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Introduction
While patients with localized osteosarcoma have excellent survival

rates, the prognosis for those with advanced disease is significantly
worse despite aggressive multimodality therapies [1]. To overcome
these limitations novel treatments are needed, especially for children
and young adults with metastatic and/or recurrent osteosarcoma,
whose poor rates of survival have remained relatively unchanged for
decades. Immunotherapy with genetically modified T cells (Figure 1)
offers a promising alternative to conventional cytotoxic
chemotherapies because T-cell killing does not rely on mechanisms
employed by these cytotoxic agents [2,3].

Figure 1: Cell therapy with genetically modified T cells. Blood is
drawn from patients, T cells are expanded and genetically modified
in the laboratory before they are reinfused into patients.

In this communication, we briefly summarize our recent article
detailing genetically modified T-cell therapy for osteosarcoma [4], as
well as describe our experience using HER2-CAR T cells in a phase I
clinical trial for patients with HER2-positive osteosarcoma [5].
Furthermore, we highlight additional immunomodulatory maneuvers
that may enhance the efficacy of genetically modified T-cell therapy for
the treatment of patients with osteosarcoma.

Genetically Modified T cells for Osteosarcoma: A Brief
Review

Successful gene transfer strategies include the forced expression of
antigen-specific α/β T-cell receptors (TCRs) or chimeric antigen
receptors (CARs) [6]. Conventional TCRs are composed of α and β
chains, and recognize peptide fragments presented on major
histocompatibility complex (MHC) molecules. Compared to
genetically modifying T cells with CARs, generating tumor-specific T
cells by forced expression of TCRs is cumbersome. Despite the
inherent difficulty of synthesizing large numbers of α/β TCR-modified
T cells, clinical studies using this approach demonstrate the potency of
adoptively transferred α/β TCR-modified T cells for multiple cancer
types, including NY-ESO-1-specific T cells for patients with synovial
sarcoma [7-11]. Therefore active exploration of α/β TCR-modified T-
cell therapy is warranted for patients with osteosarcoma.

Figure 2: Basic design of chimeric antigen receptors. Chimeric
antigen receptors (CARs) consist of an antigen binding domain, a
spacer/hinge region, a transmembrane domain, and an
endodomain that consists of domains derived from costimulatory
molecules and CD3-z. Depending on the number of costimulatory
endodomains, CARs are designated as 1st generation (no
costimulatory domain), 2nd generation (one costimulatory
domain), 3rd generation (two costimulatory domain).

CAR T cells have several advantages over α/β TCR T cells because
CAR T cells recognize and kill tumor cells in a MHC unrestricted
fashion. Therefore, target recognition by CAR T cells is unaffected by
some of the major mechanisms by which tumors avoid MHC-
restricted T-cell (α/β TCR) recognition, such as downregulation of
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HLA class I molecules and defective antigen processing. CARs consist
of an extracellular domain (ectodomain) that confers antigen
specificity, a hinge region, transmembrane domain, and an
intracellular domain (endodomain) [12]. The most commonly used
method to generate extracellular CAR domains is by joining the heavy
and light chain variable regions derived from monoclonal antibodies.
Because CARs are derived from monoclonal antibodies, CAR T cells
combine the antigen-binding property of monoclonal antibodies with
the lytic capacity and self-renewal of T cells. CAR endodomains are
typically derived from the T-cell receptor CD3-ζ chain, which can be
combined with costimulatory molecules such as CD28 or 41BB. CAR
nomenclature is based on the number of costimulatory domains
contained within the intracellular CAR construct. CARs containing
zero costimulatory domains are dubbed first generation, one
costimulatory domain denotes second generation, and two
costimulatory domains denotes third generation CARs (Figure 2).

Of the multiple tumor associated antigens expressed by
osteosarcoma cells, human epidermal growth factor receptor (HER)2,
disialoganglioside (GD)2, interleukin (IL)11Rα, fibroblast activation
protein, and B7-H3 [13-17] are expressed on the tumor cell surface,
making them viable CAR T-cell targets. We have focused on targeting
HER2 with CAR T cells. Although osteosarcoma tumors are often
HER2-positive, the HER2 gene is not amplified in this disease [18].
Thus, osteosarcoma is part of a group of tumors that express HER2 at
levels too low for HER2 monoclonal antibodies to be effective [19]. We
and others have shown that malignancies that express HER2 at low
levels can be targeted with T cells that express HER2-CARs [13], and
recently implemented a phase I clinical study using HER2-CAR T cells
for the immunotherapy of HER2-positive sarcomas [5], with most
patients enrolled having a diagnosis of osteosarcoma.

HER2-CAR T cells for Patients with Osteosarcoma
In a phase I clinical trial we evaluated the feasibility and safety of

administering escalating doses of 2nd generation HER2-CAR
(HER2.CD28.ζ-CAR) T cells for patients with recurrent/refractory
HER2-positive sarcomas [5]. Sixteen of 19 patients who received
HER2-CAR T cells were diagnosed with osteosarcoma. We began our
study with an ultra-low dose of HER2-CAR T cells (1 × 104/m2) and
escalated over eight dose levels to a maximum dose of 1 × 108/m2 T
cells. HER2-CAR T cells were successfully generated for all patients. In
regards to safety, none of the patients had adverse events related to the
T-cell infusion, except for one patient on the highest dose level, who
developed fever within 12 hours after T-cell infusion, which resolved
with ibuprofen. Additionally, all patients enrolled had pre-infusion
echocardiograms demonstrating normal left ventricular ejection
fraction (LVEF), and the LVEF remained normal in all patients six
weeks after T-cell infusion. In combination, these results demonstrate
the feasibility of generating HER2-CAR T cells from the peripheral
blood of patients previously treated with multi-agent cytotoxic
chemotherapies, and illustrate the safety of HER2-CAR T cells
administered to patients with HER2-positive osteosarcoma at doses up
to 1 × 108/m2.

Because efficacy of CAR T cells depends upon persistence of the
infused T-cell product [20], we assessed persistence of HER2-CAR T
cells by quantitative polymerase chain reaction analysis of peripheral
blood mononuclear cells. In patients who received T-cell doses from 1
× 105/m2 and higher, we detected HER2-CAR T cells in the peripheral
blood of 14 of 16 patients, and the copy number correlated with the
infused T-cell dose. Despite our ability to detect HER2-CAR T cells, 3

hours after T-cell infusion there was a rapid decline in the frequency of
HER2-CAR T cells in the peripheral blood of all patients,
demonstrating a lack of T-cell expansion. Despite the lack of
expansion, low-levels of HER2-CAR T cells were detected 6 weeks after
infusion in 7 of 9 evaluable patients who received greater than 1 ×
106/m2 T cells. Furthermore, at 3 months we detected HER2-CAR T
cells in 4 of 13 evaluable patients. Thus, although we found no
evidence for HER2-CAR T cell expansion after infusion, HER2-CAR T
cells persisted long term in some patients.

Clinical response to T-cell infusion was evaluated by comparing
disease identified by imaging obtained before HER2-CAR T cell
infusion to images obtained 6 weeks after infusion. Of 17 evaluable
patients, 4 had stable disease for 12 weeks to 14 months. Three patients
with stable disease received no additional therapy and had their
residual tumor removed. A sample from one of these patients showed
>90% necrosis, demonstrating antitumor activity of infused HER2-
CAR T cells. All three patients remain in remission with no further
treatment until now with a follow up of >3 years. Although HER2
expression was measured and objectively graded for all patients on this
study, we were unable to establish a relationship between tumor HER2
expression and clinical response because the sample size was
insufficient for such an analysis. In future clinical trials we plan to
evaluate whether HER2-CAR T cells have greater efficacy for patients
with high HER2-expressing osteosarcoma compared to those
expressing relatively low HER2 levels. Data from this study show that a
safe dose of HER2-CAR T cells can be established for patients with
HER2-positive osteosarcoma, and these cells can persist at low levels
for more than 6 weeks in a dose-dependent manner. Despite these
encouraging findings, clinical benefit of HER2-CAR T cells was
limited, indicating that further manipulation of the immune system
will be essential to enhance outcomes for patients with osteosarcoma.

Immune Modulation to Enhance T-cell Therapy for
Osteosarcoma

T-cell expansion and long-term persistence of adoptively transferred
T cells has been observed in patients receiving lymphodepleting
chemotherapy [21]. Due to serious safety concerns, which arose after a
single patient developed fatal acute respiratory failure following the
administration of 1 × 1010 third generation HER2-CAR T cells, derived
from the monoclonal antibody trastuzumab, in combination with IL-2
and lymphodepleting chemotherapy [22], we conducted our clinical
study with HER2-CAR T cells without lymphodepletion. Since we have
now established a safe dose (1 × 108/m2) of HER2-CAR T cells, we are
currently evaluating the safety and clinical benefits of lymphodepleting
patients with fludarabine +/- cyclophosphamide prior to the infusion
of 1 x 108/m2 HER2-CAR T cells.

An alternative, or perhaps complimentary strategy, to enhance the
efficacy of CAR T-cells for osteosarcoma is to combine CAR T cells
with one or more checkpoint antibodies now becoming available for
cancer immunotherapy. Intriguingly, Lussier and colleagues
demonstrated in human osteosarcoma samples that metastatic but not
primary osteosarcoma tumors express the T-cell inhibitory ligand
program death ligand 1 (PD-L1) [23]. They also provide evidence that
cytotoxic T cells infiltrating human metastatic osteosarcomas
upregulate programmed death receptor 1 (PD-1), implicating this T-
cell inhibitory pathway as a contributing factor to osteosarcoma
induced suppression of cytotoxic T cells. Furthermore, blocking the
PD-1/PD-L1 pathway using monoclonal antibody resulted in
decreased tumor burden and increased survival in a murine
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osteosarcoma model system [23]. In a separate article, Lussier and
colleagues demonstrate that T cells infiltrating osteosarcoma tumors
upregulate CTLA-4, another receptor involved in decreasing activation
of cytotoxic T-cells [24]. Based on these findings osteosarcoma bearing
mice were treated with antibodies against both PD-L1 and CTLA-4.
This combinational therapy significantly enhanced anti-osteosarcoma
activity compared to mice that received either antibody alone.
Importantly, a phase I clinical trial is currently underway to test the
safety and efficacy of PD-1 antibody alone, or in combination with
CTLA-4 antibody for the treatment of children, adolescents and young
adults with osteosarcoma and other solid tumors (NCT02304458). In a
separate phase I clinical trial, GD-2 CAR T cells given in combination
with PD-1 antibody is being evaluated for patients with relapsed/
refractory neuroblastoma (NCT01822652). Targeting PD-L1 directly
with PD-L1-speciifc CAR T cells is not an option since PD-L1 is
expressed on a broad array of normal cells, however investigators have
shown that it is possible to express chimeric PD-1 receptors on the cell
surface of T cells that consist of the PD-1 ecto- and transmembrane
domains, and the CD28 costimulatory endodomain to convert the
‘negative’ PD-L1 into a ‘positive’ costimulatory signal [25]. Given these
findings, clinical trials using PD-1 and/or CTLA-4 antibody in
combination with genetically modified T cells for the immunotherapy
of osteosarcoma are likely to be developed in the near-term future.

Another method to disrupt the T-cell inhibitory PD-1/PD-L1 axis is
by genetically modifying T cells to silence PD-1 expression or disrupt
the PD-1 gene locus. Su and colleagues demonstrate that PD-1 can
successfully be downregulated using a state of the art CRISPR/Cas9
immune editing system [26]. Reducing PD-1 did not affect the viability
or persistence of primary human T cells cultured in vitro.
Furthermore, immune responses of T cells genetically modified to
downregulate PD-1 were enhanced, as evidenced by increased IFN-γ
secretion upon recognition of target antigen, and enhanced killing of
PD-L1 positive melanoma cells. Thus disrupting the PD-1 gene locus
in CAR T cells has the potential to render T-cells resistant to
osteosarcoma induced immunosuppression, and enhance anti-
osteosarcoma activity.

Beyond Genetic Modification That Renders T cells
Tumor Antigen Specific

As already discussed in the last section, a ‘2nd genetic modification’
of CAR T cells holds the promise to further enhance antitumor activity.
Conceptually these can be divided into strategies to i) overcome
immune escape by targeting multiple tumor antigens, ii) enhance T-
cell expansion and persistence by transgenic expression of cytokines,
cytokine receptors, chimeric cytokine receptors or silencing negative
regulators, iii) increase T-cell trafficking to tumors, iv) render T cells
resistant to the immunosuppressive tumor microenvironment, and v)
to increase safety. With few exceptions [27,28], these strategies have
been mainly evaluated in preclinical models with encouraging results.
Several detailed reviews have been recently published on this topic
[29-34], and we refer the interested reader to these publications.

Conclusion
Genetically modified T cells have shown potent antitumor activity

in multiple preclinical osteosarcoma models, and initial safety data in
the first clinical experience using HER2-CAR T cells for patients with
HER2-positive osteosarcoma is encouraging. However, several
challenges remain including limited in vivo CAR T-cell expansion and

persistence, and overcoming the inhibitory tumor microenvironment.
We and others believe that CAR T-cell therapy for the treatment of
patients with osteosarcoma remains promising. However,
combinatorial immune modulating therapies and/or additional genetic
modification strategies will be necessary before CAR T cells will have a
major impact in the clinical management of this devastating solid
tumor.
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