125-
fold lower than for Galβ1, 4GlcNAc (lactosamine) sequences 
galectin-1 is able to bind the extracellular domain of CD43 
decorated with either core 1 O-glycans or core 2 O-glycans with 
roughly equivalent affinities leading to activation of apoptotic 
signaling [1115,1116]. In this case, low affinity/high avidity 
binding to a highly abundant but less preferred glycan ligand, 
Galβ1, 3GalNAc is sufficient to induce T cell death. 

Although T-cells dying in response to galectin-1 display 
characteristics common to other death pathways, galectin-1 does 
not trigger death via known T cell surface apoptotic triggers 
such as Fas or CD3 [1117,1118]. As a negative regulator of T cell 
activation and survival, galectin-1, plays a critical role in promoting 
escape from T cell-dependent immunity, thus conferring immune 
privilege to tumor cells that leads to tumor development and 
progression [1119]. Within this context, tumor-secreted galectin-1 
mediates immune evasion by preventing T cell migration into 
the tumor. Mechanistically, galectin-1 reprograms the tumor 
endothelium to upregulate cell-surface PD-L1 and galectin-9 
[1120]. Although the immune-inhibitory effects of galectin-1 have 
been primarily attributed to the modulation of T-cells, galectin-1 
aslo induces a TAM-like phenotype with a combination of pro-
inflammatory features and upregulation of immunomodulators 
such as checkpoint protein PD-L1/CD274 and the Indoleamine 
2,3-Dioxygenase-1 (IDO1) [1121].

Intriguingly, galectin-1 may promote survival of hematological 
malignancies through direct action on tumor cells but also 
through effects on the TME. High galectin-1 expression was 
reported in KMT2A-R B-ALL and HL [1122,1123]. In B-ALL, 
galectin-1 is a highly sensitive and specific biomarker of KMT2A 
rearrangement that is likely induced by a KMT2A-dependent 
epigenetic modification [1124]. Recently, Li et al., identified 
galectin-1 as a striking biomarker of progression to MF and poor 
survival in multiple patient cohorts. Captivatingly, galectin-1 
inhibition ameliorated disease features with a similar impact on 
splenomegaly and myeloproliferation to JAK-inhibition, reducing 
myeloproliferation and fibrosis in vitro and in vivo. Likewise, a 
clear correlation between LGALS1 expression level and poor 
survival was found in AML, suggesting a role beyond MPN. 
Therefore, galectin-1 inhibition is a potential therapeutic strategy 
in both myeloid malignancies [1125]. Taken together, galectin-1 
inhibitors represent an attractive opportunity in order to suppress 
tumor growth and progression by thwarting tumor-immune 
escape, attenuating aberrant angiogenesis and circumventing 
resistance to anti-cancer therapies [1126].

Galectin-3: Galectin-3 is a central regulator of cell adhesion 
and inflammation in cancer. Human galectin-3 is a 35-kDa 
protein that contains 135 amino acids and is encoded by the 
LGALS3 gene [1127]. Like galectin-1, the preferential glycan 
ligand for galectin-3 is poly-N-acetyllactosamine (poly-LacNAc); 
but unlike galectin-1, galectin -3-binding ability does not require 
a terminal β-galactose residue [1128]. An alternative to Poly-
LacNAc chains is a chain composed of LacdiNAc glycan units 
[-3GalNAcβ1-4GlcNAcβ1-]n generated by the action of a β1-
4GalNAc-transferase [1129]. LacdiNAc, a recently identified 
epitope in some O- and N-linked glycoproteins, can act as a 
selective galectin-3 ligand [1130]. Captivating, terminal LacdiNAc 
expression on glycosylated proteins has been reported to be 
upregulated in a variety of malignancies, suggesting its potential 
value as a cancer glycome biomarker [1131]. Again, sialylation is a 
major regulator of galectin-3-glycan ligand binding (inhibited by 

the TME were well documented in various malignancies including 
lung and pancreatic carcinoma, melanoma, and neuroblastoma 
[1090-1093].

Three glycoprotein counter-receptors, CD43, CD45, and 
CD7 are involved in T-cell death induced by galectin-1 [1094-
1097]. While the expression of CD7, a small glycoprotein that 
is exclusively N-glycosylated, on human T cells is esential for 
galectin-1- induced T-cell apoptosis expression of both CD43 and 
CD45 enhances (but is not required for) apoptosis induced by 
galectin-1. Interestingly, CD45- galectin-1-induced T cell death is 
dependent on the relative amount and type of glycans present on 
these glycoproteins [1098-1100]. Mechanistically, core 2 O-glycans 
provide galectin-1-binding moieties to induce the clustering of 
CD45 and T-cell death [1101]. Furthermore, galectin-1 binding 
to N-glycans in general and to N-glycans on CD45 in particular 
(CD45 bears abundant N-glycans) is required for galectin-1 
signaling and T cell death. N-acetyllactosamine (Galβ1–4GlcNAc) 
that is not capped by α2,6-linked sialic acid (found on branched 
core 2 O-glycans and abundant on N-linked glycans) is the 
preferred minimal saccharide ligand bound by galectin-1. As this 
disaccharide is ubiquitously expressed on a variety of cell surface 
glycoproteins, galectins bind N-acetyllactosamine, with avidity 
increasing in proportion to the number of N-acetyllactosamine 
units i.e. GlcNAc branching (galectins do not bind soluble 
lactosamine disaccharides). This entails that glycans must contain 
multiple N-acetyllactosamine units in order to bind galectin-1 
with high avidity (galectin-1 preferentially binds glycoproteins 
containing linear poly-N-acetyllactosamine sequences) [1103-
1107].

Furthermore, the regulated expression of glycosyltransferases 
during development and activation, creating N-acetyllactosamine 
ligands, may determine T-cell susceptibility to galectin-1-induced 
cell death [1108]. In this context, the expression of the GCNT1 
(which creates a branched structure on O-glycans that can be 
elongated to present multiple lactosamine sequences) is required 
for galectin-1 mechanism of inducing T-cell death [1109]. 
Conversely, galectin-1-induced T cell death is inhibited by the 
expression of ST6GAL1 that preferentially utilizes N-glycans 
as acceptor substrates resulting in increased sialylation of 
N-glycans on CD45 (CD45 is an established acceptor substrate 
for ST6GAL1) [1110,1111]. Interestingly, sialylation of core 1 
O-glycans also antagonizes susceptibility to galectin-1-induced 
cell death [1112]. Noteworthily, core 2 O-glycan expression is 
only required for galectin-1 T-cell death if the cells express CD45. 
Mechanistically, core 2 O-glycans was essential for the galectin-1-
induced reduction in CD45 phosphatase activity that is necessary 
for galectin-1 T-cell death. However, changes in glycosylation of 
CD45, rather than the expression level of CD45, may be the 
primary factor that regulates susceptibility to galectin-1 death 
during thymocyte development [1113]. On the other hand, 
CD43, which is heavily O-glycosylated, contributes a significant 
fraction of galectin-1 binding sites on T-cells, as T-cells lacking 
CD43 bound approximately 50% less galectin-1 than T-cells 
expressing CD43. While galectin-1 binds to both N-glycans and 
O-glycans on CD45, O-glycosylation is primarily responsible for 
galectin-1 binding to CD43 (CD43 bears only a single N-glycan). 
Unexpectedly, galectin-1 can bind to core 1 O-glycans on CD43 
even in the absence of core 2 O-glycan modifications (addition 
of core 2 O-glycans specifically to CD43 is not essential for 
galectin-1 death) [1114]. Despite that lactosamine is not present 
in core 1 O-glycans and the the affinity of galectin-1 for isolated 
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(C2GnT1) regulates galectin-3 binding to a subset of highly 
glycosylated CD45 glycoforms. In addition, galectin-3 has high 
affinity for β-1,6-N-acetylglucosamine branched glycans (complex 
N-glycans) formed by GnT-5/MGAT5 modification [1151]. 
Increased branching of N-glycans can directly inhibit T cell 
activation by GnT-5/MGAT5-dependent galectin-3 interaction 
[1152]. Mechanistically, β1,6GlcNAc-branched N-glycans attached 
to the TCR enhance binding to galectin-3, an interaction that 
limit TCR clustering at sites of immune synapse by restricting 
lateral TCR movement within the plane of the membrane, thus 
increasing against thresholds for TCR signaling (i.e., reducing 
TCR signaling) and vice versa; β1,6GlcNAc-branching deficiency 
in naive T cells reduces activation thresholds by weakening the 
galectin lattice, enhancing TCR clustering, and signaling at the 
immune synapse [1153-1156].

Furthermore, galectin-3 inhibits TCR-mediated activation of 
CD4+ T cells, by affecting the early events in signal transduction 
and potentiating down-regulation of TCR in cells activated by 
engagement of the receptor leading to lower levels of cytokine 
production [1157]. As a result, galectin-3 binding to the TCR in 
the immunological synapse is an important immunosuppressive 
mechanism in the TME, which highlights the potential use of 
galectin-3 as a therapeutic target capable of modulating anti-
tumor immunity [1158]. Within this context, the galectin-3 ligand 
LAG-3 expression in the TME correlates with poor prognosis 
in MM and several hematologic malignancies [1159-1160]. 
Mechanistically, galectin-3 negatively regulates T-cell function 
and proliferation through interaction with LAG-3, especially on 
CD8+ CTL, possibly by reducing the affinity of the T-cell receptor 
and its internalization. A phase I/IIa trial aiming at evaluating 
the safety and efficacy of LAG-3 blockade with Relatlimab, BMS-
986016 (the first developed anti-LAG-3 mAb) with or without 
Nivolumab (PD-1 inhibitor) in the setting of refractory or 
recurrent B-cell malignancies including NHL, CLL, HL and MM 
has already been completed (NCT02061761). Another phase I/
II randomized trial (NCT04150965) designed to evaluate anti-
LAG-3 and anti-TIGIT (T cell immunoreceptor with Ig and 
ITIM domains), in order to understand their immunologic 
effects and safety both as single agents and in combination with 
pomalidomide and dexamethasone, in patients with R/R MM is 
currently underway.

Remarkably, CD45 is the major receptor tyrosine phosphatase in 
B-cells. Not surprisingly, the BCR interacts with CD45 through 
galectin linking between the BCR and CD45. Interestingly, 
CD45 regulates BCR and TCR activation in different ways: The 
higher level of CD45 favorably affects BCR signaling, unlike for 
TCR. Notably, the importance of CD45 synthesis by tumor cells 
in predicting the clinical outcome of patients with CLL, ALL, 
MM, and DLBCL has already been stated [1161]. In this vein, 
as galectin-3/CD45 interaction modulates apoptosis resistance 
in DLBCL, removal of cell-surface galectin-3 from CD45 with 
GCS-100 rendered DLBCL cells susceptible to chemotherapeutic 
agents [1162].

Galectin-3 role in metástasis: Circulating levels of galectin-3 
are significantly higher in cancer patients, especially those with 
metastasis [1163]. Metastasis is the development of secondary 
tumors in a part of the body that is far from the original primary 
cancer, constitutes the primary cause of death for >90% of patients 
with cancer [1164-1166]. Despite that metastasis is usually linked 
to epithelial cancers known as carcinomas, all cancers including 
hematologic malignancies have the capacity to metastasize [1167]. 

the action of ST6GAL1) [1132]. In a similar vein, the expression 
of sTn on O-glycans, a biosynthetic product of ST6GalNAc-I, 
was able to decrease cell surface galectin-3 and galectin-3-binding 
sites leading to an accumulation of galectin-3 in the intracellular 
environment, which can account for the chemotherapeutic 
resistance observed in ST6GalNAc-I-overexpressing tumor cells 
[1133]. Contrarily, galectin-3 still cooperates with sTn antigen to 
promote tumor metastasis by activating the Akt pathway leading 
to an increase in the transcription activity of β-catenin and 
protein synthesis (galectin-3 promote tumor metastasis mostly in 
an Akt-dependent way) [1134].

Galectin-3 is involved in the regulations of a wide range of 
cancer cell activities during cancer development, progression 
and metastasis [1135]. Mechanistically, most of the molecular 
mechanisms leading to galectin-3 activities emanate from 
its characteristic oligomerization ability [1136]. Owing to its 
unique CRD, galectin-3 molecules can oligomerize and form 
pentamers upon glycan binding to their CRDs [1137]. Galectin-3 
oligomerization leads to three cross-linking modes of action 
including cell-cell adhesion, signal transduction through receptor 
clustering, and lattice formation [1138,1139]. Moreover, the 
oligomerization capacity of galectin-3 has been shown to be 
important for its function in endocytosis [1140]. Mechanistically, 
galectin-3 oligomerizes upon recognizing beta1,6-branched 
N-glycans on proteins including integrin, N-cadherin, lysosomal 
associated membrane proteins, L1, Mac-2 binding protein, CD166, 
melanotransferrin. Oligomerized galectin-3 acquires the capacity 
to bind to plasma membrane GSLs that drive GSL-dependent 
narrow membrane bending and the biogenesis of tubular 
endocytic pits from which Clathrin-Independent Endocytic 
Carriers (CLICs) are formed similar to the GSL-binding subunits 
of bacterial Shiga and cholera toxins and the VP1 protein of 
simian virus 40 [1141-1143]. Remarkably, the complexity of the 
lattice that galectin-3 form with glycoproteins and glycolipids 
depends on GnT-5/MGAT5-mediated modifications [1144]. 
Captivatingly, galectin-3-dependent lattice formation induces 
persistence of a given receptor on the cell surface. The so called 
“receptor retention” tunes the function of different receptors, 
such as the Epidermal Growth Factor Receptor (EGFR), Platelet-
Derived Growth Factor Receptor (PDGFR), (Fibroblast Growth 
Factor Receptors) FGFR, Vascular Endothelial Growth Factor 
Receptor (VEGFR) and TGFBR [1145].

Galectin-3 role in immunosuppressive TME: Although both 
galectin-1 and galectin-3 can bind to T-cells and trigger T-cell 
death these galectins induce two separate death pathways with 
distinct mechanisms [1146,1147]. Notably, galectin-3 binds to a 
complement of T-cell surface glycoprotein receptors that differ 
from those recognized by galectin-1. CD45 and CD71, but not 
CD29 and CD43, contribute to galectin-3-induced T-cell death. 
Although CD45 is not required but regulates susceptibility 
to galectin-1, CD45 is required for galectin-3 cell death. By 
contrast, CD7 is not required for death triggered by galectin-3 
[1148]. Unlike galectin-1 binding that result in clustering of 
CD45 during galectin-1-induced T cell death galectin-3 induces 
clustering of CD71, but not CD45, on the T cell surface [1149]. 
Instead, galectin-3 binding creates small patches of CD45 around 
the cell surface. In addition, galectin-3 has been proposed to 
separate CD45 and TCR into discrete domains on the T-cell 
surface during T-cell activation [1150].

Similar to galectin-1, specific glycosylation of CD45 is important 
for regulation of galectin-3-mediated signaling. GCNT1 
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interactions with various ECM molecules such as collagens, 
laminins, fibronectin and tenascin [1186]. Mechanistically, 
integrin-mediated adhesion of fibronectin triggers a negative 
feedback signal that blocks the formation of E-cadherin mediated 
cell-to-cell adhesion [1187]. Dissolving E-cadherin-dependent 
junctions by integrin-mediated adhesion lead to separation of 
unparted cancer cells or groups of cancer cells from adjacent 
normal cells and the basement membrane below which drives 
the transition from carcinoma in situ to invasive cancer [1188]. In 
addition, the interaction between integrins and ECM enhances cell 
adhesion and activates cancer cell pro-survival and anti-apoptotic 
programs, resulting in the development of drug resistance [1189]. 
In a similar vein, integrin-dependent adhesion mediates leukemia 
cell interactions with their microenvironment. Strikingly, 
integrin-mediated drug resistance has been reported in T-ALL, 
CLL and AML [1190]. In AML, the integrin-binding glycoprotein 
CD98 plays a central role in chemoresistance by driving 
engagement of leukemia cells with their microenvironment and 
maintaining Leukemia Stem Cells (LSCs). Not surprisingly, Bajaj 
et al., suggested that CD98 inhibition should be considered for 
targeting both adult and pediatric leukemia [1191]. Noteworthily, 
glycosylation affects the functions of integrins [1192-1194]. To 
explain further, integrins exist in a continuum of conformations 
between bent-closed non-ligand-bound also termed inactive and 
extended-open ligand-bound also termed active states [1195]. 
N-glycosylation positions were suggested to affect the equilibrium 
between these two conformers [1196]. Interestingly, galectin-3 
oligomers clamp the bent-closed state to prime it for endocytic 
uptake, retrograde trafficking to the Golgi apparatus, and 
subsequent polarized secretion to the leading edge of migrating 
cells to enter a new functional cycle [1197]. This cycle is important 
for integrin-mediated functions, including cell adhesion and 
persistent cell migration [1198].

The role of galectin3 in modulating integrins/ECM 
glycoproteins is GnT-5/MGAT5 modification of N-glycans on 
integrins and other adhesion receptors influence membrane 
remodeling and ECM assembly [1199-1204]. It was shown that 
the α6β4-integrin (β4-integrin), a receptor for laminin-332 and 
an essential component of the hemidesmosome (an anchoring 
structure in the basal membrane of stratified epithelial cells), 
is a major carrier of N-glycans and is associated with poor 
prognosis, tumorigenesis, and metastasis. Binding of galectin-3 
to β4-integrin via β1, 6GlcNAc-branched N-glycans promoted β4-
integrin–mediated cell motility and invasion [1205]. Moreover, 
overexpression of MGAT5 leads to a substantial increase in 
cell migration mediated by α3β1 integrin on the laminin 5 
substrate [1206]. In addition, galectin-3 interactions with GnT-
5/MGAT5-modified N-glycans at the cell surface of mammary 
carcinoma cells stimulate α5β1-integrin activation, enhancing 
fibronectin fibrillogenesis and fibronectin-dependent tumor 
cell spreading, and motility [1207]. Galectin-3 was also shown 
to interact directly with ECM glycoproteins such as fibronectin, 
collagen IV, elastin, laminin, and hensin [1208]. Intriguingly, 
the integrin-binding glycoprotein CD98 is a galectin-3 ligand 
implicated in integrin-mediated adhesion of human cancer cell 
lines [1209]. Furthermore, galectin-3 binding to N-cadherin 
contributes to destabilization of cell-cell junctions by enhancing 
turnover of N-cadherin and other glycoconjugates, which might 
favor cell migration process [1210]. It is worth noting that the 
upregulation of N-cadherin (mainly exists in nerve tissue, muscle 
and fibroblasts) followed by the downregulation of E-cadherin 

Numerous studies have indicated that galectin-3 is involved in 
multiple stages of cancer progression and metastasis and may 
render anticancer activities in several ways [1168,1169].

• The intracellular galectin-3 is anti-apoptotic (providing 
survival advantage to cancer cells). 

• Galectin-3 promotes tumor neoangiogenesis. 

• The extracellular galectin-3 is involved in homotypic 
aggregation. 

• Tumor-endothelial cell interactions required for metastasis 
are mediated by endothelium-associated galectin-3 and 
cancer cell-associated TF antigen. 

• Tumor cell secreted galectin-3 induces apoptosis of cancer-
infiltrating T-cells to promote immune escape and tumor 
progression.

The metastatic cascade can be broadly separated into three 
main processes: Invasion, intravasation and extravasation. The 
metastatic cascade is dependent on the loss of adhesion between 
cells, which initiates the process of invasion, the first step of 
metastasis. Mechanistically, the loss of cell-cell adhesion capacity 
allows malignant tumor cells to dissociate from the primary 
tumor mass and changes in cell-matrix interaction enable the cells 
to invade the surrounding stroma [1170]. The blood vessel within 
the tumor's vicinity can then provide a route for the detached 
cells to enter the circulatory system and metastasize to distant 
sites; the process of intravasation [1171,1172]. Extravasation 
constitutes a multistep phenomenon that can be divided into 
different phases. The extravasation process is initialized by 
rolling, relatively low-affinity binding, of leukocytes mediated 
by the selectin family of adhesion molecules. Interestingly, 
tumor cells exploit these mechanisms used by leukocytes to roll, 
arrest and adhere to the vascular endothelium [1173,1174]. In 
this vein, compelling evidence indicates that selectins regulate 
adhesion of circulating cancer cells to the walls of blood vessels. 
In particular, the presence of E-selectin ligands on cancer cells 
correlates with enhanced adhesion to the activated endothelium 
[1175-1178]. Moreover, during selectin-mediated rolling, integrins 
are activated, and then bind to their endothelial ligands to 
mediate a tight adhesion or arrest of the leukocytes. Significantly, 
integrins ar a family of heterodimeric membrane glycoproteins 
composed of noncovalently associated α and β subunits that 
mediate cell-matrix and cell-cell interactions [1179,1180]. After 
adhesion, N-cadherin also known as CDH2, which mediate the 
final steps of extravasation, transmigrate tumor cells through 
the vascular endothelium by a procedure named diapedesis 
[1181]. Captivatingly, tumor cells imitate leukocyte mechanisms 
for extravasation [1182]. However, the adhesion molecules 
and ligands involved in tumor cell extravasation are somehow 
different from leukocytes suggesting additionally or alternatively 
non-leukocyte-like mechanisms [1183]. For instance, tumor cells 
do not express selectins, but their respective ligands. Moreover, 
being the main adhesion molecules of leukocytes, the expression 
of several integrins, especially of the β2 subgroup, is restricted 
to leukocytes. In contrast to integrins, galectins are a group of 
adhesion receptors that leukocytes share with tumor cells. In this 
vein, overwhelming evidence shows that galectins are involved 
in extravasation [1184]. In this vein, galectin-3 expression in 
cancer cells was associated with a metastatic phenotype in several 
experimental systems [1185].

As the main link between a cell and the ECM, integrins have 
an essential role in the invasion process, mainly through their 
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between galectin-3 and MUC1 a natural ligand of galectin-3 
that is overexpressed in cancer, via binding of galectin-3 to the 
oncofetal TF antigen on MUC1, which breaks the “protective 
shield” of the cell-surface MUC1 by causing MUC1 polarization, 
leading to exposure of smaller cell-surface adhesion molecules/
ligands including CD44 and E-selectin ligands (MUC1 carry 
sLeA and sLeX epitopes that act as ligands for selectins) [1219-
1221]. This leads to increased cancer cell homotypic aggregation 
and cancer cell heterotypic cell adhesion to vascular endothelium 
two important steps in metastasis [1222,1223]. 

Therefore, inhibition of MUC1/TF antigen-galectin-3 
interactions may be a potential strategy to reduce tumor 
progression and metastasis. Like epithelial tumors, cancer 
specific MUC1 glycoforms are over-expressed on MM cells 
[1224]. Consequently, the TF-MUC1-galectin-3 axis (Figure 3), 
constitutes a novel therapeutic target in MM. Moreover, MUC1 
cell surface polarization increases MUC1-EGFR association 
leading to increased and prolonged EGFR activation and 
signaling. These mechanisms might contribute to EGFR-
associated tumorigenesis and cancer progression and could 
also influence the effectiveness of blocking the action of 
EGFR in patients undergoing cancer therapy [1225]. In this 
context, galectin-3 lattice itself was found to reduce EGFR 
lateral mobility and internalization and to increase EGFR 
signaling [1226]. Additionally, MUC1 stimulates tumor cell 
release from initial tumor sites that promote metastasis [1227-
1229]. 

(mainly exists in epithelial tissue) is the sign of EMT [1211]. This 
“cadherin switch” increases the ability of tumor cells to invade 
and metastasize to distant sites, which predicts poor prognosis. 
Therefore, EMT is considered a process in which tumor cells 
transform from a nonmotile epithelial phenotype to a migratory 
mesenchymal phenotype [1212].

The TF-MUC1-galectin-3 axis role in metastasis is increased 
expression of the TF antigen has a big impact on promoting 
cancer progression and metastasis. To reiterate, the TF antigen, 
present in the core I structure of MUC1, is generally masked 
by sialic acid in normal cells but is exposed or nonsialylated in 
malignant and premalignant epithelia [1213,1214]. Interestingly, 
a striking difference was observed between interactions of 
galectin-1 and -3 toward the TF disaccharide (Galβ1, 3GalNAc) 
found in O-glycans [1215,1216]. Galectin-3 was found to interact 
with TF antigen with 100-fold higher affinity compared to 
galectin-1 [1217]. Expectedly, substantial evidence indicated that 
the cancer-associated TF antigen promote metastasis through 
binding to galectin-3 [1218].

Following the escape from primary tumor and intravasation, 
the first task that blood-borne neoplastic cells encounter is to 
survive the cell-detachment-induced apoptosis or anoikis (a type 
of programmed cell death that results from the loss of anchorage 
and detachment from ECM, which disrupts integrin ligation) and 
a drive through the circulation. Intriguingly, galectin-3 has been 
shown to overcome anoikis a barrier to tumor metastasis- through 
the galectin-3-MUC1 interaction. Mechanistically, the interaction 

Figure 3: The TF-MUC1-galectin-3 axis in multiple myeloma. The increased expression of the galectin-3-ligand TF antigen by cancer-associated 
MUC1, and the increased concentration of circulating galectin-3, all of which are common features in Multiple Myeloma (MM), promotes 
metastasis by induction of MUC1 polarization, exposing smaller adhesion molecules on the cell surface, including CD44, and E-selectin ligands, 
which increases tumor cell aggregation and favors the formation of tumor micro-emboli, preventing anoikis initiation and enhancing circulating 
tumor cell survival.
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In contrast to galectin-1 and -3, galectin-9 does not bind to glycans 
on CD43 or CD45 on T cells [1264]. Surprisingly, however, 
galectin-9 is much more potent than galectin-1 in inducing T-cell 
death. It is worth mentioning that TIM-3 and CD44 have been 
identified as glycoprotein receptors for galectin-9 [1265]. Since 
CD44 is the galectin-9 receptor on neutrophils, galectin-9 was 
identified as a soluble mediator of neutrophil activation with 
pro-adhesive effects observed in cancer as well as autoimmune/
inflammatory diseases [1266]. Whereas CD44 is also not required 
for T-cell susceptibility to galectin-9, TIM-3, expressed on T helper 
1 (Th1) CD4 T cells, was identified as an essential receptor for 
galectin-9-induced death of Th1 cells in vitro and in vivo [1267]. In 
this context, galectin-9/TIM-3 interaction is considered a major 
immune checkpoint pathway that can be exploited for targeting 
in immunotherapies [1268]. In this vein, TIM-3 and its ligand 
galectin-9, constitute an autocrine loop which drives the self-
renewal of AML stem cells by activating the NF-κB and β-catenin 
pathways [1269]. Besides, human AML cells possess a secretory 
pathway through which TIM-3 participates in galectin-9 secretion 
and is released in a free soluble form [1270]. While AML patients 
have a higher expression of TIM-3 on their T cells, TIM-3 is used 
as an important surface marker for exhausted and dysfunctional 
T cells associated with disease progression [1271,1272]. Galectin-9 
also impairs NK cell cytotoxicity through association with TIM-
3 in AML [1273,1274]. To sum up, galectin-9/TIM-3 pathway 
help AML cells escape host immune attack by impairing the 
immunological activities of cytotoxic T cells as well as NK cells 
[1275-1278]. In a similar vein, Choukrani et al., showed that 
recombinant galectin-9 treatment induced caspase-independent 
cell death in cytarabine (Ara-C)-sensitive as well as Ara-C-resistant 
from both AML cell lines and primary patient-derived AML cells, 
including CD34+ AML stem cells; however treatement excluded 
the healthy cord blood-derived CD34+ stem cells. Intriguingly, 
galectin-9 was shown to potentiate the cytotoxic effect of 
Azacytidine in patients who are not eligible for intensive Ara-C 
treatment [1279]. Recently, recombinant galectin-9 has shown 
potential therapeutic activity in preclinical models of various 
hematological malignancies, including (Adult T-cell Leukemia/
Lymphoma) ATLL, T-cell leukemia, MM, CML, as well as Burkitt 
and Hodgkin lymphoma cells [1280-1284]. In MM, galectin-9 also 
showed significant therapeutic activity toward primary patient-
derived myeloma cells, even in tumors resistant to conventional 
therapeutics [1285]. Intriguingly, treatment with recombinant 
galectin-9 reduced the severity of GvHD in both T-cell-deplete 
and T-cell-replete transplanted mice [1286]. Strikingly, the 
main mechanism of galectin-9-mediated immunoregulation 
involves the galectin-9/TIM-3 axis in T-cells. However, Myeloid-
Derived Suppressor Cell (MDSC) accumulation in transgenic 
mice with persistently high galectin-9 expression was observed 
in a model of lung inflammation, indicating that a potential 
immunosuppressive mechanism distinct from the galectin-9/
Tim-3 axis might exist [1287].

Significantly, TIM-3, by itself, is a bona fide target for the treatment 
of myeloid malignancies. Targeting TIM-3-metaphorically kills 
two birds with one stone by balancing the immune system and 
eliminating LSCs the principal cause of patient relapse in AML 
[1288]. MBG453, or Sabatolimab™, is an anti-TIM-3 mAb that 
interferes with the galectin-9-TIM-3 interaction and has been 
demonstrated to elicit immune-boosting, anti-leukemic activity 
[1289]. Clinical trials are currently underway to evaluate the 
safety and efficacy of MBG453 combination therapy in patients 

Furthermore, galectin-3 protects cancer cells from various forms 
of apoptosis via mainly suppressing mitochondrial apoptosis 
pathways [1230-1232]. In adition to galectin-3-MUC1 interaction, 
galectin-3 protect cancer cells from anoikis by regulating their 
transition through the cell cycle by inducing a cell cycle arrest 
at an anoikis-insensitive point (late G1 phase) [1233]. Moreover, 
galectin-3 anti-apoptotic effect modulates cancer cell sensitivity 
to various chemotherapeutic agents, many of which are used 
in hematologic malignancies such as etoposide doxorubicin 
dexamethasone, and bortezomib [1234-1236]. In addition to 
its anti-apoptotic functions, galectin-3 also has pro-apoptotic 
roles [1237]. Elevated galectin-3 levels have been shown to be 
prognostic for poor survival in many cancers including leukemia, 
lymphomas, breast cancer, and thyroid cancer. On the other 
hand, decreased levels of galectin-3 appear to be detrimental to 
patients with CLL or prostate cancer [1238-1241]. A possible 
explanation for this variance is that the localization of galectin-3 
is essential to its function. In fact, the function of galectin-3 will 
vary depending on whether it is in the nucleus, cytoplasm, or 
secreted into the extracellular spaces or in the circulation [1242]. 
It has been demonstrated that galectin-3 is predominantly 
located in the cytoplasm; and in contrast to nuclear galectin-3, 
cytoplasmic galectin-3 is usually associated with an aggressive 
phenotype in cancer cells [1243].

Galectin-9: Human galectin-9 is a 36-kDa protein that contains 
135 amino acids and is encoded by the LGALS9 gene [1244]. 
Galectin-9 was identified from murine embryonic kidney and 
human Hodgkin’s lymphoma tissues in 1997 [1245,1246]. 
Galectin-9 typically binds internal LacNAc units, with a preference 
for linear poly-LacNAc glycans [1247]. Strikingly, Gcnt2, which 
catalyzes I-branch (blood group I antigen) formation on glycan 
ligands of galectin-9 (poly-LacNAcs) attenuates galectin-9 
binding [1248]. Galectin-9 can form multivalent lattices due to 
the different oligosaccharide-binding affinities of its two CRDs 
[1249]. Interestingly, its long peptide linker allows the CRDs to 
have rotational freedom, enhancing multimerization and lattice 
formation [1250].

Galectin-9 has attracted much attention because of its multiple 
biological functions and strong immunomodulatory effects in 
tumor metastasis [1251]. Not surprisingly, galectin-9 has emerged 
as a biomarker and therapeutic target in cancer [1252,1253]. 
Captivatingly, galectin-9 has conflicting roles in cancer biology, 
the so-called double-edged sword role [1254]. For instance, the 
expression of galectin-9 has been linked to tumor cell adhesion 
and metastasis which correlated with unfavorable prognosis in 
several cancers such as brain tumor pancreatic cancer and AML 
[1255-1258]. Recently, Hung et al., demonstrated the potential 
efficacy of human galectin-9 neutralizing mAbs in protecting T 
cells from galectin-9-induced cell death and promoting the killing 
of cancer cells by T- cell in vitro, which provide a rationale for 
targeting galectin-9 in cancer immunotherapy [1259]. On the 
other hand, galectin-9 can induce apoptosis and inhibit tumor 
growth of HCC [1260]. Hence, galectin-9 was proposed as a new 
prognostic factor with antimetastatic potential in patients with 
HCC [1261]. In addition, galectin-9 has also been reported to 
suppress tumor cell migration and metastasis in another study 
using highly metastatic melanoma and colon cancer cells [1262]. 
Overall, the loss of galectin-9 expression in many solid cancers 
is closely associated with metastatic progression, and treatment 
with recombinant galectin-9 prevents metastatic spread in various 
preclinical cancer models [1263].
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well as hematological malignancies [1310].

There is compelling experimental and clinical evidence for the 
hypersialylation often attributed to sialyltransferase upregulation 
leading to enhanced expression of sialoglycans in tumors, to 
correlate with poor prognosis and reduced survival owing to 
increased metastatic potential. In addition, hypersialylation 
plays a cytoprotective role and contributes to chemotherapy 
and radiotherapy resistance in several cancers. Intriguingly, 
the available evidence implicates hypersialylation in cellular 
trafficking, drug resistance and resistance to immune therapies, 
through modulation of the TME, in MM. In addition to the 
many reported sialyltransferases highly expressed in MM, 
O’Dwyer M et al., also observed elevated levels of expression 
of ST3GAL4 that were associated with inferior PFS and OS in 
MM cells [1311]. In this vein, a landmark paper by Daly J et al., 
provided evidence that the Siglec/Siglec ligand axis is borrowed 
by MM cells [1312]. Strikingly, it was shown for the first time 
that hypersialylation is implicated in facilitating evasion of NK 
cell-mediated immunosurveillance in MM through interactions 
of Siglec-7 with sialylated PSGL-1 also called SELPLG, being the 
predominant Siglec-7 ligand on MM cells. Converesly, by using 
both a sialidase and sialyltransferase inhibitor, desialylation 
strongly enhanced NK cell–mediated cytotoxicity against MM 
cells. Interestingly, desialylation can uncover CD38 expression, 
a well-validated target in MM, and maximize NK cell–mediated 
Antibody-Dependent Cellular Cytotoxicity (ADCC) in the 
presence of daratumumab (an anti-CD38 moAb) as well as 
disrupt the inhibitory Siglec-7-Siglec-7L (PSGL-1) axis, enhancing 
clearance of MM cells by NK cells. As PSGL-1 is highly expressed 
in MM biopsies as well as on MM cell lines where it regulates 
the homing and adhesion of MM cells to the microenvironment 
PSGL-1 should be envisaged as a potential therapeutic target for 
cancer immunotherapy for MM [1313,1314]. In addition, the 
glycoprotein CD43 also acts as a ligand for Siglec-7 in MM as well 
as leukemia e.g., CML and lymphoma cell lines and blocking its 
interaction with Siglec-7 sensitizes malignant cells to immune cell 
lysis [1315,1316]. It is important to note that the glycan epitope 
(glycotope) recognized by Siglec-7 is the disialyl core 1 O-glycan 
tetrasaccharide (disialyl-T) expressed predominately on CD43, 
CD45, and PSGL-1 counter receptors. In this context, CD43 
protein is a primary determinant of Siglec-7 ligand expression 
on cancer cell lines. Although CD43 is expressed in all types of 
immune cells (except for resting B-cells), Siglec-7 binds selectively 
to disialyl-T glycans in CD43 but not to other CD43 glycoforms 
expressed in the immune system [1317]. Therefore, targeting 
Siglec-7-PSGL-1 and CD43-Siglec-7 checkpoints may be potential 
targets for cancer therapy.

Apart from Siglec-7 ligands (CD43 and PSGL-1), overexpression 
of the mucin genes MUC1 and MUC21 conferred resistance to 
NK cells in MM lines. In contrast, the glycosylation regulator 
signal peptide peptidase-like 3 (SPPL3) deletion facilitates NK cell 
evasion. SPPL3 encodes an intramembrane protease that cleaves 
transmembrane glycosyltransferases such as GnT-5/MGAT5 
(that catalyze the formation of highly branched N-glycans and 
LacNAc extensions that prevent NK-mediated killing) in the 
Golgi apparatus [1318]. Recently, Zhuang et al., performed SPPL3 
knockout in several patient-derived DLBCL cell lines (RIVA, 
OCI-LY1, and WSU-FSCCL) and observed a consistent increase 
in resistance to NK-mediated killing upon SPPL3 deletion in 
these cell lines. Mechanistically, the SPPL3 knockout resulted 
in MGAT5 being retained inside SPPL3-deficient cells leading 

with Higher-Risk Myelodysplastic Syndrome (HR-MDS) or AML 
and who are not fit for intensive chemotherapy [1290]. As TIM-
3 is not expressed on normal hematopoietic stem cells targeting 
TIM-3 with sabatolimab holds potential as a therapeutic strategy 
for patients with AML [1291-1293]. 

I-type lectins (Siglecs): Siglecs are I-type lectins highly expressed 
on innate and adaptive immune cells including human 
macrophages, T-cells, B-cells, DCs, and NK cells. The Siglecs 
family include the conserved Siglecs are Siglec-1, Siglec-2, 
Siglec-4, and Siglec-15 and the rapidly evolving CD33rSiglecs, 
including Siglec-3 (CD33), Siglec-5, Siglec-6, Siglec-7, Siglec-8, 
Siglec-9, Siglec-10, Siglec-11, Siglec-14, and Siglec-16. Ligands for 
Siglec receptors (Sialoglycans) are broadly expressed in a variety 
of human tumors and in a diversity of common cancer cell lines 
[1294]. Most of human Siglec receptors are inhibitory in nature 
(excluding Siglec-11, Siglec-14, Siglec-15, Siglec-1 and Siglec-4). 
Inhibitory Siglecs contain ITIM and ITIM-like motifs within 
its intracellular domain (the cytoplasmic tail). Upon binding to 
complementary sialoglycans in their local milieu, engagement 
results in down-regulation of the immune responses, particularly 
innate immune responses to cancer cells that ultimately lead to 
cancer progression. Mechanistically, sialoglycan-Siglec interactions 
have been demonstrated to contribute to an immunosuppressive 
TME through the induction of a pro-tumorigenic phenotype in 
TAMs, inhibition of NK cell and neutrophil activation, reduced 
DC maturation and antigen presentation and damped T-cell 
responses. Strikingly, inhibitory Siglecs can thereby inhibit 
immune cell activation similar to PD-1 after engagement by PD-
L1 [1295]. Therefore, the sialoglycan–Siglec axis is considered 
a novel glyco-immune checkpoint in cancer [1296,1297]. In 
particular, the CD33-related Siglec-7 and Siglec-9 on NK cells 
are of particular interest in the context of tumor immunotherapy 
owing to their critical roles in tumor cell immunoevasion.

Analogous to classical checkpoint receptor PD-1, Siglec-7 binds 
the mucin CD43 on leukemia cell surfaces and delivers an 
immune inhibitory signal, similar to galectins -1 and -3 [1298]. It 
is widely known that NK cells a class of innate lymphoid cells are 
the primary defenders against cancer precursors. Mechanistically, 
NK cells play an important role in early recognition and 
elimination of transformed cells that lose MHC-I expression 
“missing-self recognition” or express danger ligands “induced-
self recognition” through the production of pro-inflammatory 
cytokines, such as IFNγ and Tumor Necrosis Factor (TNF), and 
by their specialized cytolytic functions [1299,1300]. NK cells-just 
like CD8+ T cells are key players in all three phases of cancer 
immunoediting [1301]. Recent evidence suggests that cancer-
associated sialoglycans expressed by several human cancers inhibit 
anti-tumor immune activation by engaging Siglec-7 and Siglec-9 
on NK cells [1302,1303]. Mechanistically, NK cell-mediated 
killing of tumor cells can be blocked in a dose-dependent manner 
by the interactions between tumor sialoglycans and Siglec-7 and 
Siglec-9 on human NK cells. Moreover, the expression of Siglec-7 
and Siglec-9, on TAMs enhances cancer progression by driving 
macrophage polarization toward the tumor-promoting M2 
phenotype [1304-1308]. Ibarlucea-Benitez I et al., showed that 
Siglec-7/9 blockade can significantly reduce tumor burden in vivo 
by prevention of macrophage polarization into TAM phenotype 
and thus reprogramming of the immune-suppressive TME [1309]. 
Ligands for inhibitory Siglec-7/-9 on NK cells are increased in 
melanoma, HCC, pancreatic cancer, colon adenocarcinoma, 
cervical cancer, breast cancer, NSCLC, head and neck cancer as 
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treatment of Measurable Residual Disease (MRD). Strikingly, the 
greatest potential of InO lies in combination therapy either in 
the frontline or salvage settings. Interestingly, very encouraging 
outcomes have been observed with InO in newly diagnosed 
B-ALL, whether combined with chemotherapy, blinatumomab 
or both [1334]. In this vein, Jabbour et al., recently showed that 
InO was safe and effective in eradicating Measurable Residual 
Disease (MRD) in patients with B-ALL in Complete Remission 
(CR) the MRD conversion rate was 69%, which translated into 
a 2-year Relapse-Free Survival (RFS) of 54% and a 2-year OS of 
60% [1335].

Furthermore, a phase I clinical trial (NCT03233854) tested a 
bispecific CAR T-cells targeting CD19/CD22 (CD19-22.BB.z-
CAR) in adults with R/R B-ALL and LBCL which demonstrated 
safety and impressive clinical activity in B-ALL. CD19-22.BB.z-
CAR T cells were clinically active in both B-ALL, with 82% 
achieving an MRD-CR, and in LBCL with an Objective Response 
Rates (ORR) of 62%. However, the lymphoma arm was closed in 
this study as the 6-month PFS in LBCL (29%, 95% CI 12–48%) 
in this trial was similar to tisagenlecleucel/Kymriah® (a CD19-
directed CAR T-cell therapy) but enrollment is still ongoing in 
patients with B-ALL. Interestingly, this work provided evidence 
that antigen−/lo escape is a major pathway of resistance after 
CD19-CAR T cell therapy for LBCL and quantitative antigen 
density in LBCL correlates with outcomes after CAR T-cell 
therapy [1336]. In a similar vein, Joshua and colleagues developed 
a novel BiTE consisting of humanized anti-CD22 and anti-CD3 
single chain variable fragments demonstrating that CD22 can 
be utilized as as an alternate target antigen to CD19 or CD20 
in a BiTE formulation for B-cell malignancies. The CD22-BiTE 
showed tumor growth inhibition, comparable to blinatumomab, 
in an established B-ALL xenograft mouse model. Interestingly, 
the combination of blinatumomab and CD22-BiTE yielded 
increased efficacy in vivo when compared to the single agents 
suggesting that this novel construct could be used as a primary, 
combination, or post-CD19 directed therapy [1337]. On the 
other hand, Siglec-3 (a myeloid cell marker) has been considered 
as a therapeutic target for a target on AML [1338,1339]. In a way 
similar to InO, Gemtuzumab Ozogamicin (GO) is another ADC 
targeting CD33-expressing leukaemic cells (> 80% in patients 
with AML) that substantially improved outcomes in patients with 
AML [1340-1342]. Noteworthily, the cytotoxic effects of both GO 
and InO are inversely proportional to the amount of P-gp which 
indicates that P-gp contributes to their clinical resistance [1343-
1345]. As mentioned earlier, the MDR phenotype correlates with 
expression of P-gp.

Therapeutic implications

It needs to be emphasized that as a sign of cancer aberrant 
glycosylation is not just a consequence, but also a driver of a 
malignant phenotype. In a similar vein, aberrant glycosylation 
allows for the rational design of biomarker discovery research 
[1346]. In addition to biomarker discovery by glycomics or 
glycoproteomics, glycan-related vaccines, antibody therapy 
or carbohydrate recognition molecules, namely, glycan-based 
therapeutics or glycomimetics, are potential strategies for the 
future. Remarkably, the specific glycan structures found on tumor 
cells, known as the tumor glyco-code, can alter how the immune 
system perceives cancer cells and can induce immune suppression 
[1347]. Expectedly, novel therapies targeting tumor-associated 
glycans and their biosynthesis are currently being investigated 

to an increase of complex N-glycans, including higher-mass 
glycans carrying longer poly-LacNAc extensions, which points 
to a shared NK evasion mechanism arising from SPPL3 deletion 
and the modification of cellular glycosylation status in malignant 
B-cells. Interestingly, they also found that B3GNT2 deletion 
reduced LacNAc addition and restored SPPL3-knockout cell 
sensitivity to NK cells. These shreds of evidence suggest that high 
N-glycan branching contributes to the resistant phenotype [1319]. 
In this context, B3GNT2 encodes the main glycosyltransferase 
that extends highly branched N-glycans by transfer of GlcNAc 
moiety in a β1,3 linkage with a terminal unsialylated galactose, 
preferentially on the GnT-5/MGAT5-generated β-1,6-linked 
branch in tri- and tetra-antennary N-glycans [1320]. Significantly, 
B3GNT2 ranks as one of the highly amplified genes in DLBCL 
patients, suggesting a potential alteration in glycosylation and 
immune evasion [1321]. Collectively, the glycosylation regulator 
SPPL3, heavily glycosylated mucins, and the recently identified 
Siglec-7 ligands CD43 and PSGL-1 provide further evidence 
that glycosylation plays an important role in regulating NK cell-
cancer interactions with potential opportunities for therapeutic 
targeting to enhance NK cell immunotherapy [1322].

Currently, different methods targeting the sialoglycan-Siglec axis 
have been already successfully tested in early clinical trials, among 
them antibodies are already in clinical development [1323]. 
Moreover, among the 15 Siglecs found in mammals, Siglec-2 
(CD22) and Sigle-3 (CD33) have been already proven to be 
potent targets for immunotherapy. Siglec-2 is primarily expressed 
on the surface of mature B cells, where it targets the binding of 
α2,6-linked sialic acid-containing ligands. The presence of ligands 
on N-glycans is responsible for inhibiting galectin-1 binding. 
This interaction is important for the BCR signaling on the cell 
membrane, followed by binding with antigen [1324]. Expectedly, 
Siglec-2 has emerged as an attractive therapeutic target in B-cell 
malignancies [1325-1327]. After the initial development in 
R/R aggressive B-cell NHL, Inotuzumab Ozogamicin (InO), 
an Antibody-Drug Conjugates (ADC) consisting of a CD22-
targeting immunoglobulin G4 humanized mAb conjugated to 
the cytotoxic antibiotic calicheamicin, moved to CD22+ R/R 
B-ALL [1328]. Noteworthily, the cell surface glycoprotein CD22 
is expressed in >90% of B-ALL patients. Remarkably, InO 
demonstrated significant activity in R/R B-ALL either in both 
adult and pediatric trials as a single agent or in combination 
chemotherapy regimens, which led to its FDA–approval for the 
treatment of R/R B-ALL in pediatric and adult patients [1329]. 
Contextually, InO showed a significantly higher remission rate 
compared with standard intensive chemotherapy in adults with 
R/R B-cell ALL in the phase 3 INO-VATE ALL trial [1330]. The 
post hoc subgroup analysis of of INO-VATE trial confirmed that 
InO remains efficacious and has a similar safety profile for R/R 
B-ALL in patients with a high disease burden, defined herein as 
bone marrow blast (BMB) >90% [1331]. The strong remission 
rate in the high disease burden subgroup of INO-VATE contrasts 
with another targeted treatment, blinatumomab, where remission 
rates were lower in patients with ≥ 50% BMB vs. <50% BMB 
(29 vs. 73%) [1332]. Similarly, patients with higher BMB% (≥ 
5% vs. <5%) treated with CAR T-cell therapy experienced poorer 
outcomes (remission rate 75 vs. 95%, median OS 12.4 vs. 20.1 
months) [1333]. In addition, new research that is attempting to 
expand the potential applications of InO in B-ALL, including 
using it in combination with chemotherapy and/or other 
immunotherapies, in the frontline treatment of ALL, and in 
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are neutralized through apoptosis, ADCC and complement-
dependent cytotoxicity (CDC) [1365].

• Glinsky and Raz have advocated for development of 
MCP, a galectin-3 antagonist that acts by inhibiting galectin-3 
anti-apoptotic effects [1366]. Consistent with the previous 
myeloma study GCS-100 (an MCP) was able to suppress both 
ERK phosphorylation and MCL-1 expression in AML cells 
[1367]. In fact, GCS-100 has proved effective in pre-clinical 
models of MM, lymphoma, AML, as well as solid tumors [1368-
1372]. Considering that galectin-3 is a major regulator of Bcl-2 
function, the Raz laboratory has also advocated combining 
anti-Bcl-2 treatment (e.g., BH3 mimetics) and therapy targeting 
galectin-3 (e.g., GCS-100) to improve the efficacy of anti-Bcl-2 
treatment in several hematologic malignancies. 

• Aasted et al., generated 4C8, a cancer-specific mAb, 
against tumor-associated Tn-glycosylated CD44v6. 4C8 CAR T 
cells were effective against T-cell leukemia and several solid cell 
lines but sparing healthy keratinocytes [1373].

• Tang et al., found that AML patients with FLT3/ITD 
or DNMT3A mutations had higher expression of CD44v6, in 
contrast to normal specimens. CD44v6 CAR‐T cells eliminated 
CD44v6+ AML cells, especially AML cells with FLT3 or DNMT3A 
mutations while demonstrating potent anti‐leukemic efficacy 
and safety both in vitro and in vivo [1374].

• Vaxevanis et al., suggested for the first time the 
proteoglycan Biglycan (BGN) as a novel prognostic biomarker and 
therapeutic target of sAML/MDS by its direct inhibition through 
BGN-specific antibodies and/or inflammasome inhibitors 
[1375].

• A phase I/IIa clinical trial has been performed 
to study safety, efficacy and feasibility of CD44v6 CAR-T 
cell immunotherapy in AML and MM patients mediating 
a potent anti-tumor effects against primary AML and MM 
while sparing normal hematopoietic stem cells and CD44v6-
expressing keratinocytes [1376]. In addition, CD44v6-targeting 
nanomedicine has been explored as a potential tool for cancer 
therapy. This targeted nanoparticle development represents a 
launching point for future improvements and therapeutic and/
or diagnostic opportunities [1377].

• Bae et al., demonstrated increased LAG-3 expression 
on proliferating CD3+ T cells in MM patient Bone Marrow 
Mononuclear Cells (BMMCs) and Peripheral Blood Mononuclear 
Cells (PBMCs), as well as strong surface and intracellular 
expression of its ligand, galectin-3, in CD138+ patient MM cells and 
MM cell lines. Interestingly, LAG-3/galectin-3 blockade through 
LAG-3 and/or galectin-3 inhibition can efficiently enhance the 
proliferation of T-cells in MM patients and functional activities 
of MM-specific CTL, including XBP1/CD138/CS1-targeting 
memory CD8+ T cells, against MM. These results identify LAG-
3/ galectin-3 as an alternative mechanism of immune resistance 
and provide the rationale for targeting LAG-3/ galectin-3, alone 
and in combination with immunotherapeutic approaches, to 
improve patient outcome in MM [1378].

• El Halabi et al., found that LAG-3 and TIM-3 to 
be nearly always expressed in the TME of classical Hodgkin 
Lymphoma (cHL). In addition, TIM-3 was detected at the surface 
of a third of Hodgkin/Reed-Sternberg (HRS) cells [1379]. Several 
preclinical cancer models showed that combining anti-PD-1 with 
anti-LAG-3 or anti-TIM-3 appeared to be synergistic as well as 
may be a way to overcome resistance [1380-1388]. This provides a 

in several clinical trials [1348]. Importantly, interference with 
glycan-lectin interactions that are able to skew the immune system 
function represent a new immune checkpoint and a potential 
new target for cancer immunotherapy. Significantly, tumor cells 
utilize these interactions to either evade immune cell detection or 
inhibit the anti-tumor immune response [1349]. In this context, 
some of the therapeutic applications of glycobiology-targeted 
therapies in hematologic malignancies are outlined here:

• Removal of 9-O-acetyl residues from Neu5Ac on the cell 
surface by an O-acetylesterase made ALL cells more vulnerable to 
vincristine and nilotinib suggesting that Neu5Ac de-O-acetylation 
could be used as therapy to eradicate drug-resistant ALL cells 
[1350].

• Absence or therapeutic blockade of the E-selectin 
receptor using small molecule mimetic GMI-1271/Uproleselan 
effectively inhibits niche-mediated pro-survival signaling and 
dampens AML blast regeneration [1351]. In addition, supporting 
evidence showed that combination treatment with uproleselan 
reduced MM resistance to carfilzomib and lenalidomide, as well 
as AML to cytarabine, and enhanced their therapeutic effects 
as demonstrated by reduced tumor growth and prolonged mice 
survival [1352]. 

• Galectin-9 has an antiproliferative effect on MM cell 
lines and patient-derived myeloma cells by inhibiting the JNK 
and p38 MAPK signaling pathways. Therefore, galectin-9 can be 
used as a new therapeutic option to treat MM [1353].

• Two labs, one run by sugar chemist and recent Nobel 
Prize winner Carolyn Bertozzi, PhD, and another headed by 
cancer expert Dean Felsher, MD, PhD discovered that the 
proto-oncogene MYC controls expression of the sialyltransferase 
ST6GALNAC4 that is necessary to make a glycan known as 
disialyl-T that pops up in abundance on the surface of MYC-driven 
cancer cells. In turn, disialyl-T functions as a “don’t eat me” signal 
by engaging Siglec-7, thereby inhibiting the anticancer immune 
responses. Captivatingly, the combined high expression of MYC 
and ST6GALNAC4 identifies patients with high-risk cancers 
with reduced tumor myeloid infiltration. As a result, patients with 
high MYC expression including DLBCL, CLL, BL and T-ALL 
may be particularly responsive to inhibition of ST6GALNAC4 
activity either directly or indirectly by therapeutically targeting 
its product disialyl-T with an antibody or degradation with an 
antibody-sialidase conjugate, an antibody directs sialidase to 
selectively remove sialic acid from tumor cells to enable immune 
cells to kill the desialylated cancer cells [1354-1359]. Interestingly, 
MYC was found to be translocated in 36% of patients with MM 
which could hold opportunities for therapeutic intervention in 
MM [1360,1361].

• The Gb3-binding lectin-CARs have demonstrated target-
specific cytotoxicity against Burkitt's lymphoma-derived cell lines 
as well as solid tumor cells from colorectal and triple-negative 
breast cancer [1362]. Noteworthily, Gb3 is highly expressed by 
B-cells found within GCs (GC B cells), where it is essential for the 
production of high-affinity antibodies [1363].

• Significantly slower tumor progression was observed in 
the CD19 BiTE-sialidase treated group as compared to the CD19 
BiTE treated group, demonstrating better in vivo anti-tumor 
effects of the sialidase fusion protein [1364].

• PSGL-1 is a potential therapeutic target for MM. 
Immunotherapy with anti-PSGL-1 mAbs induced in vivo killing 
of MM cells provided that complement regulatory proteins 
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ligands in AML cells. Mass spectrometry analysis of cell-surface 
glycosylation in ST3GAL4 knockout cells revealed that Siglec-9 
primarily binds N-linked sialoglycans on these cell types. In 
addition, this study found that ST3GAL4 knockout enhanced 
the sensitivity of AML cells to phagocytosis by Siglec-9-expressing 
macrophages. Intriguingly, this work confirms that ST3GAL4 is 
strongly implicated in AML pathogenesis and implies that the 
ST3GAL4 enzyme itself may actually be the most impactful target 
for the development of therapeutic inhibitors in AML.

Although immunotherapy has shown potential activities in several 
solid tumors, its effects remain suboptimal in patients with liquid 
tumors. For instance, despite advancements in the treatment 
landscape of MM, such as incorporation of the anti-CD38 mAb 
daratumumab, most of the patients inevitably experience relapse 
[1395]. In addition, the current immunotherapy platforms have 
already riddled with issues concerning mainly their safety profile 
and affordability since their inception. For instance, Kymriah® 
costs $475,000 per patient in the US, which is unaffordable 
for an ordinary family [1396]. Normally, the high demand and 
expensive costs associated with CAR T-cell therapy might prove 
unsustainable for health systems [1397]. Hence, an effective drug 
at an affordable price is an unmet need [1398]. On 28 November 
2023, the FDA released a statement that the agency is investigating 
reports of T-cell malignancies, including CAR-positive lymphoma, 
in patients who received treatment with BCMA- or CD19-
directed autologous CAR T-cell immunotherapies [1399-1401]. 
Due to the seriousness of this risk, ongoing monitoring and 
longitudinal surveillance remain a clinical standard in the post-
CAR setting [1402]. Within this context, Elsallab et al., provided 
additional information on the numbers of second malignancies 
reported after CAR-T therapies. They found that second primary 
malignancies were reported in 4.3% (536 of 12394) adverse events 
after CAR-T therapies in the Food and Drug Administration 
Adverse Event Reporting System (FAERS). Strikingly, myeloid 
and T-cell neoplasms were disproportionately more frequent, 
with 208 reports of myelodysplasia and 106 reports of acute 
myeloid leukemias, which warrants further follow-up [1403]. 
Remarkably, relapse remains the major obstacle of CAR T-cell 
therapy leaving many hematologic malignancies inevitably fatal, 
and therefore new treatment strategies are imperative. Clinical 
evidence indicates that a large proportion of patients with B-cell 
malignancies suffer from relapse after CAR-T cell therapy [1404]. 
The initial impressive results of CAR T-cell therapy were coupled 
with the occurrence of relapse in approximately 30%-50% of 
patients after having achieved a CR [1405]. Consequently, 
understanding the mechanics of poor response or relapse is 
critical in advancing CAR T-cell therapy [1406]. Possible reasons 
include CAR T-cell–intrinsic qualities such as expansion capacity 
and T-cell exhaustion/dysfunction cell state, in addition to CAR 
T-cell–extrinsic factors such as antigen escape and immune 
suppression by the hostile BM microenvironment [1407,1408]. As 
T-cell dysfunction is now well established as a cause of CAR T-cell 
failure, replacing T-cells by NK cells is expected to gain substantial 
momentum as an alternative therapeutic approach. Interestingly, 
patients infused with CAR-NK cells did not represent significant 
adverse events, such as CRS [1409,1410]. However, just like 
CAR T-cell therapy, patients treated with CAR NK-cells also 
developed progressive disease despite showing initial encouraging 
responses [1411,1412]. In both cases, considerable effort is still 
needed to replicate the success observed with CAR cell therapies 
in B-lymphoid malignancies in other malignancies [1413]. 

rational for targeting LAG-3 and/or TIM-3 in combination with 
anti-PD-1 antibodies in the treatment of R/R HL. Currently, 
a phase 3 randomized clinical trial (NCT05508867) aiming to 
assess the safety and tolerability as well as compare efficacy of 
coformulated favezelimab, MK-4280 (a humanized IgG4 LAG-3 
inhibitor that inhibits the binding of LAG-3 to MHC class II) 
plus pembrolizumab, MK-3475 (a PD-1 inhibitor) with physician's 
choice chemotherapy of bendamustine or gemcitabine in patients 
with PD-(L)1-refractory, R/R cHL. Furthermore, a phase 1/phase 
2 clinical trial (NCT03598608) aiming at evaluating the safety 
and efficacy of favezelimab in combination with pembrolizumab 
using a non-randomized study design in patients with several 
hematological malignancies (cHL, DLBCL and indolent NHL) 
is still ongoing. Results of the analysis focusing on anti-PD-1-
naive patients with R/R cHL revealed that the combination of 
favezelimab and pembrolizumab was associated with an ORR 
of 73% (22/30 patients) including 23% of Complete Response 
(CR) at a median follow-up of 13.5 months. The median PFS was 
19 months, and the median OS was not reached. The 12-month 
OS rate was 96% [1389,1390]. This efficacy was also shown in the 
cohort of patients with R/R classical HL who failed an anti-PD-1 
treatment suggesting the combination may reinduce a response 
in these patients. The ORR was 31% (9/29) including 7% of CR 
after a median follow-up of 16.5 months. The median PFS and 
OS were 9 months and 26 months, respectively [1391].

• Corcoran et al., showed that genetic, pharmacological, 
and enzymatic approaches that remove sialic acid from 
N-linked glycans on CD79B lead to enhanced tumor killing by 
Polatuzumab Vedotin (Pola-V), an ADC directed to the CD79B 
subunit of the BCR, in DLBCL cell lines [1392]. Mechanistically, 
glycosylated residues on CD79A and CD79B create a glycan 
shield around the Pola-V binding site, which preclude binding to 
its target. Therefore, these findings reveal the striking impact of 
epitope glycosylation, specifically a2,6 sialylation, on the binding 
of Pola-V to CD79B and thereby its ability to kill tumor cells and 
also resolved the molecular basis of heterogeneity in response to 
Pola-V [1393].

• Pang, et al., demonstrated that targeting galectin‐9 may 
hold potential value for the treatment of acute GvHD (aGvHD) 
after haplo‐HSCT. Mechanistically, exogenous galectin-9 was 
found to mitigate aGvHD by restoring the Treg/Teffs (effector T 
cells) balance and suppressing the PI3K/AKT/mTOR pathway. 
The increased Treg cells can inhibit the activation of Th1 and 
Th17 cells by secreting TGF-β, thus alleviating aGvHD and 
inducing immune tolerance [1394].

• Interesting new research uncovered a proinflammatory 
stem cell niche driving myelofibrosis, through a galectin-1 
signaling axis. This discovery points to galectin-1 as a promising 
therapeutic target with disease modifying effects (altering the 
inflammatory niche and reducing fibrosis) in MPNs.

• As discussed earlier, ST3GAL4 has been suggested 
to synthesize ligands for E-selectin, an adhesion receptor that 
facilitates the survival of AML stem cells within the BM niche. 
Interestingly, V. Krishnamoorthy et al., recently found that 
upregulation of ST3GAL4 in AML facilitates immune evasion by 
increasing the biosynthesis of ligands for the inhibitory Siglec-9. 
Integrated CRISPR genomic screening and clinical bioinformatic 
analysis identified ST3GAL4 as a potential driver of Siglec-9 
ligand expression in AML. Depletion of ST3GAL4 by CRISPR-
Cas9 knockout dramatically reduced the expression of Siglec-9 
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and development in early detection of cancers and prediction of 
treatment efficacy including response to immunotherapies [1429]. 
Indeed, glycosylation of glycoproteins is important for their response 
to immunotherapy. Examples include CD38 in MM and CD19 
in B-ALL in which glycosylation changes enables resistance to 
daratumumab and CAR T-cells respectively [1430-1432].

Furthermore, it has been repeatedly demonstrated that the 
interactions between lectins and altered/tumor-specific cell 
surface carbohydrates ‘turns on’ an immunosuppressive milieu, 
also termed the tumor glyco-code, which is a prominent 
mechanism by which tumors escape anti-tumor immune responses 
[1433]. Expectedly, glycan-lectin interactions have uncovered an 
array of novel signaling pathways that mimic the known immune 
checkpoints CTLA-4 and PD-1 [1434]. As a matter of fact, 
Siglecs are mostly inhibitory receptors similar to known immune 
checkpoints including PD-1 or CTLA-4 that are successfully 
targeted with blocking antibodies for cancer immunotherapy 
[1435]. Consequently, disrupting these immunosuppressive glyco-
immune checkpoints could serve as a blueprint to develop novel or 
improved cancer immunotherapeutic modalities, including T-cell 
therapies. In particular, the sialoglycan -Siglec axis, TF-MUC1-
galectin-3 axis and galectin-9/TIM-3 pathways are potential 
targets for checkpoint inhibitor-type intervention in hematologic 
malignancies. Signaling pathways that govern these pathways 
must also be understood to fully controll their full potential. 
Moreover, these glyco-immune checkpoints can be combined 
with ICBs to improve their efficacy [1436]. Recent evidence 
suggested that targeted tumor desialylation in the TME enhance 
tumor control by converting immunologically inert tumors into 
inflamed ones as well as synergize with ICB [1437-1438]. One 
of the stratagies designed to desialylate the TME was through 
antibody conjugation to a sialidase, which has shown to improve 
the anti-tumor immune response [1439]. In a similar vein, a very 
recent work goes on to show that sialic-acid removal is synergistic 
with BiTE treatment in vitro [1440]. In addition, E-selectin/ sLeX 
have been reported to regulate both hematopoietic stem, and 
leukemic, cell proliferative dynamics. As such, targeting E-selectin 
receptor/sLeX signaling pathways hold great potentials to develop 
effective anti-cancer regimens in the treatment of liquid tumors 
[1441]. Moreover, since glycan modifications are dictated by the 
repertoire of glycosyltransferases and substrates responsible for 
their synthesis the field of glycobiology exposed several metabolic 
vulnerability loops and glycosyltransferases with druggable and 
therapeutic potential [1442].

CONCLUSION
Indeed, the key insights into the glycobiological landscapes of 
hematologic malignancies presented in this article should provide 
the impetus for devising novel strategies aimed at eradicating the 
the malignant clone as well as galvanize hematologists/oncologists 
to design and conduct strong clinical trials in this field. To this 
end, future editions of the major hematology/oncology textbooks 
including “The Bethesda Handbook of Clinical Hematology”, 
“Rodak's Hematology”, “Wintrobe's Clinical Hematology Book”, 
“Nathan and Oski's Hematology of Infancy and Childhood”, 
“Williams Manual of Hematology”, and “Lanzkowsky's Manual 
of Pediatric Hematology and Oncology” must integrate 
background information on ‘Glycobiology in Hematology’. As a 
concluding remark, this artice serves to lay the foundation for 
future revolution of therapeutics in hematologic oncology in the 
context of recent advances in glycobiological research. 

Furthermore, the therapeutic potential of deeper understanding 
of co-inhibitory B7-CD28 pathways led to the FDA approval of 
several ICIs for cancer immunotherapy [1414]. However, despite 
the marked clinical success of ICB in the treatment of several 
tumors, many patients do not respond, relapse or are deemed no 
longer eligible for further ICB treatment [1415].

Given the dire outcomes for patients with hematologic 
malignancies, seeking alternative therapeutics options is a genuine 
demand rather than a fantasy. In this context, multiple lines of 
evidence suggest that TACAs are: (1) more tumor specific than 
protein targets; (2) expressed on tumor cell surface; (3) highly 
abundant; and (4) significant in tumor biology, i.e., suppressing 
and evading immune surveillance in the TME, altering oncogenic 
signaling pathways, promoting tumor survival, progression, and 
metastasis [1416]. In fact, glycobiology has already produced 
many effective drugs with validated results against several solid 
tumors. In parallel to solid tumors, the field of glycobiology is 
already replete with a host of important prognostic biomarkers 
and therapeutic targets for liquid tumors. Overwhelming 
evidence supports the huge impact of glycosylation changes in 
hematologic malignancies; and as such, aberrant glycosylation 
provides an attractive resource for immunotherapy. In particular, 
the repertoire of cancer-associated glycans known as TACAs 
expressed on liquid tumors is highly versatile and constitue a great 
opportunity to avail from targeted approaches. Noteworthily, 
glycan targeting may offer major advantages in relation to 
protein targeting [1417]. Since they are barely expressed on 
normal tissues, TACAs are truly tumor-specific antigens, which 
indicates that targeting them offers less ‘off-target’ or ‘on-target 
off-tumor’ toxicities [1418]. Within this context, in addition to 
the known approaches (e.g., CAR T-cell therapy), TACAs can 
also be targeted by novel methods including lectins, lectibodies 
and glycan-specific nanobodies [1419-1422]. Notably, significant 
advancements have been made in understanding plant and 
microbial lectins as therapeutic agents against various viral 
diseases in recent years. Among them, mannose-specific lectins 
have being proven as potential anti-viral agents against a variety of 
viruses [1423]. In this vein, have personally proposed therapeutic 
lectins as a new modality of immunotherapy that can avail of 
the CDC-driven TACA-targeted killing of cancer cells [1424]. 
Supporting this hypothesis, rVAR2 represents a proof-of-
principle model promoting the use of lectins against hematologic 
malignancies. rVAR2 is a recombinant VAR2CSA, a lectin from 
plasmodium falciparum that detects an oncofetal CS structure 
found on many proteoglycans including syndecan-1, CD44 and 
Chondroitin Sulfate Proteoglycan 4 (CSPG4) that are present 
in a high proportion of malignant cell lines including MM 
and B-ALL [1425,1426]. Interestingly, CSPG4 is an established 
treatment target for KMT2A-R B-ALL [1427]. CS structure on 
CSPG4 is just one example of many immune targets that are 
heavily glycosylated glycoproteins in which their glycotopes can be 
added to the pool of TACAs. Noteworthily, neither the genome, 
transcriptome nor the proteome can individually predict the 
structural nature, distribution and dynamics of glycan chains in 
proteins. However, glycoproteomics attempts to bridge this gap 
by addressing the glycome as it appears in the proteome [1428]. 
Therefore, it is imperative to investigate the glycoproteomics 
of surface glycoproteins e.g., CD44 variant isoforms in order to 
characterize its altered glycosylation profiles and identify targetable 
TACAs for novel immunotherapy. In addition, glycoproteomic 
analysis has emerged as a potential tool for biomarker discovery 
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