

Genomic Imprinting and the Complexities of Inheritance

Samuel D. Hartwell*

Department of Molecular Genetics, Crest Genomics Research Center, Melbourne, Australia

DESCRIPTION

Genomic imprinting is often introduced in biology courses as an odd exception to the rules of inheritance a handful of genes that behave differently depending on whether they are inherited from the mother or the father. But reducing imprinting to a quirky footnote misses its deeper significance. It reveals that inheritance is not just about DNA sequences but also about parental history, environmental influences and evolutionary conflicts that play out long after conception. At its core, imprinting is the process through which certain genes are marked chemically tagged so that only one parental copy is active. This means that for an imprinted gene, a person's phenotype relies entirely on a single functioning allele. That alone is striking, because it makes these genes uniquely vulnerable to malfunction. If the active copy carries a mutation, there is no backup version to compensate. This vulnerability helps explain why imprinting is tied to several severe developmental disorders, such as Prader Willi syndrome and Angelman syndrome. When the paternal copy of a particular chromosomal region is missing or silent, one disease emerges; when the maternal copy is disrupted, another appears. The deeper story lies in what imprinting suggests about evolution and parental conflict. One of the leading theories known as the parental conflict hypothesis proposes that imprinting exists because mothers and fathers have different biological interests. Fathers, in many species, benefit when offspring extract more resources from the mother during pregnancy. Mothers, on the other hand, benefit from distributing resources more evenly across all their offspring. Imprinting allows certain paternally expressed genes to push fetal growth aggressively, while maternally expressed genes act as a counterweight. Whether or not this framework holds for every imprinted gene, it provides a fascinating lens through which to interpret genetic behavior as a tug of war shaped over evolutionary time.

In humans, this evolutionary negotiation has profound implications. Many of the genes regulated by imprinting influence growth, behavior, metabolism and neurological development. That means the same mechanisms that once helped our ancestors optimize reproductive success may still be shaping our cognitive and physiological traits today. It is genetic, but also epigenetic. It is developmental, but also evolutionary. It influences diseases, but also behavioral traits. The public tends to gravitate toward genetics stories that are clear cut gene A causes trait B. Imprinting rejects that simplicity and forces us to acknowledge that gene expression is context dependent, parent dependent and time dependent. And because many imprinted genes are expressed only during specific developmental windows, their influence may be strongest before we are even born. This is a hard concept to reconcile with the way society commonly talks about nature, nurture and personal responsibility. Another reason imprinting deserves more attention is its relevance to modern health issues. For example, growing evidence suggests that environmental conditions maternal stress, nutrition, pollution exposure can influence epigenetic marks, including those involved in imprinting. Such questions tread into sensitive territory. If imprinting makes some children more vulnerable to environmental stressors before birth, then improving maternal health and reducing toxic exposures become not only ethical priorities but biological imperatives. In this sense, imprinting serves as a reminder that inheritance is not merely the passing of genes it includes the passing of conditions, opportunities and burdens that society helps shape. Despite its complexity, I believe genomic imprinting offers an opportunity to deepen public understanding of genetics in a more nuanced and humane way. It shows that identity is shaped by parental histories encoded not just through DNA sequences but through epigenetic memory. And it highlights how the environment interacts with biology in ways that transcend the traditional divide between nature and nurture.

Correspondence to: Samuel D. Hartwell, Department of Molecular Genetics, Crest Genomics Research Center, Melbourne, Australia, E-mail: samuel.hartwell@gmail.com

Received: 02-Jun-2025, Manuscript No. EROA-25-39556; **Editor assigned:** 04-Jun-2025, PreQC No. EROA-25-39556 (PQ); **Reviewed:** 17-Jun-2025, QC No. EROA-25-39556; **Revised:** 23-Jun-2025, Manuscript No. EROA-25-39556 (R); **Published:** 01-Jul-2025, DOI: 10.35248/EROA.25.7.217

Citation: Hartwell SD (2025). Genomic Imprinting and the Complexities of Inheritance. *J Epigenetics Res.* 7:217.

Copyright: © 2025 Hartwell SD. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.