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Abstract 
Occurrence of aflatoxins in crops has vast impacts on human health. Therefore, the study of aflatoxin biosynthesis 

has become important. Previous studies have shown that the aflatoxin biosynthesis gene cluster and several 
genes, enzymes, and regulatory elements are involved in aflatoxin biosynthesis; however, the intricate metabolic 
regulatory networks of aflatoxin synthesis remain unclear. Rapid development of fungal genomics and other “omics” 
empower us for genome mining, gene expression profiling, and gene regulation studies that could provide more 
comprehensive insights into the aflatoxin biosynthesis regulatory network and other secondary metabolisms in fungi. 
Here we review the recent advances in the field of genome sequencing of aflatoxin-producing fungi, application 
of genomics, transcriptomics, proteomics, metabolomics, and epigenetics in aflatoxin biosynthesis. In addition, 
mitochondrial genomes in Aspergillus spp and their function in aflatoxin biosynthesis are discussed. In summary, 
the availability of whole-genome sequence of aflatoxigenic fungi will undoubtedly expand our knowledge of aflatoxin 
biosynthesis and will provide more insights on the biosynthesis of aflatoxin and other secondary metabolites in fungi.
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Introduction
Aflatoxin (AF) is a notorious mycotoxin with potent carcinogenicity, 

and consumption of AF-contaminated foods and feeds poses a serious 
threat to human and animal health. AF biosynthesis has become an 
excellent model for exploring the genetic regulation of secondary 
metabolism in fungi. Studying AF biosynthesis will help us to eliminate 
or reduce its impact on human and animal health. However, the 
mechanism of AF biosynthesis and its regulatory network are still 
beyond our understanding and the control of AF contamination 
remains limited.

Aspergillus flavus and Aspergillus parasiticus are the main producers 
of AF; some other Aspergillus species such as Aspergillus nomius, 
Aspergillus pseudocaelatus sp. nov. and Aspergillus pseudonomius sp. 
nov. also produce AF. In addition, several non-Aspergillus fungi are 
also known to produce AF [1].

Regulatory Factor Studies on Aflatoxin Production in 
Fungi

Previous studies have shown that approximately 30 identified 
genes required for AF biosynthesis are clustered in a 75-kb DNA 
region of A. flavus and A. parasiticus [2], which is an exemplary way 
of regulating secondary metabolisms in fungi. To date, a variety of 
genes, enzymes, and regulatory factors have been described in detail 
to be involved in AF biosynthesis. Genes in the AF gene cluster are 
co-regulated, and their expression level directly affects AF production. 
A recent study confirmed the functions of hypothetical genes such as 
hypC and hypB in this cluster [3]. Several genes outside the AF gene 
cluster such as vrdA, whose expression is not regulated by aflR [4], 
and an EST (CA747446), whose deletion in A. flavus genome results 
in the inhibition of AF production, are known to be involved in AF 
biosynthesis [5]. In addition, various environmental factors are known 
to affect AF biosynthesis, including nitrogen, carbon, microelement, 
lipid, ethylene, temperature, light, pH, and oxidative stress [6]. 
Moreover, it is generally recognized that fungal development and AF 
biosynthesis are co-regulated [7,8]. For instance, deletion of genes 
encoding transcription factors NsdC and NsdD, which are required for 

asexual development, results in abnormal phenotypes of conidiophore, 
reduced expression of some genes in the AF gene cluster, and thus no 
production of AF [9].

aflR and aflS within the AF gene cluster, which are the AF pathway-
specific regulatory genes, have been extensively investigated. A change 
in their expression can alter the expression level of AF biosynthesis 
pathway genes in the AF gene cluster [10]; moreover, their expression 
is influenced by environment, nutritional conditions, and other factors 
[11]. A global regulator of secondary metabolism, LaeA, which is a 
part of the velvet complex (VelB/VeA/LaeA) described in Aspergillus 
spp [12], regulates gene expression in the AF gene cluster. Deletion of 
either laeA or veA in A. flavus [13,14] or deletion of both in Aspergillus 
nidulans [15] results in the failure of AF or sterigmatocystin production 
and down-regulation of the expression of genes in the secondary 
metabolism cluster. Recent studies have identified more transcription 
factors such as AtfB, ApyapA, Yap1, RsmA, AP-1, MsnA, and SrrA 
involved in AF biosynthesis [1]. However, the intricate metabolic 
regulatory networks about how AF-producing fungi respond and 
transmit environmental stimuli and how regulatory elements control 
AF biosynthesis remain unclear.

In the past 20 years, especially since the genomic sequence 
of Saccharomyces cerevisiae, the first eukaryotic organism to be 
sequenced, was completed in 1996 [16], numerous significant progress 
has been made in the field of fungal genomics. Fungal genomics and 
other “omics” have empowered us for genome mining, gene expression 
profiling, and gene regulation network studies that could provide more 
comprehensive insights into the AF biosynthesis regulatory network 
and other secondary metabolisms in fungi.
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Through genome analysis, we can anticipate that some fungi such 
as Dothistroma septosporum and D. pini cannot produce AF even 
though they produce intermediates of the AF biosynthetic pathway 
[1]. Comparative genomic studies of AF-producing fungal strains or 
other related Aspergillus strains could be leveraged for pathogenicity, 
secondary metabolism network, and phylogenetic researches [17,18].

Studies on mechanisms of aflatoxin biosynthesis using 
“omics” technologies

Genomic sequencing of 10 Aspergillus species including A. flavus 
has already been completed: Aspergillus oryzae, a close genetic cousin 
to A. flavus that is safely used in East Asian cuisines; A. nidulans, an 
important model organism for studying genetics and cell biology, 
which harbors the complete AF biosynthesis pathway except the 
final step that converts sterigmatocystin to AF; Aspergillus fumigatus, 
a human pathogen; and other species such as Aspergillus fischeri, 
Aspergillus niger, Aspergillus terreus, Aspergillus clavatus, Aspergillus 
sojae, and Aspergillus kawachii [19]. The genome size of A. flavus, 
which is the focus of this review, is 37 Mb, with 14,510 genes encoding 
proteins larger than 50 amino acids [8,20]. 

Genomic sequencing has revealed that many fungi contain 
numerous genes and gene clusters involved in secondary metabolism. 
For example, genes involved or potentially involved in AF biosynthesis 
and other secondary metabolisms, signal transduction, transcriptional 
regulation, pathogenicity, and stress response have been identified 
[21,22]; fifty-five secondary metabolite clusters were discovered from 
the A. flavus genome sequence [23].

Global gene expression studies using microarray or RNA 
sequencing can facilitate the discovery of regulatory genes and shed 
light on environmental impact on AF biosynthesis. Research has 
revealed that transcription profiles of genes in the AF cluster are similar 
to those of cyclopiazonic acid (CPA) gene clusters [24]. Based on the 
complete genome sequence, the transcriptomes of A. flavus and A. 
parasiticus were profiled to determine the effect of temperature [25] 
and other environmental parameters, including carbon, nitrogen, pH, 
and water activity [26,27] on AF biosynthesis. In addition, the complex 
regulation under 4 different culture conditions in A. oryzae was also 
elucidated [28]. In our laboratory, the transcriptome of A. flavus 
indicated that the “fluffy” phenotype and inhibition of AF production 
by 5-azacytidine were due to the inhibition of veA gene transcription 
and up-regulation of brlA gene transcription [8,29].

A range of “omics” technologies toward functional and comparative 
genomics such as proteomics and metabolomics technologies are 
playing increasingly important roles in understanding the mechanism 
of AF synthesis and biological process in aflatoxingenic strains. Several 
proteomics studies have been conducted in Aspergillus spp, although 
proteomics research in filamentous fungi is relatively few. For example, 
protein changes in response to environmental stimuli regulating AF 
biosynthesis in A. flavus have been quantified [30], comparison of 
proteome profiles between hapX deletion mutant and wild-type strain 
in A. nidulans has been made [31], and the first proteome profile and 
2-D proteome map of whole cell mycelial extract of A. flavus has been 
obtained recently [32]. Application of metabolomic analysis and a 
novel low cell density-dependent metabolic switch to AF production 
was performed in a study on the effect of peptone on growth and AF 
biosynthesis in A. flavus [33].

A new ChIP-seq method can be used to detect diverse transcription 
factors involved in secondary metabolism, conidiophore production, 

and response to environmental stimuli and to map the binding sites 
based on genome sequences in fungi. For instance, stress-related 
transcription factor AtfB was reported to bind to AF gene promoters 
and integrate secondary metabolism and cellular response to oxidative 
stress in Aspergillus spp [34].

Genome-wide epigenetic regulation such as histone modification, 
chromatin modification, and repeat-induced and repeat-associated 
silencing mechanisms should be linked with the production of 
secondary metabolites; however, current evidence from the results of 
bisulfite sequencing indicated that DNA methylation level is negligible 
in A. flavus [35]. Activation of secondary metabolism clusters is 
associated with increased acetylation of histones H3 and H4 and affects 
the production of secondary metabolites [36]. Direct evidence of the 
involvement of histone acetylation in the regulation of the AF cluster in 
A. parasiticus [37] and ST cluster in A. nidulans [38] has been obtained. 
Keller’s laboratory found that deletion of had, which encodes histone 
deacetylase in A. nidulans, results in the transcriptional activation of 
sterigmatocystin biosynthesis cluster [39]. Recent findings suggest 
that activation process in secondary metabolism clusters are silenced 
by heterochromatic histone marks and that closed heterochromatic 
structures are reversed when secondary metabolism activation is 
mediated by LaeA [36]. However, it is unclear how LaeA mediates the 
low level of heterochromatic marks inside different clusters and how 
epigenetic modification affects secondary metabolism.

Future Directions
Mitochondria is the main source of cellular reactive oxygen species 

(ROS), indicating that mitochondrial genome is involved in cellular 
development and AF synthesis. Thus, research on the mitochondrial 
genome, which may partly encode the enzymes involved in AF 
biosynthesis, will be promising. In recent years, mitochondrial 
genomes of some Aspergillus species have been completely sequenced 
and annotated, including that of A. flavus, which has a mitochondrial 
genome size of 29.2 Mb, and eight other species such as A. fumigatus, 
A. oryzae, A. niger, A. nidulans, Aspergillus tubingensis, A. clavatus, A. 
terreus, and Aspergillus fischerianus (Neosartorya fischeri) [40]. These 
mitochondrial genome sequences can be used as a supplement of the 
nuclear genome to obtain insights into species identification and AF 
biosynthesis. In several Aspergillus species, the mitochondrial enzyme 
alternative oxidase (AOX), which is considered to play a key role in 
stress alleviation, has been characterized and induced by oxidative 
stress [41,42]. Some cytochrome P450 enzymes, generally associated 
with the mitochondrial or endoplasmic reticulum membrane, have 
been found to be involved in sterigmatocystin and AF biosynthesis 
[43]. However, up to now the role of mitochondria in AF biosynthesis 
has not been systematically studied.

The availability of whole genome sequence of AF-producing fungi 
undoubtedly deepens our knowledge of the AF biosynthesis network, 
for example, revealing the missing enzymatic steps in AF biosynthesis 
and identifying more regulatory networks that link AF biosynthesis to 
oxidative stress and other internal and external factors. Much more 
exploitation of genomics and other omics may unveil more mysteries 
of the mechanisms involved in the biosynthesis of AF and other 
secondary metabolites in fungi and may contribute to the development 
of strategies for controlling AF contamination. 
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