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History
Animal models of diseases

Animal models, both vertebrates and invertebrates have been 
instrumental for dissecting the pathophysiology of human diseases. 
Despite divergent opinions over their use, animal models remain 
the most powerful tools to understand the mechanisms underlying 
physiological processes, and their pathological counterparts. They are 
also invaluable tools to search for disease modifiers and to develop 
and test novel treatment strategies. Although each model has intrinsic 
limitations, the use of animals as an entire systemic model is vital to 
biomedical research because they address metabolic and physiologic 
processes, which cannot be studied in isolated tissue culture.

The establishment of Mendelian genetics in the middle of the 
19th century, and the later discovery of the structure of the DNA by 
Watson and Crick [1] were the basis of modern genetics that utilize the 
sequencing of the entire human genome to identify genes implicated 
in different diseases. A further application of modern genetics is 
recombinant DNA technology, resulting in the generation of the first 
transgenic animal (mouse) over three decades ago [2]. Since then, 
transgenesis, the artificial modification of an organism’s genome, has 
been extensively used to identify the role of genes in the occurrence of 
diseases. One of the key achievements in manipulating the genome was 
reached when Mario Capecchi successfully disrupted a single gene in 
the mouse, opening the era of gene targeting [3].

To date, the mouse remains the species most commonly used 
for genetic manipulation. Nonetheless, the recent advances of new 
technologies such as endonucleases designed to target and cleave 
specific DNA sequences have emerged as alternative methods to 
accelerate the process of genome editing, and apply it to virtually any 
mammalian species. 

Engineered endonucleases

During the last decade, the development of ES-Cell free methods 
for genomic modifications simplified and accelerated drastically the 
process of gene manipulation. It also revived microinjection as the 
favorite method for producing precise (targeted) manipulations in 
the mammalian genome. The first generation of these engineered 
endonucleases consisted of three types of protein-based molecular 
scissors: Zinc Finger Nucleases (ZFN), Transcription activator-like 
effector nucleases (TALEN), and Meganucleases (MN). Although these 
types of nucleases can be discriminated by their recognition sequences or 

their modular assembly (Meganucleases having the longest recognition 
sequence [4], they all rely on the interaction of a defined sequence of 
the genomic DNA with protein recognition elements. All three classes 
of nucleases have been successfully applied to mouse transgenesis by 
direct oocyte microinjection [4-8]. However, these proteins remain 
quite complex to design and assemble [9,10], and the overall process 
can be cumbersome and time consuming.

Recently, the Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR) system associated to the Cas9 endonuclease 
(CRISPR/Cas9) superseded its predecessors [11]. Contrarily to the 
previous systems, the CRISPR system relies on the hybridization of 
the genomic DNA with a short complimentary RNA sequence. In 
particular, CRISPR being a RNA-guided endonuclease (RGEN) system, 
it guaranteed an unprecedented ease of design and seamless synthesis 
(discussed herein), and contributed to the recent advent of the CRISPR/
Cas9 for genome editing [12].

Identification and description of a bacterial immune system

In 1987, an odd sequence repeat has been identified in the iap gene 
of the bacterium Escherichia coli [13]. Subsequently, it took researchers 
over a decade to realize that these bacterial sequence repeats were 
indeed part of the bacterial immunity mechanism [14]. Specifically, the 
type II CRISPR/Cas9 constitutes a defense mechanism of the bacterium 
Streptococcus pyogenes to detect and destroy invading bacteriophages. 
This system relies on complexes made of three components: the Cas9 
nuclease, guided by the CRISPR RNA (crRNA) and the trans-activating 
crRNA (tracrRNA). In 2012, the mechanisms underlying the efficient 
targeting and cleavage of a specific DNA sequence were identified, and 
it has been shown that the crRNA and tracrRNA could be fused to a 
chimeric “single-guide” RNA (sgRNA), making up a two-component 
system sufficient for genome editing in vitro [15]. The short genomic 
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target sequence consists of twenty base pairs (bp) complimentary to 
the sgRNA, and immediately upstream of a protospacer adjacent motif 
(PAM). The PAM is a three-nucleotide sequence of the form NGG 
(where N represents any nucleotide followed by two Guanines). The 
PAM is the only limiting factor when choosing a targeted sequence in a 
given genome. However, such target sites can be found on average every 
8–12 bp in the human genome [16]. The second targeting limitations 
of the CRISPR system are the intrinsic restrictions of the U6 or T7 
promoters used in CRISPR tools that require a G or GG (respectively) 
at the 5’ end of the sgRNA for efficient transcription [17]. Nonetheless, 
these restrictions now tend to be completely ignored without many 
problems when researchers perform CRISPR-based gene editing. 
Consequently, the CRISPR system is far less restrictive than the repeat 
variable diresidues (RVD) cipher of the TALENs [18].

Harnessing CRISPR for genome editing

A milestone has been achieved when simultaneous reports showed 
that the CRISPR system could be harnessed in vivo [19,20]. In mice, the 
CRISPR technology has effectively targeted several genes at the same 
time (multiplex) and can induce either gene Knock-Out (KO) via the 
Non Homologous End Joining (NHEJ) pathway, or induce gene Knock-
In (KI) upon Homologous Recombination (HR) of a “donor” template 
(plasmid or single strand oligonucleotides). Since then, the CRISPR 
system has rushed in all types of genetic manipulations, and genome 
editing has been achieved in an unprecedented number of species 
(animals and plants) including rats, rabbits, pigs, zebrafish, and even 
axolotls [21] or Rhesus monkeys [22]. To the best of our knowledge, 
there is no report to date of any species resistant to CRISPR editing. 
Ultimately, research on human cell lines [23], human stem cells [24], 
or human iPS cells [25] using CRISPR will tremendously speed up 
direct applications such as regenerative medicine. Nonetheless, such 
ubiquitous and unrivaled efficiency recently raised alarm over ethical 
consequences underlying genetic engineering in humans [26].

Genome editing in mice using CRISPR
For more than twenty years, ES-cell injection into blastocysts was 

the predominant way of editing the mouse genome. The main drawbacks 
of this method are the variable availability and potency of ES-cell lines, 
the time to obtain chimeras, and the inefficiency of transmission upon 
breeding of the chimeras. Despite sensible improvements over the 
years [27,28] this lengthy process may become obsolete. As previously 
mentioned, the direct injection of nucleases into the one-cell embryos 
has repositioned microinjection at the forefront of genome editing in 
mice.

Speed, precision, efficiency

Although the production of CRISPR edited mice via direct injection 
of CRISPR components is a very recent technique (the first report was 
published less than two years from the date of the present review), the 
plethora of publications [29-36] argue in favor of an incredibly fast 
pace. In average, from the design of the sgRNAs to the screening of 
genetically modified mice, the process takes about eight weeks, and 
most facilities and transgenic cores now produce modified mice within 
two to four months.

In the early days of CRISPR, potential off-target effects of the 
CRISPR system (Cas9 tolerates mismatches, especially in the 5’ 
upstream region of the target site) have been documented [16,37]. 
The system has subsequently been fine tuned for increased specificity. 
The first modification consisted in engineering a “nickase” form 
of the Cas9 (referred to as Cas9-D10A). This mutated version of 

the nuclease cuts only one strand of DNA, and the double nicking 
approach greatly improved specificity both in human and mouse cells 
[38,39]. Furthermore, is has been shown that truncated guides could 
also increase specificity [40]. Finally, an attractive approach consisted 
in coupling sgRNAs to the Fok1 endonuclease, which induces DNA 
cleavage only upon dimerization, thus doubling the length of the 
recognition sequence [41,42]. It is important to note here that off-target 
effects in mice are not as critical as in human since they can easily be 
outcrossed by way of breeding scheme.

The efficacy of the nucleases is generally dependent on chromatin 
accessibility and epigenetic mechanisms such as DNA methylation 
or histone modifications [43]. Nonetheless, several reports tend to 
prove that CRISPR is a much more efficient system than any other 
programmable endonuclease [44]. Several genes that failed to be edited 
using other nucleases were successfully targeted using CRISPR, and 
successful targeting of both alleles is much more efficient using 
CRISPR [34].

Seamless synthesis

There are many protocols to generate the two necessary 
components (Cas9 and sgRNA) for genome editing in mice [45]. Some 
of these protocols detail the complete procedure, from design of the 
target sequence to the identification of founders [46]. In short, there 
are few different ways of producing the readily available reagents for 
microinjection. One such fast method consists in cloning the desired 
20bp sequence into a dual expression plasmid (e.g px330, Addgene 
#42230) expressing both sgRNA and Cas9. The direct injection of this 
circular plasmid into the pronucleus of fertilized eggs is a fast method 
to obtain KO mice [47]. However, this method is limited by the time 
required for cloning (sequencing is necessary for quality control) and 
the relative inefficiency of the expression vector to edit both alleles.

Traditionally, the injection mixture contains both sgRNA and 
Cas9 mRNA, rather than DNA. The in vitro transcription (IVT) of 
these two RNAs is then necessary, and they can both be generated 
using the same expression plasmid (e.g. px330). However, the Cas9 
mRNA is slightly more difficult to synthesize because of its size and 
the polyA capping. An easy way to get fully validated Cas9 mRNA is 
to buy it from a commercial provider, as microinjection requires very 
low concentration of Cas9 reagent. Consequently, transgenic cores may 
obtain few micrograms of Cas9 mRNA, a very cheap investment that 
can last several months or up to a year.

This leaves the transgenic facilities with only one reagent to produce: 
the guide RNA. This is classically achieved by cloning the 20bp sequence 
into an expression vector, and then using this plasmid as template for 
IVT. Yet, the simplest and fastest way of producing several sgRNAs 
is the PCR-based “non-cloning” method. This method becomes very 
popular to create transgenic mice [48], as it takes a technician only one 
day to synthesize multiple sgRNAs (Figure 1).

The entire procedure can be divided into three steps.

It starts with the identification of guide sequences. This step is 
computerized and it takes only few minutes to get multiple guides 
(assessed against off-target likelihood) using one of several freely 
accessible computational tools (e.g. http://crispr.mit.edu). Some of 
these tools have been optimized and take genomic context (such as 
CpG islands) into account [49].

The second step is the synthesis of a linearized DNA template 
generated by PCR using a High Fidelity enzyme (e.g. Phusion 
polymerase or equivalent). The Forward primer is of the form 5’TTA

http://crispr.mit.edu
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Figure 1: Flowchart of the “non-cloning” strategy to synthesize small guide RNAs for CRISPR genome editing in mice.
Design and selection of suitable guides are performed using freely accessible computer tools (step 1). The use of a Forward primer containing the T7 minimal 
sequence (orange), the guide sequence selected in step 1 (green), and a sequence complimentary to the sgRNA sca old (red) allows the synthesis of a suitable 
DNA template without any cloning step (step 2). Finally, in vitro transcription (IVT) is performed using a commercially available kit following manufacturer’s 
recommendations (step 3).
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ATACGACTCACTATAGN20gttttagagctagaaatagc3’. It contains the T7 
promoter minimal sequence (for subsequent IVT), upstream of the 
20bp sequence identified in step 1, and a sequence complimentary to 
the expression vector. This strategy offers the advantage that cloning 
of the target sequence into the expression vector is no longer required.

For the last step, the mRNA is easily generated using an IVT kit 
(MEGAshortscript or equivalent). Because the sgRNA doesn’t require 
capping, the process takes only few hours. The final purification is 
critical and can easily be done using ad hoc spin columns (Nucaway 
or the like).

Should a “donor” piece of DNA be required for homologous 
recombination, de novo synthesis of small oligonucleotides (for 
insertion of a LoxP site for instance) or larger plasmids containing 
homology arms is rapidly completed by specialized companies, and 
costs involved become relatively low.

Unprecedented achievements

In mice, the use of CRISPR generated tremendous excitement in the 
community, as unprecedented results are regularly published. Beside 
multiplexing, the creation of conditional KO mice in one step [20], 
single nucleotide variants (SNV) and point mutations [30], gene tags 
[20], or large targeted insertions [32] have all been reported in record 
time. Corrections of disease phenotypes have also been communicated 
[50,51]. Constitutive and Cre-dependent mouse lines expressing Cas9 
into the Rosa26 safe harbor have been created and are readily available 
through the Jackson laboratory (Stock number 024857 and 024858).

Furthermore, the CRISPR system is broadly applicable and often 
coupled to other systems to create new hybrid technologies [52]. 
Therefore, there is no doubt the recent targeting of the RNA (rather 
than DNA) with the CRISPR system [53], which allows fine control 
(activation or repression) of the genes [54] will soon be applied to mice. 

Outstanding Challenges
Perfecting the system

The most critical criterion that needs thorough evaluation 
when performing genome editing is the off-target effect. Besides 
computational analysis, several studies showed that off-target effects 
of CRISPR could be reduced below the detection limits of deep 
sequencing using previously described methods [55]. Although new 
approaches may well be developed in a close future, it is worth noting 
that only whole genome sequencing could guarantee the absence of off-
target effects, although its price remains prohibitive. Few studies using 
whole genome analysis already showed that the mutation rates induced 
with endonucleases are not systematically higher than spontaneous 
(non-induced) natural mutations [56,57]. As previously mentioned, 
off-target remains ultimately much less critical for mice as for human 
genome engineering, as it is easily diluted out amongst generations.

The second perfectible criterion is the targeting restriction dictated 
by the NGG PAM. Other CRISPR systems than the type II system exist, 
and Cas9 orthologs [58] may have different PAM requirements, such as 
those of Streptococcus thermophilus and Neisseria meningiditis. These 
may represent attractive alternatives [45].

The mechanisms underlying the targeting and cleavage activities 
of the CRISPR system are not completely understood. Several studies 
of the mode of action provided valuable information that might help 
improving the system [59-62].

Finally, the physical form of the CRISPR reagents (DNA, RNA, 
or protein) used for microinjection in mice might also be critical. 
Since mouse genome editing is more powerful using the mRNA form 
than the DNA one, it is possible that direct injection of the Cas9 
ribonucleoprotein might also improve the efficiency, as it has been 
successfully applied to human cell lines [63,64]. 

Mode of delivery

CRISPR is considered a “disruptive” technology, which is a 
technological innovation that creates a paradigm shift. In the mouse 
community, it indeed created several shifts on the way scientists create 
genetically modified mice.

Interestingly, early reports of factors influencing the outcome of 
microinjection in mice showed that cytoplasmic transgenesis, although 
quite inefficient, could still be successful [65].

Because the CRISPR components are made of mRNA, it makes 
sense to target the cytoplasm when microinjecting the mouse oocytes 
(even when containing a DNA donor, successful cytoplasmic injections 
have been reported [20]). The first reports of CRISPR edited mice used 
a piezo-assisted method for injecting into the cytoplasm of the oocytes 
[66]. However, non-assisted injection is also possible and the efficiency 
seems overall higher using cytoplasmic injection over pronuclear 
injection [67]. There are an increasing number of publications using 
cytoplasmic injection in mice, where the oocytes can accommodate 
very high concentration of reagents with no obvious toxicity. Another 
advantage of cytoplasmic injections is that the fertilized eggs do not 
need to have apparent pronuclei to be injected, thus allowing injection 
in a wider range of oocytes, eventually reducing the number of mice 
superovulated, and offering more flexibility in the timing of hormonal 
stimulation. In our hands, switching from pronuclear to cytoplasmic 
did not result in any pregnancy. However, this problem (probably due 
to the physical characteristics of the micropipettes once pulled) has 
easily been overcome in our laboratory by a short pre-incubation (five 
minutes) of the eggs with cytoskeletal inhibitors (e.g. Cytochalasin B - 
Sigma C6762 – 5 ug/ml), known for increasing the survival rate [68].

Another interesting change in the way investigators perform 
CRISPR genome editing in mice is the fact that the efficiency of the 
sgRNA tends not to be pre-assessed anymore. In the first publications, 
the investigators used to test their guides in vitro, using mouse cell lines 
(e.g. N2a or NIH3T3). There might be several reasons explaining why 
this step became less popular. First, this procedure is time-consuming 
and requires a lot of manpower. Secondly, high throughput experiments 
showed that only a very small proportion of the guides are inactive 
[69,70]. Additionally, the degree of activity of a given guide in vitro does 
not always correlate completely with the degree of activity in vivo. For 
that reason, the activity of the sgRNA is sometimes assessed directly by 
in vivo assay [71]. 

Since the mode of delivery of the CRISPR reagents to the oocytes is 
critical, we anticipate that alternative methods to microinjection [72,73] 
might ultimately change completely the way genetically modified mice 
are produced.

Concluding remarks

The flexibility and adaptability of the CRISPR–Cas9 system offer 
vast potential for genome manipulations. Despite controversy over 
the discovery of CRISPR genome engineering and patent disputes 
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[74], transgenic facilities around the world now offer this service. In 
mice, work is ongoing to elucidate discrete mechanisms inherent to 
the editing capacities of CRISPR elements. For instance, mosaicism 
following CRISPR injection has not been explored thoroughly [75].

New strategies for controlling the outcome of DNA cleavage are on 
their way. For example, when creating KO mice, the repair mechanisms 
of the oocyte following NHEJ generally create small deletions (indels) 
of random sizes. Conversely, the coinjection of two guides targeting 
two close sequences in opposite orientations allows efficient excision 
of a piece of DNA of a predefined size [76], which is convenient for 
genotyping of the progeny. Likewise, the efficiency of homologous 
recombination and the characteristics of the donor DNA for successful 
gene repair are being assessed [76,77]. Besides, the two main assays 
used to detect induced genomic modifications (e.g. Surveyor and T7E1 
assays) lack sensitivity, and other methods are currently developed [78-81].

Collectively, nuclease-based technologies are revolutionizing 
contemporary molecular genetics, and are particularly applicable to 
the mouse genome. We anticipate that each of these systems will be 
thoroughly studied and enhanced [82], allowing researchers to take 
advantage of each type of nucleases according to their specificity and 
mechanisms of action. Other technologies based on nucleases [83,84]or 
not [85] may also appear as fast as the CRISPR/Cas9 system did.
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