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Introduction
Protein labeling with fluorescent molecules that allows sensing 

and visualization of protein dynamics, localization, protein-ligand 
interactions, and protein-protein interactions, is an invaluable tool to 
understand protein functions in living cells. One of the most prominent 
methods of fluorescent protein labeling is to genetically encode green 
fluorescent protein (GFP) or one of its variants as a fusion to the protein 
of interest. This powerful technique has intrinsic important advantages 
such as high labeling specificity and simplicity [1-5]. In 2008, Nobel 
Prize in chemistry was awarded to three scientists Osamu Shimomura, 
Martin Chalfie and Roger Y. Tsien for their discovery and development 
of GFP, highlighting the great contribution of the GFP technique in 
advancing chemical and biological research. Although GFP variants 
have proved to be extremely useful for both in vitro and in vivo studies 
of protein functions, their utility is still limited because the molecular 
sizes of GFP variants (~27kDa) are large enough to potentially interfere 
with the structure and function of proteins to which they are fused and 
their spectral and structural characterization are interdependent [6-
8]. To increase the diversity of protein labels, approaches comparable 
and complementary to the GFP technique have been developed that 
confer selectively fluorescent labeling of proteins with smaller chemical 
moieties.

Tag-based chemical labeling approaches have flourished recently. 
They require genetically fusing target proteins to peptide tags that 
specifically bind to or react with small molecule probes consisting 
of fluorophores. A great advantage of tag-based chemical labeling 
approaches is the flexibility in choosing fluorophores. A major advance 
in the tag-based protein labeling was achieved when biarsenical 
fluorescent dyes were used to label fusion proteins containing a 
tetracysteine (TC) motif [9-12]. Binding of a biarsenical dye, notably 
green-fluorescent FlAsH or red fluorescent ReAsH, to the TC tag 
forms a stable fluorophore-protein complex. The small size of the tag 
is a proven advantage in several direct comparisons with GFP variants 
[8,13,14]. Following the introduction of the TC tag, other tags for 
chemical labeling of proteins have been developed. They fall into two 
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categories: peptide tags rationally designed or evolved for binding to 
chemical probes and peptide tags from natural biosynthetic pathways 
that serve as specific sites for covalent attachment of chemical groups by 
enzymes. The first category includes small fusion tags [15-19], DHFR-
tag that non-covalently binds fluorescent trimethoprim derivatives 
[20,21], SNAP-tag that covalently reacts with fluorescent O6-
benzylguanine substrates [22-26], and halo-tag that cleaves the carbon 
halogen bond of fluorescent ligands to become covalently labeled with 
the fluorophores [27-29]. Labeling of peptide tags in the second category 
all involve enzymes. In the ACP-tag system, a phosphopantetheine 
transferase enzyme is used to transfer a 4’-phosphopantetheine-linked 
probe from coenzyme A to a serine residue of acyl carrier protein 
(ACP) that is fused to other proteins [30-35]. In another system, biotin 
ligase has been used for covalent labeling of a 15-aa peptide tag with 
ketone-modified biotin molecules that can react with hydrazide or 
hydroxylamine fluorescent dyes [36-38]. The use of formylglycine-
generating enzyme to generate formylglycine in a 13-aa peptide tag 
for labeling with hydrazide or hydroxylamine fluorescent dyes [39-41] 
and the exploitation of lipoic acid ligase to transfer an azide-containing 
lipoic acid probe to a 22-aa peptide tag for labeling with alkyne dyes 
[42,43] have also been successfully demonstrated. Although many 
tag-based chemical labeling techniques have advantages like flexibility 
in choosing fluorophores and less disturbance of structures and 
functions of target proteins, they have inherent limitations as well. 
First, a tag is generally fused to the N- or C-terminus of the protein 
of interest. Installation of a fusion tag at internal part of the protein 
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without disrupting protein structures and functions is difficult. Second, 
although most fusion tags are considerably smaller than GFP variants 
(the TC tag has only six residues), they are still not single residues. 
In comparison to single-residue modification, these fusion tags more 
likely adversely affect structures and functions of proteins they are 
fused to. 

There are a few methods available for labeling proteins at single-
residue levels. One broadly used approach exploits the reactivity of 
cysteine residues within proteins and labels them with appropriate 
thiol-reactive dyes [44]. Native chemical ligation and its extension, 
expressed protein ligation, have also been used to introduce various 
probes at single-residue levels [45-47]. These two approaches have, 
however, been generally limited to in vitro modification of purified 
proteins. Biological studies of such labeled proteins in cells require 
their reintroduction by invasive techniques such as microinjection or 
electroporation. Moreover, modification based on cysteine residues 
requires mutating all other non-targeted cysteine residues that could be 
critical to protein functions. For the native chemical ligation method, 
appropriate sites for ligation must be chosen carefully and modification 
of internal sites in large proteins is cumbersome. Therefore, to resolve 
issues associated with these aforementioned techniques, a single-
residue labeling approach that is easy to perform in vitro and allow 
non-invasive labeling of proteins in vivo is necessary.

Genetically incorporating NAAs into proteins is an alternative 
powerful approach that allows site-selective labeling of proteins 
at single-residue levels. A general method for the genetic NAA 
incorporation approach in live cells was developed by Furter, Schultz, 
and their coworkers [48-55]. This method relies on the read-through 
of an in-frame stop codon in mRNA by a nonsense suppressor tRNA 
that is specifically acylated with a NAA by an evolved aminoacyl-tRNA 
synthetase. There is a naturally existing genetic NAA incorporation 
system. In some methanogenic archaea and a Gram-positive bacterium 
Desulfitobacterium hafniense, Pyl is co-translationally inserted 
into proteins by an in-frame amber codon [56-61]. Suppression of 
this amber codon is mediated by the Pyl amber suppressor tRNA (

Pyl
CUAtRNA ), which has a CUA anticodon and is acylated with Pyl 

by pyrrolysyl-tRNA synthetase (PylRS). The PylRS- Pyl
CUAtRNA pair 

in these organisms is orthogonal to other synthetase-tRNA pairs in 
cells, ensuring the fidelity of the Pyl incorporation. Similarly to the 
Pyl incorporation machinery, an orthogonal synthetase-nonsense 
suppressor tRNA pair can be developed in which the synthetase is 
evolved to specifically charge its cognate suppressor tRNA with a 
NAA. When expressed in cells, this orthogonal synthetase-suppressor 
tRNA pair enables the NAA to be site-specifically incorporated into a 
protein at the amber codon with high fidelity and efficiency. Using this 
approach, a variety of NAAs have been incorporated into proteins in 
bacteria, yeast and mammalian cells and used to study a large number 
of biological problems [48,62-66]. Three of these NAAs are fluorescent 
themselves [65,66]. Many others have chemically reactive groups such 
as phenylhalide, ketone, azide and alkyne, alkene, tetrazine, tetrazole, 
etc. These groups can be directly used to introduce fluorescent labels 
into proteins both in vitro and in vivo [62,63]. The genetic NAA 
incorporation approach for fluorescent protein labeling has essential 
advantages. First, it relies simply on the recombinant DNA technique 
so that it can be easily generalized. Large amount of modified proteins 
can be generated easily. Second, the labeling is site-directed and site-
specific regardless of the incorporation site or protein size. Third, 
the localizable labeling in live cells can be achieved using chemically 
reactive NAAs and fluorescent dyes that have varied permeability to 
different organelles. 

Fluorescent NAAs
One great advantage of the GFP labeling technique is its efficiency 

and simplicity. When expressed in cells, a self-catalyzed process 
generates the GFP fluorophore and ensues quantitative labeling of a 
target protein that is fused to GFP. On the contrary, most chemical 
labeling strategies require further treatment after protein expression 
and therefore are more complicated [67-71]. An ideal chemical labeling 
approach that can achieve comparable simplicity and efficiency of the 
GFP labeling technique is to directly incorporate fluorescent NAAs into 
proteins. As of today, three fluorescent NAAs shown in Figure 1 have 
been genetically incorporated into proteins. Using an evolved tyrosyl-
tRNA synthetase (MjTyrRS)-amber suppressing Tyr

CUAtRNA pair that 
was derived from Methanocaldococcus jannaschii, 1 was genetically 
installed into proteins in E. coli at amber mutation sites. 1 contains a 
fluorescent 7-hydroxycoumain moiety that shows a high fluorescent 
quantum yield, a relatively large Stoke’s shift, and sensitivity to pH and 
solvent polarity. These unique features of 1 have been applied to undergo 
a variety of protein function studies such as protein folding/unfolding, 
protein-protein interaction, and protein subcellular localization. Using 
myoglobin incorporated with 1, Schultz and coworkers showed the 
sensitivity of fluorescence of 1 to the polarity of its environment could 
be used to track the unfolding process of myoglobin incorporated with 
1 in urea [66]. This same physical property of 1 has also been used to 
visualize antibody-antigen interactions and the phosphorylation state 
of STAT3 [72,73]. The strong fluorescence of 1 has also been used to 
investigate subcellular localization of GroEL and FtsZ in E. coli. FtsZ is 
a bacterial tubulin homologue. FtsZ incorporated with 1 is seen at the 
cleavage furrow during cell division to form the Z-ring, providing the 
first example of a fully functional protein to be visualized in living cells 
using a genetically incorporated NAA [74,75]. Another fluorescent 
NAA that has been incorporated into proteins is 2 in Figure 1 that 
contains a fluorescent dansyl functional group. The incorporation 
of 2 into proteins in yeast and mammalian cells was achieved using 
an evolved leucyl-tRNA synthetase (EcLeuRS)-amber suppressing 

Tyr
CUAtRNA  pair that was derived from E. coli. Like 1, fluorescence 

of 2 is also sensitive to solvent polarity. Genetic incorporation of 
2 into proteins can be applied to study protein folding/unfolding 
processes [65]. By genetically incorporating 2 into a voltage-dependent 
membrane lipid phosphatase, Wang and coworkers showed that 2 
optically reports the conformational change of the voltage-sensitive 
domain in response to membrane depolarization [76]. Another 
fluorescent NAA that has been genetically incorporated into proteins 
is 3. Like 1 and 2, 3 is also an environment-sensitive fluorescent 
NAA. Using an evolved EcLeuRS- Tyr

CUAtRNA pair, 3 was successfully 
incorporated into glutamine-binding protein at the ligand binding 

 

Figure 1: Three fluorescent NAAs genetically incorporated into proteins.
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site in yeast. The high fluorescent sensitivity of 3 in glutamine-binding 
protein to the polarity of the environment allowed easy detection of the 
conformation rearrangement of glutamine-binding protein during its 
strong association with glutamine [77]. 

In comparison to protein-labeling approaches that need protein 
expression followed with additional chemical labeling, the direct 
incorporation of fluorescent NAAs into proteins is certainly a more 
optimal choice given its simplicity and efficiency. However, all three 
fluorescent NAAs that have been incorporated into proteins have 
relatively short fluorescent emission wavelengths. These narrow 
emission spectra and only a few available fluorophores limit the 
applications of the direct fluorescent NAA incorporation approach. 
Given the flexibility of PylRS and its variants in the recognition of 
different NAAs, other fluorescent NAAs could possibly be genetically 
encoded using evolved PylRS derivatives [78]. The orthogonal nature of 

the PylRS- Tyr
CUAtRNA  pair in bacteria, yeast, and mammalian cells will 

also make fluorescent NAAs encoded using this pair more applicable 
for broad applications. However, before additional fluorescent NAAs 
that cover a wide spectral range are genetically encoded, protein-
labeling approaches in which genetically encoded NAAs are chemically 
labeled with structurally diverse fluorophores are still necessary.  

Keto-containing NAAs
The concept of click reactions was introduced about a decade 

ago [79]. Reactions that can be classified as click reactions need to 
be selective, modular, and wide in scope. In order to undergo click-
type protein-labeling reactions, bioorthogonal functional groups that 
do not exist in the biological system can be introduced into proteins 
followed by selective reactions with fluorophore-containing dyes. One 
of these bioorthogonal functional groups is the keto group. Strictly 
speaking, keto is not totally bioorthogonal. It exists in the cellular 
metabolites, cofactors, and a small group of proteins [80,81]. However, 
in generally, keto is not found in proteins and DNA. Given that keto is 
the most versatile functional group in organic chemistry and selectively 
reacts with hydrazine- and hydroxylamine-containing molecules, its 
incorporation into proteins will make it possible to selectively label 
target proteins with hydrazine- and hydroxylamine-containing dyes. 
To genetically encode a keto functional group, Schultz and coworkers 
evolved several MjTyrRS variants for specific incorporation of a NAA 4 
shown in Figure 2 into proteins in E. coli [62]. 4 has also been genetically 
encoded in yeast and mammalian cells using evolved tyrosyl-tRNA 
synthetase (EcTyrRS)-amber suppressing Tyr

CUAtRNA  pairs that were 

derived from E. coli [53,54]. Brustad et al. demonstrated a grand 
application of 4 in the protein folding dynamic analysis [82]. Using 
orthogonal reactions with a genetically encoded 4 and a cysteine residue, 
two fluorescent dyes that formed a Förster Resonance Energy Transfer 
(FRET) pair were introduced in T4 lysozyme for single-molecule 
FRET analysis of protein folding. Another two NAAs that have been 
genetically incorporated into proteins using evolved MjTyRS variants 
are 5 and 6 [63,83]. By selectively targeting 5, Zhang et al. showed that 
a cytoplasmic Z domain protein and outer membrane protein LamB 
could be selectively visualized with a hydrazide-containing fluorescent 
dye [63]. Although 4-6 have been proved useful in selective protein 
labeling, their labeling efficiency at the physiological pH is low. Close 
to quantitative labeling with hydroxylamine-containing dyes could 
only be achieved at pH 4 with overnight incubation and labeling with 
hydrazide-containing dyes exhibited very low efficiency at pH 4-10 
[82]. The low reactivity of the keto group in 4-6 is possibly due to its 
conjugation with an aromatic phenyl ring. The conjugative electron-

donating effect of the phenyl group may reduce the electrophilicity 
of the keto carbonyl carbon and decrease its reactivity. To resolve 
this problem, Liu and coworkers designed another NAA 7 shown in 
Figure 2 [84]. The genetic incorporation of 7 was achieved using an 

evolved PylRS- Tyr
CUAtRNA  pair that was original used for the genetic 

incorporation of Nε-acetyl-lysine [85]. 7 contains an aliphatic keto group 
and is in theory more reactive toward hydrazine- and hydroxylamine-
containing dyes. As demonstrated, proteins incorporated with 7 could 
be quantitatively labeled with hydroxylamine-containing dyes or 
probes at the physiological conditions with 5 hrs incubation.

Alkyne and Azide-containing NAAs
The copper catalyzed azide-alkyne Husigen cycloaddition 

(CuAAC) reaction is a typical click reaction [86]. Both azide and 
alkyne are biologically inert. Azide itself is also absent in the biological 
system and alkyne doesn’t exist in bio-macromolecules. Given the high 
reaction specificity and reactivity between azide and alkyne, specific 
installation of either azide or alkyne into a protein will confer labeling 
of this protein with a fluorescent dyes that contain a corresponding 
alkyne or azide functional group. The first NAA that was genetically 
incorporated into proteins for this purpose is 8 shown in Figure 3. 
The genetic incorporation of 8 into proteins was achieved in E. coli 

using evolved MjTyrRS- Tyr
CUAtRNA  pairs and in yeast and mammalian 

cells using evolved EcTyrRS- Tyr
CUAtRNA  pairs [53,54,87,88]. Using the 

CuAAC reaction, proteins incorporated with 8 have been selectively 
labeled with alkyne-containing fluorescent dyes with high labeling 
efficiency. It was also demonstrated that the CuAAC reaction worked 
efficiently to fluorescently label phage particles incorporated with 8 
[89]. Deiters et al. also demonstrated that the same reaction could be 
applied to PEGylate proteins incorporated with 8 [88]. 

Although the CuAAC reaction has approved advantageous, the 
requirement to use Cu(I) as a catalyst does have some drawbacks. 
The Cu(I) catalyst can induce protein aggregation and oxidation, 
often obviating its application in living systems [90]. Phage particles 
incorporated with 8 were not viable when they were reacted with 
an alkyne-containing fluorescein dye in the presence of Cu(I) [91]. 
To improve biocompatibility of the CuAAC reaction, multiple new 

Figure 2: Genetically encoded keto-containing NAAs.

 

Figure 3: Genetically encoded azide-containing NAAs.
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ligands of Cu(I) have been introduced [92,93]. One of these ligands not 
only largely shields the deleterious effects of Cu(I) and also increases 
its catalyzed reaction rate [92]. It has been applied in several studies 
for protein labeling in living cells [94]. There are also two alternative 
methods for chemically labeling azide-containing proteins without 
using catalysts. The Staudinger ligation reaction between an azide 
and a phosphine probe was developed by Bertozzi and coworkers and 
previously used to modify cell surface carbohydrates in both cellular 
and in vivo systems [95]. This reaction proceeds with excellent yields 
under the physiological conditions and is highly selective for azides. 
This reaction is also biocompatible. Phage particles incorporated with 
8 were still viable after their reactions with phosphine-containing 
dyes [91]. The other reaction that can selectively label an azide-
containing protein without the use of a catalyst is the azide-cyclooctyne 
cycloaddition reaction [96]. This reaction was also developed by 
Bertozzi and coworkers. A cyclooctyne that has a strain-promoted 
alkyne functional group undergoes a rapid reaction with an azide. 
Using a cyclooctyne-containing dye, Liu and coworkers showed that 
proteins incorporated with 8 could be selectively and efficiently labeled 
[90]. 

Beside 8, two other azide-containing dyes 9 and 10 have also been 

incorporated into proteins in E. coli using evolved PylRS- Pyl
CUAtRNA

pairs [78,97]. Chen and coworkers showed that HdeA incorporated 
with 10 in E. coli could be selectively labeled with an alkyne-containing 
and environment-sensitive fluorescent dye. HdeA is an acid-resistant 
chaperon that shows pH-mediated conformational changes under 
low pH conditions. One HdeA variants that was fluorescently labeled 
showed a strong fluorescence increase upon acidification [98]. Since 

the PylRS- Pyl
CUAtRNA

 
pair is orthogonal in yeast and mammalian 

cells, 9 and 10 could be potentially incorporated into proteins in these 
cellular systems for selective protein labeling. 

Alkyne-containing NAAs that have been genetically encoded 
are 11-16 in Figure 4. 11-13 contain a terminal alkyne. Proteins 
incorporated with these NAAs undergo the CuAAC reaction with 
azide-containing fluorescent dyes. Genetic encoding of 11 has been 
achieved in E. coli, yeast, and mammalian cells using evolved MjTyRS-

Tyr
CUAtRNA  pairs, evolved EcTyrRS- Tyr

CUAtRNA  pairs, and a designed 

PylRS mutant- Pyl
CUAtRNA  pair [54,99-101]. 12 and 13 are genetically 

encoded in cells using the wild type PylRS- Pyl
CUAtRNA  pair [78,102]. 

14-16 contain a cyclooctyne moiety that undergoes the copper free 
azide-cyclooctyne cycloaddition reaction. All three NAAs have been 
genetically encoded in E. coli and mammalian cells using mutant 

PylRS- Pyl
CUAtRNA  pairs [103,104]. Lemke et al. showed that a GFP 

variant mCherry incorporated with 14 in E. coli could be selectively 
lighted up with a coumarin azide.

NAAs that Undergo Strain-Promoted Inverse-electron-
demanding Diels-Alder Cycloaddition

Besides the strain-promoted azide-cyclooctyne cycloaddition 
reaction, 14-16 also undergo strain-promoted inverse-electron-
demanding cycloaddition with tetrazine-containing molecules that 
can exhibit accelerated reaction rates using strained reactants and 
furthermore is irreversible because of the loss of N2 [105]. This chemistry 
has been used in cells to label small molecules and is magnitudes faster 
that the classical CuAAC reaction. Lemke and coworkers showed that 
14 and 15 efficiently reacted with a tetrazine-containing dye with a 

second order reaction rate reaching to 400 M-1s-1 [103,106]. Maltose 
binding protein incorporated with 14 in E. coli could be efficiently 
and rapidly labeled with a tetrazine-containing coumarin dye. In 
comparison to 14 and 15, 16 has a higher reaction rate with a tetrazine 
dye with a second order reaction rate close to 1200 M-1s-1 [104]. Fusion 
proteins such as EGFR-GFP and jun-mCherry incorporated with 15 in 
HeLa cells could be efficiently visualized with a TAMRA-tetrazine dye. 

Other NAAs that undergo strain-promoted inverse-electron-
demanding Diels-Alders cycloaddition with tetrazine-containing 
molecules include 17-19 in Figure 5. 17 and 18 contain a norbornene 
moiety that contains a strain-promoted alkene. The genetic 
incorporation of 17 and 18 has been achieved using mutant PylRS-

Pyl
CUAtRNA  pairs [103,104]. Proteins incorporated with 17 and 18 

reacted rapidly with tetrazine-containing dyes. Chin and coworkers 
showed that mammalian membrane proteins incorporated with 17 
could be efficiently labeled with tetrazine-containing dyes [104]. 19 

is also genetically encoded using mutant PylRS- Pyl
CUAtRNA  pairs 

[103,104]. It has a trans-cyclooctene moiety with a highly strain-
promoted alkene group. This strain-promoted alkene group can 
undergo inverse-electron demanding cycloaddition with a tetrazine 
dye with a reaction rate close to 35,000 M-1s-1. As far as we notice, 
this is the fastest click reaction that has been reported. A fusion 
protein, NLS-MBP-GFP incorporated with 19 in HeLa cells could be 
efficiently labeled with a tetrazine-containing Cy5 dye in just about 
5 min incubation. This fast labeling process could effectively avoid 
exposing cells in non-native conditions and increase cell viability. 
There is another advantage of using inverse-electron-demanding Diels-
Alder cycloaddition to label a strain-promoted alkene. The tetrazine 
moiety itself can efficiently quench fluorescence of a fluorophores that 
is covalently linked to it. Therefore, before its reaction with a strain-
promoted alkene-containing NAA, a tetrazine-containing dye is not 
fluorescent. However, the tetrazine moiety is lost after reaction and 
then the fluorophore emits strong fluorescence. Thus, a tetrazine-
containing dye is a “turn-on” fluorophore of a strain-promoted alkene. 
Cleaning the residual dye after reaction is not necessary given its low 
background.

Like strain-promoted alkene-containing NAAs, a tetrazine-
containing NAA could also be genetically encoded. Using an evolved 

MjTyRS- Tyr
CUAtRNA  pair, 20 was genetically incorporated into proteins 
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Figure 4: Alkyne-containing NAAs that have been genetically encoded.

 

Figure 5: NAAs that undergo strain-promoted inverse-electron-demanding 
Diels-Alders cycloaddition.
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in E. coli [107]. Mehl and coworkers showed that 20 reacted with a 
strained trans-cyclooctene with a rate of 880 M-1s-1. Using this strained 
trans-cyclooctene in living E. coli cells, GFP incorporated with 20 that 
was not fluorescent due to the fluorescent quenching effect of 20 could 
be rapidly lighted up.

Other NAAs
There are two other reaction types that may be considered 

as click reactions and used in selective protein labeling. Lin and 
coworkers showed that a tetrazole undergoes photolysis to form 
a nitrile imine that selectively reacts with an alkene [108]. This is 
called a photoclick reaction. Using a tetrazole-containing dye, Lin 
and coworkers demonstrated proteins incorporated with 21 (Figure 
6) could be selectively labeled under UV irradiation [109,110]. A 
tetrazole-containing NAA, 22 was also genetically incorporated into 
proteins in E. coli [109]. Proteins incorporated with 22 underwent 
photo click reaction with alkene-containing dyes. Cyanobenzothiazole 
condensation with 1,2-aminothiol is another reaction type that is 
considered bioorthogonal. Chan, Chin, and coworkers showed that a 
1,2-aminothiol-containing NAA 23 could be genetically incorporated 
into proteins in E. coli using either a wild type or evolved evolved 

PylRS- Pyl
CUAtRNA  pair [111,112]. The purified protein incorporated 

with 23 underwent efficient labeling with a cyanobenzothiazole-
containing dye. 

A Future Direction
So far, multiple bioorthogonal click type reactions have been 

developed for selective protein labeling. However, the orthogonal 
nature of these reactions to each other is not very much explored. 
Developing two orthogonal click reactions in living cells could be 
potentially important in selectively labeling one protein with two 
different dyes for protein folding/unfolding analysis inside living cells 
and selectively labeling two proteins with two dyes for their interaction 
analysis. Recently, Liu and Chin Groups independently developed 
two methods for genetic incorporation of two different NAAs into 
one protein in living cells [113,114]. These same systems could also 
be applied to synthesize two different proteins that are incorporated 
with two different NAAs for their following chemical modifications. 
In order to undergo selective modifications of two different NAAs in 
living cells, two orthogonal click reactions are necessary. We think one 
important future direction of the current NAA-directed fluorescent 
protein labeling research is to identify and optimize two orthogonal 
click reactions for rapid labeling of two different NAAs in one cell.
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