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Introduction
The first investigations into abnormal female reproductive tract 

development began centuries ago, however with the progress of 
modern molecular genetics only now are the underlying mechanisms 
of this complex process becoming elucidated. Several genes have been 
identified in the abnormal and normal development of the uterus, 
cervix, fallopian tubes, and vagina. Many anomalies are felt to be 
multifactorial; however there are case reports of familial inheritance 
suggesting that specific genetic mutations may cause these defects 
[1]. Furthermore, there are defined genetic syndromes that feature 
anomalies of the female reproductive tract.

Additionally, animal models have helped identify candidate genes 
involved in the development of these anomalies and cases of discordant 
monozygotic twins have also provided insight into the possible 
involvement of epigenetic mechanisms [2]. The most common of the 
Müllerian anomalies are uterine anomalies, which may be associated 
with either adverse or normal reproductive outcomes depending on 
the variant. In most cases of uterine anomalies, adverse outcomes are 
related to difficulty in maintaining pregnancy rather (e.g. recurrent 
pregnancy loss, late first or second trimester loss) than conceiving (e.g. 
primary infertility) [3,4]. This review will cover the normal embryologic 
development of the female reproductive tract, important genes involved 
in normal development, as well as genetic mutations associated with 
abnormal development and genetic syndromes featuring Müllerian and 
vaginal anomalies. Finally, a review of recent research demonstrating 
that continued adult expression of genes is critical to normal 
embryologic development suggests a role for gene therapy as a possible 
treatment modality for clinical sequelae of Müllerian anomalies in the 
future.

Normal Development of the Female Reproductive 
Outflow Tract

While distinctly separate from the urinary system, the genital 
system is linked with the urinary system in the embryological stages 
of development [5]. The urogenital system develops into the kidneys, 
gonads, and the urinary and reproductive tracts. The Wolffian 
(mesonephric) and Müllerian (paramesonephric) ducts are the 
primordia of the male and female reproductive tracts, respectively. 
Gonadal development is a separate developmental process that is 
determined by the sex chromosomes. Absence of anti-Müllerian 
hormone (AMH, normally produced by the male testes) will trigger 
stabilization of the Müllerian system and regression of the Wolffian 
system leading to development of the female reproductive tract. 
Normal development of the fallopian tubes, uterus, and upper vagina 
requires an intricate progression of Müllerian duct elongation, fusion, 
canalization, and septal resorption [6]. The Müllerian ducts originate 
from coelomic epithelium of the lateral walls of the urogenital ridge 
by week 6 of embryonic development. The Müllerian ducts elongate 
caudally and fuse in the midline crossing the Wolffian ducts to form 
a Y-shaped structure, which is the primordium of the uterovaginal 
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Abstract
Müllerian and vaginal anomalies are congenital malformations of the female reproductive tract resulting from 

alterations in the normal developmental pathway of the uterus, cervix, fallopian tubes, and vagina. The most 
common of the Müllerian anomalies affect the uterus and may adversely impact reproductive outcomes highlighting 
the importance of gaining understanding of the genetic mechanisms that govern normal and abnormal development 
of the female reproductive tract. Modern molecular genetics with study of knock out animal models as well as 
several genetic syndromes featuring abnormalities of the female reproductive tract have identified candidate 
genes significant to this developmental pathway. Further emphasizing the importance of understanding female 
reproductive tract development, recent evidence has demonstrated expression of embryologically significant genes 
in the endometrium of adult mice and humans. This recent work suggests that these genes not only play a role 
in the proper structural development of the female reproductive tract but also may persist in adults to regulate 
proper function of the endometrium of the uterus. As endometrial function is critical for successful implantation and 
pregnancy maintenance, these recent data suggest a target for gene therapy. Future research will be needed to 
determine if gene therapy may improve reproductive outcomes for patients with demonstrated deficient endometrial 
expression related to abnormal gene expression.
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canal [7]. The cranial aspects of the Müllerian ducts remain open; as 
this forms the abdominal ostium of the oviduct. The urogenital sinus 
fuses with the caudal end of the fused Müllerian ducts by week 10 of 
development. Subsequent canalization of the Müllerian ducts results in 
two channels with a mid-line dividing septum. Typically by week 20, 
resorption of the septum in a caudal to cephalad direction has been 
completed.

The vaginal plate originates from proliferation of the sinovaginal 
bulbs which result from fusion of the Müllerian ducts and urogenital 
sinus. At approximately 20 weeks of development, the lumen of the 
lower vagina is then created as cells at the center of the vaginal plate 
degenerate in a caudal to cephalad direction. The hymenal membrane, 
whose central epithelial cells typically degenerate prior to birth, is the 
division of the vaginal lumen and the urogenital sinus. As evidenced 
above, there are many intricate steps involved in normal

development of the female reproductive tract and any failures of the 
described processes may result in congenital anomalies.

Genetic Mechanisms Regulating Development of the 
Female Reproductive Tract

The female reproductive tract is essential for the continuation 
of the human species. A range of developmental defects including 
agenesis, atresia, and septation of the reproductive tract, many of which 
have been associated with genetic syndromes, have been documented 
[8]. Despite the important effect of anomalies on reproduction, 
the molecular and cellular mechanisms that govern its normal and 
abnormal formation are incompletely understood [9]. Most knowledge 
of genes regulating development arises from human genetic syndromes 
that affect the female reproductive tract or mouse knockout studies; 
both of which have helped identify key genes in the development of this 
organ system [10-12]. In the sections to follow, candidate genes critical 
to the development of the female reproductive tract are reviewed as well 
as genetic syndromes that feature Müllerian anomalies.

Genes responsible for Müllerian duct formation and 
differentiation

Knock out mouse models have provided insight into the signaling 
molecules and transcription factors essential for Müllerian duct 
formation [10-12]. Development of the Müllerian ducts is considered a 
triphasic process consisting of initiation, invagination, and elongation 
[7]. Phase one involves coelomic epithelial cells being specified for a 
Müllerian duct fate. Mechanisms controlling this first phase have not 
been fully elucidated, however specification of cells can be recognized 
by the presence of Lim homeobox 1 (Lim1). Lim1 is key to the 
development of the Müllerian duct epithelium as absence of Lim1 in 
mice leads to a phenotype lacking oviducts, uterus, and an upper vagina 
[13]. Following initiation, invagination occurs through the expression 
of wingless-type MMTV integration site family, member 4 (WNT4) 
[13]. This gene is known to antagonize the testis-determining factor 
and play a critical role in both the control of female development and 
the prevention of testes formation. This second phase ends when the 
invaginating Müllerian ducts contact the Wolffian ducts. The first two 
phases have been shown to be Wolffian duct independent [14]. On the 
contrary, the third phase of elongation requires the maintenance of the 
Wolffian ducts [15]. Conditional inactivation of Lim1 has been 
associated with Wolffian duct regression and subsequently results in 
incomplete development of the Müllerian ducts [14]. The elongation 
phase also involves proliferation of cells at the mesoepithelial tip of the 
Müllerian ducts which requires the presence of the Wolffian ducts 

through Wnt9b signaling which is associated with regulation of cell fate 
and patterning during embryogenesis [7,16]. Paired box 2 (Pax2) is 
another gene that has been shown necessary for the second phase of 
Mullerian duct development. Knock out mouse models for Pax2 lack 
both a genital tract and kidneys in male and female animals [17]. It has 
been demonstrated in these knock out mice that coelomic epithelium 
invaginates, however the Wolffian ducts degenerate and hence the 
Müllerian ducts do not elongate leading to failure of the third phase 
[17]. Empty spiracles homeobox 2 (Emx2) is expressed in epithelial 
components of the urogenital system and absence of Emx2 leads to a 
complete absence of the urogenital system, which is obviously essential 
for normal development of the female reproductive outflow tract [18]. 
Emx2 mutant mice show abnormal expression of Lim1, Pax2, and Wnt4 
in the intermediate mesoderm [18]. These related mechanisms suggest 
an underlying genetic pathway for the formation of the Müllerian ducts. 
Roles for the previously mentioned genes have been mostly elucidated; 
however Müllerian duct formation is not completely understood and 
other key genes in the pathway continue to be discovered. Retinoic acid 
appears to be involved in the anterior posterior patterning and in 
female reproductive tract development but few details are known. In 
the mouse model, compound mutations of retinoic acid receptors 
either demonstrate absence of the entire female reproductive tract or 
only the caudal portions [19,20]. The POU domain-containing 
transcription factor 2 (Tcf2) gene has been shown in mouse models to 
be expressed during the earliest steps of female reproductive tract 
formation [21]. Mutations of TCF2 in humans have been associated 
with bicornuate and didelphic uteri [22]. Similar abnormalities have 
been described in discs, large homolog 1 (Dlgh1) null mice, who 
experience aplasia of the cervix and vagina from failed lateral fusion of 
the Müllerian ducts [23]. Transcriptional cofactors dachshund homolog 
1 and 2 (Dach1 and Dach2) seem to fit within this developmental 
cascade as the double knock out mouse model shows complete failure 
to develop Müllerian duct derivatives [24]. Following Müllerian duct 
formation, differentiation occurs along an antero-posterior (A-P) and 
radial axis. This includes the formation of the oviducts, uterus, cervix, 
and vagina. This occurs through interactions between the Müllerian 
duct epithelium and the surrounding mesenchyme [25]. This A-P 
patterning establishes histologically distinct segmental boundaries. The 
anterior boundary occurs between the oviduct and uterine body, and 
the posterior boundary is between the uterus and cervix [25]. This 
patterning is primarily regulated by Hoxa family homeobox 
transcription factors. Hoxa9, Hoxa10, Hoxa11, and Hoxa13 are 
expressed uniformly along the A-P axis (Figure 1). Hoxa9 is expressed 
in the oviduct whereas Hoxa10 and Hoxa11 are expressed in the uterus. 
Hoxa11 and Hoxa13 can be found in the cervix and anterior vagina 
[26]. Hoxa10 and Hoxa11, as expected, are required for patterning and 
differentiation of the uterus and their expression patterns overlap 
during embryogenesis [27]. For example, Hoxa10 mutants have 
demonstrated homeotic transformation of the anterior part of the 
uterus into oviduct like structures leading to reduced fertility [28]. 
Hoxa11 has been shown to be necessary for proper organization of 
uterine stroma where loss of this gene leads to thinner, shorter uteri and 
no endometrial glands suggesting a more anterior phenotype [11,29]. 
On the contrary, an alternative study demonstrated absence of 
uterosacral ligaments (USL) in Hoxa11 null mice suggesting a more 
posterior phenotype [30]. Hoxa13 null mice show agenesis of the distal 
portion of the Müllerian ducts indicating a role for Hoxa13 not only in 
differentiation but also in the formation of Müllerian ducts [31]. 
Temporal and spatial variation in expression of the Hoxa family genes 
may explain the diversity of uterine shapes seen that perhaps result 
from different degrees of Müllerian duct fusion [31]. Several genes 
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aside from the Hoxa family genes have also been shown to regulate 
Müllerian duct differentiation. Wnt family genes appear to control the 
A-P and radial patterning. Wnt7a null mutant mice exhibit several 
abnormalities including shortened and uncoiled oviducts, hypoplastic 
uterine horns, and a vaginal septum [32]. In addition, Wnt7a null 
mutant mice have been shown to have endometrial gland agenesis, 
disorganized myometrium, a reduction in the stromal compartment of 
the uterus and posterior appearing uteri [32]. In these mice, the 
posterior aspect of the oviduct resembles the uterus, and the uterus has 
similar characteristics to the vagina [32]. Wnt7a appears to be required 
for the maintenance of Hoxa10 and Hoxa11 as knockout of Wnt7a has 
shown decreased expression of Hoxa10 and Hoxa11 [32]. Wnt5a also 
appears to be important in this pathway as null mice die at birth 
secondary to improper A-P axis development [33]. Elegant grafting 
models have allowed for more precise study of the role of Wnt5a. Wnt5a 
mutant mice were shown to have short, coiled uterine horns; but lack 
defined cervical and vaginal structures [33]. This phenotype is similar 
to that of Hoxa13 mutants. Wnt5a mutants were also shown to have 
absent uterine glandular formation [33]. Both knock out models of 
Wnt5a and Wnt7a suggested an important role in glandular genesis. 
Both Wnt5a and Wnt7a are required for correct glandular genesis as 
these genes are expressed in the uterine stroma and uterine epithelium 
respectively [32,33]. In areas where uterine epithelial invaginations 
occur, Wnt7a was down regulated. Wnt5a appears to be critical in this 
down regulation leading to endometrial glandular formation [33]. This 
highlights the role of epithelial-mesenchymal interaction required for 
uterine development [34]. As noted above, knockout of Wnt5a was 
shown to be associated with glandular agenesis, however the luminal 
epithelium was noted to be intact [33]. Catenin (cadherin-associated 
protein), beta 1 (Ctnnb1) produces the protein β-catenin and is a 
downstream effector of the Wnt family genes. Knock out of this protein 
leads to absence of uterine glandular tissue and an epithelium that 
resembles that of the vagina [35]. Finally, forkhead box A2 (Foxa2) has 
been identified as an important regulatory gene in gland formation as 
ablation of Foxa2 leads to glandular agenesis [36]. The exact factors that 

interact upstream or downstream of Foxa2 are not currently known, 
but no change in Wnt5a or Wnt7a was observed in this ablation model 
[36]. However, Foxa2 expression was noted to be absent in the Wnt7a 
conditional knockout, suggesting that Foxa2 is downstream of Wnt7a 
[37]. The pathways that orchestrate Müllerian duct formation and 
differentiation are obviously complex. Several of the underlying genetic 
mechanisms have been described, but more research is needed to gain 
a fundamental understanding of the genetic basis of the female 
reproductive tract.

Genes responsible for development of the Vagina

Controversy remains surrounding the developmental origins of the 
vagina. It has been a commonly held belief (based on murine studies) 
that the vagina is of dual origin. The Müllerian ducts form the cranial 
portion, the so-called “Müllerian vagina”, while the urogenital sinus is 
the origin of the caudal portion, the so-called “sinus vagina” as reviewed 
by Cai [38] and Kurita [39]. However, based on murine studies Cai 
[38] concluded that the recent evidence supports a Müllerian duct 
origin for the entire vagina. More recent cell lineage tracing studies in 
humans have demonstrated that the Wolffian ducts, Müllerian ducts, 
and the urogenital sinus all play integral roles during the formation 
of the human vagina in a caudal to cranial manner [40]. The authors 
showed that cells of the urogenital sinus (staining positively for p63, a 
marker of squamous epithelium) migrated via the open Wolffian ducts 
to reach the caudal tips of the fused Müllerian ducts where proliferation 
of the cells formed the vaginal primordium [39,40]. Based on these 
findings, the authors hypothesized that the fused Müllerian ducts only 
contributed as the guiding structure for the developing vagina, rather 
than a cellular origin as previously suggested. The intricate genetic 
mechanisms controlling this process remain incompletely understood.

Müllerian Vagina
In murine models, Hoxa13 and bone morphogenetic protein 4 

(BMP4) appear to be strongly expressed in the Müllerian vagina but 
not in the uterus [26,38,41]. In these murine models, Hoxa13 has been 
shown to up regulate BMP4 [42]. BMP4 appears to control the ventral 
mesodermal fate of the mesodermal primordium, while concurrently 
Wnt7a controls the dorsal signals [43,44]. Animal models have shown 
that BMP4 disrupts Wnt7a signaling [45]. A gradient of BMP4, strongest 
in the vagina and weakest in the uterus, has been demonstrated with the 
opposite gradient noted for Wnt7a (expressed in Mullerian epithelium). 
It has also been noted that Wnt7a subsequently disappears in the vagina 
when BMP4 appears [46]. It is believed that BMP4 is responsible for 
desensitizing the mesoderm to anti-Müllerian hormone and inducing 
a stratified squamous cell in the vagina [38]. Importantly, Wnt7a drives 
the expression of anti-Müllerian hormone receptor type II, which is 
responsible for Müllerian regression [47]. Thus BMP4 disrupts the Wnt7a 
signal making the primordium insensitive to anti-Müllerian hormone. 
BMP4, as previously noted, is also responsible for the differentiation of 
the vaginal epithelium to stratified squamous cells through activation 
of p63, also known as cytoskeleton-associated protein 4 [48,49]. p63 
has numerous roles in the formation of the lower female reproductive 
tract including the differentiation from Müllerian epithelium to vaginal 
squamous epithelium, cloacal septation, and external genital modeling 
[50,51]. p63 null mice show cloacal abnormalities, and human genetic 
syndromes with associated genital anomalies have had p63 mutations 
identified [50,52].

Sinus Vagina
The so-called sinus vagina is also formed through the influence 

Tract: Tissue specific regulation by the Hoxa family homeobox transcription 
factors are important in the development in the oviducts (Hoxa9), uterus 
(Hoxa10 and Hoxa11), cervix (Hoxa11 and Hoxa13) and vagina (Hoxa11 and 
Hoxa13) as shown. Wnt family genes are believed to be involved in the anterior-
posterior as well as radial patterning. Specifically shown here is Wnt7a, which 
is required for maintenance of Hoxa10 and Hoxa11 expression in the uterus. 
Also illustrated is the gradient of BMP4 expression, strongest in the vagina and 
weakest in the uterus. The opposite gradient has been noted for Wnt7a

Figure 1: Schematic Diagram of Gene Expression in Development of Female 
Reproductive.
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of BMP4 expression in the surrounding mesenchyme. This influence 
occurs before Hoxa13 is present. At this point in development, Sonic 
Hedgehog (SHH) has been shown to be the activator of BMP4 guiding 
the Müllerian ducts caudally and playing a key role in the partitioning 
the cloaca [38]. Knockout animal models of SHH have shown improper 
partitioning of the cloaca [53].

Müllerian and Vaginal Anomalies in Genetic Syndromes 
affecting Humans

With that background, our focus will now turn to genetic syndromes 
affecting the female genital tract in humans. Much of the knowledge 
gathered from the murine models discussed thus far has been used to 
discern the genetic causes of these anomalies. In this section we will 
review select disorders, their familial aggregates, genetic mechanisms, 
and the available molecular data.

Vaginal atresia
Vaginal atresia is a rare condition. Its occurrence is 1:4000 to 

1:10,000 females [54]. Vaginal atresia is most often characterized 
by absence of the hymen, and occasionally by absence of the vagina 
extending to the cervix. Physical exam of affected patients reveals normal 
Müllerian structures, including the cervix, uterus, and oviducts; but the 
vagina is replaced by fibrous tissue [1]. Familial aggregates of isolated 
vaginal atresia have not been reported in the literature. Therefore, it 
has been challenging to determine the developmental origins of this 
rare condition. However, there are several genetic syndromes that 
have been identified with vaginal atresia as a commonly associated 
malformation (Table 1). McKusick-Kaufman (MKKS) and Bardet-Biedl 
(BBS) are two autosomal recessive syndromes with significant overlap 
which have been associated with vaginal agenesis [1,55-58]. In females, 
MKKS is typically characterized by congenital heart malformations, 
postaxial polydactyl, and hydrometrocolpos. Hydrometrocolpos, a 
fluid filled dilated vagina and uterus, can be caused by obstruction 
from vaginal atresia, transverse vaginal septa, or an imperforate 
hymen. BBS is associated with all of the MKKS anomalies plus visual 
impairment, developmental delays, and obesity. Hence a suspected 

Syndromes Somatic Findings Reproductive
Anomaly

Etiology

Antley-Bixler Craniosynostosis,
choanal atresia,
radiohumerus
synostosis, gracile ribs,
camptodactyly, renal
defects

Vaginal Atresia Autosomal Dominant
FGFR2 mutation
Autosomal Recessive
POR mutation

Apert Craniosynostosis and
midface hypoplasias
with syndactyly of
hands and feet, cardiac
and renal defects

Vaginal Atresia Autosomal Dominant
FGFR2 gene
mutation

Bardet-Biedl Mental retardation,
pigmentary
retinopathy,
polydactyly, obesity,
hypogonadotropic
hypogonadism

Vaginal Atresia Autosomal Recessive
BBS1-14 mutations

del(1)(q12) Growth and mental
retardation, facial
anomalies, neural tube
defects, absence of corpus callosum

Vaginal Stenosis Chromosomal

Ellis Van Creveld Congenital heart
defects, short limbs,
postaxial polydactyly

Vaginal Atresia Autosomal Recessive
EVC/EVC2
mutations

Fraser Cryptophalamos, nose
and ear anomalies,
laryngeal stenosis,
renal agenesis, mental retardation

Vaginal Atresia Autosomal Recessive
FRAS1, FREM2,
GRIP1 mutations

McKusick-Kaufman Hydrometrocolpos,
postaxial polydactyly,
cardiac defects,
esophageal atresia,
anal atresia

Vaginal Atresia Autosomal Recessive
MKKS mutations

Pallister Hall Hypothalamic
hamartoblastoma,
panhypopituitarism,
craniofacial defects,
postaxial polydactyly,
renal and cardiac
defects

Vaginal Atresia Autosomal Dominant
GLI3 mutation

Robinow Mesomelic dwarfism,
hypertelorism, cleft lip
and palate, anteverted
nares, hemivertebra,
short digits

Vaginal Atresia Autosomal Dominant
WNT5A mutation
Autosomal Recessive
ROR2 mutation

Listed here are genetic syndromes which may be associated with vaginal atresia. Other phenotypic characteristics of the genetic syndromes, modes of inheritance, and 
known genetic mutations are presented.

Table 1: Syndromes associated with vaginal atresia.
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diagnosis of MKKS made in the neonatal period may evolve to be 
BBS if developmental delays, visual impairment, and obesity become 
apparent [59]. The MKKS gene, responsible for the MKKS phenotype, 
has been mapped to chromosome 20p12 and has been associated with 
chaperone protein folding, processing, and assembly [59]. The MKKS 
gene has been identified in one sub-type of BBS, while several BBS gene 
family members as well as 10 other genes have been associated with the 
BBS phenotype [60]. The proteins encoded by these genes, which are 
structurally diverse, share roles in cilia formation and function [60]. 
No genes have been identified that are associated with isolated vaginal 
atresia.

Transverse vaginal septum

Transverse vaginal septa occur in about 1 per 75,000 females [61]. 
It is believed that transverse vaginal septa result from failure of the 
urogenital sinus and Müllerian ducts to fuse and canalize. Typically 
the superior aspect of the septum contains columnar epithelium classic 
of Müllerian epithelium. Conversely, the inferior aspect contains 
squamous epithelium typical of the urogenital sinus. This distinction 
in epithelium fuels the controversy over the developmental origin of 
the vagina, and supports the notion of a dual developmental origin. 
In the case of a transverse vaginal septum, the pelvic organs and 
lower vagina are typically normal [1]. However, we have encountered 
a case of bladder exstrophy with an upward anteriorly displaced 
bicornuate uterus and an associated incomplete transverse vaginal 
septum. With our understanding of the developmental pathway of 
the female reproductive tract, this association of anomalies suggests 
a genetic syndrome, which we refer to as DeCherney syndrome. To 
our knowledge, this is the first description of this association. Genetic 
syndromes previously discussed (Table 1) may feature transverse vaginal 
septa instead of vaginal atresia. The question, as with vaginal atresia, 
remains as whether or not similar genes are involved in isolated and 
syndromic cases of transverse vaginal septa [1]. Aside from the MKKS 
gene and the genes of the BBS family, there are no candidate genes for 
isolated transverse vaginal septa. Discovering the underlying genetic 
mechanisms leading to the formation of transverse vaginal septa would 
undoubtedly add to our understanding of the developmental origins of 
the vagina and perhaps resolve the controversy.

Longitudinal vaginal septum

A longitudinal vaginal septum may be in the coronal or most 
often, the sagittal plane. The diagnosis of longitudinal vaginal septum 
should be distinguished clinically from incomplete Müllerian fusion. 
Incomplete Müllerian fusion defects may extend caudally to produce a 
vaginal septum [1]. A few genetic syndromes and case reports have been 
identified with longitudinal vaginal septum. Camptobrachydactyly 
presents with brachydactyly, polydactyly, urinary incontinence, and 
longitudinal vaginal septa [62]. Johanson-Blizzard syndrome has been 
associated with multiple anomalies including longitudinal vaginal 
septa. In the first description of this syndrome a septate vagina was 
noted, however the report did not discuss the possibility of incomplete 
Müllerian fusion [1]. The gene for Johanson-Blizzard syndrome has 
been identified as ubiquitin protein ligase E3 component n-recognin 
1 (UBR1), but the genetic mechanisms leading to the known 
phenotype are not fully understood as the gene is generally known to 
be involved in a proteolytic pathway of the ubiquitin system [63]. A 
third syndrome, hand-foot-genital syndrome is characterized by hand 
defects, urinary tract anomalies, and Müllerian ducts anomalies [64]. 
The Müllerian defects range from vaginal septa to uterine didelphys 
[64]. Hand- foot-genital syndrome is an autosomal dominant condition 

with known mutations in HOXA13 [65]. As with vaginal atresia and 
transverse vaginal septa, currently only genes associated with genetic 
syndromes have been identified in the case of longitudinal vaginal 
septa. The underlying basic genetic mechanisms leading to formation 
of longitudinal vaginal septa remain to be determined.

Imperforate hymen

Imperforate hymen occurs in about 1 in 1000 females [61]. This 
condition is most often described as the absence of the central portion 
of the hymen. In cases of imperforate hymen leading to obstruction, 
vaginal and/or uterine distention with fluid may ensue (also known as 
hydrocolpos or hydrometrocolpos). As previously discussed, transverse 
vaginal septa or vaginal atresia may cause similar symptoms, however 
the presence of vulvar distension is uniquely suggestive of an imperforate 
hymen [1]. While most cases of imperforate hymen are sporadic, 
inherited cases have been described. McIlroy and Ward [66] as well as 
Usta et al. [67] have described cases of affected siblings suggesting an 
autosomal recessive inheritance. Stelling et al. [68] described a family of 
concordant monozygotic twins with one of the twins having an affected 
daughter suggesting an autosomal dominant inheritance. Some rare 
syndromes have been described which are characterized by imperforate 
hymen. Ulnar-mammary syndrome is associated with upper limb 
structures, apocrine/mammary hypoplasias, dental abnormalities, and 
genital anomalies including imperforate hymen [69]. Alterations in the 
TBX3 gene, a downstream target of retinoic acid, have been implicated 
as the cause of ulnar-mammary syndrome [70]. As discussed earlier, 
perturbations in retinoic acid leads to posterior defects in the female 
reproductive tract [19], thus giving a possible genetic explanation as 
to the cause of hereditary imperforate hymen in the ulnar-mammary 
syndrome. Unfortunately, no other candidate genes associated with 
imperforate hymen have been identified other than TBX3.

External Genital Anomalies
Little is understood regarding the genetic mechanisms leading to 

external genital anomalies including congenital fusion of the labia, 
complete absence of the labia, and various cloacal malformations. 
Congenital fusion of the labia is typically associated with virilization 
from congenital adrenal hyperplasia [71]. However, cases of familial 
labial fusions not associated with adrenal hyperplasia have been reported 
[71]. Absence of the labia, has been reported in popliteal pterygium 
syndrome [1]. Cloacal malformations, as previously mentioned, have 
been linked to mutations in p63. Loss of p63 does not allow for the 
urorectal septum to form leading to a persistent cloaca [50]. Knockout 
mice for p63 exhibit hypoplastic genitals and a single cloacal opening 
[50]. In humans the genetic syndrome of ectrodactyly, ectodermal 
dysplasia, and facial clefts (ECC) results from p63 mutations [52]. ECC 
consists of a multitude of developmental anomalies that include genital 
anomalies [52]. Patients with cloacal anomalies should be tested for p63 
mutations.

Atresia of the Cervix

Several case reports of congenital absence of the cervix exist 
[72]. The cervix may be absent in lieu of a normal uterus and vagina; 
however, some cases have reported atresia of the vagina and cervix 
suggesting close developmental origins of these structures [1,72]. To 
our knowledge there are no reported cases of familial cervical agenesis 
and no candidate genes have been identified to date.

Incomplete Müllerian fusion

Incomplete Müllerian fusion is difficult to estimate as many patients 
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are asymptomatic; however, the incidence is quoted as between 0.1-3% 
[61]. Traditionally, incomplete Müllerian fusion results in two hemiuteri 
each associated with one fallopian tube, but various forms of incomplete 
Müllerian fusion exist. Incomplete Müllerian fusion represents a range 
of conditions from a complete hemiuteri to an atreitic rudimentary 
horn [73]. There have been several case reports of familial aggregates 
of incomplete Müllerian fusion [1]. Several syndromes have been 
indentified with incomplete Müllerian fusion as a common component 
(Table 2). Contrary to the cases of vaginal atresia and vaginal septa, 
there have been several isolated or nonsyndromic cases of incomplete 
Müllerian fusion identified for study leading investigators to look for 

candidate genes in these cases. HOXA10 and HOXA 11, previously 
discussed as being expressed in the uterus, have been investigated. 
Liatsikos et al. [74] examined 30 women with Müllerian defects. Only 
one patient was found to have a mutation in HOXA10, however her 
mother had a similar mutation but was notably phenotypically normal 
[74]. Cheng et al. [75] conducted a mutation analysis in 109 Chinese 
women with Müllerian anomalies and found one mutation (Y57C) was 
found in HOXA10 that affected the gene’s ability to induce and repress 
other genes. This mutation was isolated in the affected patient’s father 
as well. Wang et al. [76] found a rare variant in the PAX2 gene in a 
patient with uterus didelphys reinforcing the role of PAX2 in Müllerian 

Syndromes Somatic Findings Uterine anomaly Etiology

Acro-renal mandibular

Limb deficiencies, 
diaphragmatic hernia, 
ectrodactyly of hand 
and foot, absence of radius and 
metacarpal 
V, kidney dysplasia

Uterus didelphys Autosomal recessive

Apert

Apert Craniosynostosis and
midface hypoplasias
with syndactyly of
hands and feet, cardiac
and renal defects

Bicornuate uterus
Autosomal Dominant
FGFR2 gene
mutation

Bardet-Biedl

Mental retardation,
Pigmentary retinopathy,
polydactyly, obesity,
hypogonadotropic
hypogonadism

“Uterus duplex,
vaginal septa”

Autosomal recessive
BBS1-14 mutations

Beckwith-Wiedemann

Omphalocele,
macroglossia,
overgrowth, clitoral
enlargement

IMF

Imprinting
abnormality, hypo-,
hypermethylation of
11p15.5

Caudal duplication

Duplication of sacrum,
lumbar vertebrae, anus,
large bowel, external
genitalia

Duplication of
uterus and cervix

Unknown

Caudal regression
Agenesis of sacral and
lumbar regions

Duplication of
uterus and cervix

Unknown

Cloacal exstrophy
Common urogenital
sinus and rectum, renal
anomalies, vertebral defects

IMF Unknown

de Lange

Growth retardation,
microcephaly, mental
retardation, synophrys,
limb anomalies

IMF
Mutations in NIPBL,
SMC1A, SMC3

Donohue

Elfin facies, enlarged
ears, low-set ears,
prominent breasts,
abnormal carbohydrate
metabolism, insulin receptor defect

IMF
Autosomal Recessive
Insulin Receptor
gene mutations

Female
pseudohermaphroditism
with renal and gastrointestinal
anomalies

Genital ambiguity,
urologic and
gastrointestinal anomalies, vertebral
and radial anomalies,
renal absence

Uterine Didelphys Unknown

Fraser

Cryptophthalmos, nose
and ear anomalies,
laryngeal stenosis, renal
agenesis, mental
retardation

Bicornuate uterus
Autosomal recessive
FRAS1, FREM2,
GRIP1 mutations
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duct development. Other candidate genes which have been investigated 
include PBX1, WNT7A, and LHX1. However, none have been linked 
with incomplete Müllerian fusion [77-79]. Some candidate genetic 
mutations have been reported in association with incomplete Müllerian 
fusion, but further research is needed as much is still unknown.

Müllerian aplasia

Müllerian Aplasia is the absence of the uterus, cervix, and upper 
vagina. The lower third of the vagina is typically present secondary to 
normal formation of the sinus vagina and the external genitalia are 
normal. On occasions uterine remnants may be present. Most often the 
diagnosis of Müllerian aplasia is labeled as Mayer-Rokitansky-Kuster-
Hauser (MRKH) syndrome [1]. MRKH may feature isolated Müllerian 

aplasia (type 1), or be associated with renal, skeletal, auditory, and 
cardiac defects (type II) [2]. The presence of other associated anomalies 
suggests that an initial insult to the intermediate mesoderm leads to 
alteration of the cervicothoracic somites and the pronephric ducts [80]. 
Most cases are sporadic; however several reports of familial clustering 
are suggestive of a genetic cause [81]. These cases of familial clustering 
appear to occur by autosomal dominant inheritance with incomplete 
penetrance and variable expressivity [82]. Investigations based on these 
cases have subsequently been directed to certain candidate genes [2]. 
AMH was one of the first genes to be investigated because of its role in 
regression of the Müllerian ducts. However, no abnormal expression of 
AMH or activating mutation of its associated receptor has been found 
in studies to date [83]. WT1 and PAX2, discussed earlier, have been 

Fryns
Coarse facies, cleft
palate, pulmonary hypoplasias,
diaphragmatic defects

Bicornuate uterus
Autosomal recessive
No gene identified
yet

Halal
Digital hypoplasias,
upper limb shortening,
ectrodactyly

Uterine didelphys
with

Autosomal Dominant
Unknown gene

Hydrolethalus

Hydrocephaly, neural
tube defects,
micrognathia, deep set
eyes, cleft palate,
malformed respiratory
tract, cardiac anomalies,
club feet, polydactyly

“Uterus duplex”
Autosomal recessive
KIF7 and HYLS1
mutations

Jarcho-Levin

Spondylocostal dysostosis:
hemivertabrae, vertebral
absences and fusion,
respiratory defects,
cardiac defects, short
neck and chest, hernias

Uterine didelphys Autosomal recessive MESP2 mutations

Meckel

Encephalocele,
postaxial polydactyly,
dysplastic polycystic
kidneys, male pseudohermaphroditism

Bicornuate uterus

Autosomal recessive
MSK1, TMEM216,
TMEM67, CEP290,
RPGRIP1L,
CC2D2A mutations

Popliteal Pterygium

Pterygium of popliteal,
antecubital, and crural
regions, cleft lip and
palate, digital hypoplasia

IMF

Autosomal Dominant
IRF6 mutations
Autosomal Recessive
RIPK4

Roberts
Tetraphocomelia,
craniofacial abnormalities, corneal
clouding, cardiac and renal anomalies

Bicornuate uterus
Autosomal recessive
ESCO2 mutations

Rüdiger

Mental retardation,
coarse facies, bifid uvula, ureteral 
stenosis,
thickened palms and
soles, inguinal hernias,
poor cartilaginous formation

Bicornuate uterus Autosomal recessive Unknown gene

Thalidomide
embryopathy

Tetraphocomelia,
especially radius, tibia,
femur, midline facial hemangioma, nerve
palsies, and cardiac defects

Septate uterus and
vagina

Teratogen

Urogenital adysplasia

Unilateral or bilateral
renal agenesis, flattened
facies, pulmonary hypoplasias, limb
deformations

Unicornuate or
Bicornuate uterus

Unknown:
multifactorial,
epigenetic
inheritance

Listed here are genetic syndromes that may be associated with incomplete Müllerian fusion (IMF). Other phenotypic characteristics of the genetic syndromes, modes of 
inheritance, and known genetic mutations are presented.

Table 2: Syndromes associated with incomplete müllerian fusion (IMF).
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identified as significant in early embryonic development; however, 
there have been no mutations in these genes linked to MRKH [84-86]. 
Notably, despite the association between MRKH with both galactosemia 
and cystic fibrosis, studies found no link between mutations in GALT 
and CFTR genes and the MRKH phenotype [87,88]. Investigations 
into Hoxa10, Hoxa11, and analysis of PBX1, a cofactor of HOX genes, 
have failed to determine a cause of Müllerian aplasia [74,78]. Subsets of 
MRKH, especially cases associated with genetic syndromes, have been 
attributed to specific genetic etiologies. WNT4 mutations are associated 
with Müllerian aplasia, hyperandrogenism, and renal malformations 
[89]. In this phenotype, failure to suppress androgens in the ovary 
occurs leading to Müllerian aplasia [90,91].

Mutations in HNF1β (also known as TCF2, previously discussed) 
have been associated with maturity-onset diabetes of the young renal 
dysfunction and Müllerian aplasia [92]. WNT7A mutations have 
recently been recognized as causing Al-Awadi/Raas-Rothschild/
Schinzel phocomelia syndrome; which is characterized as having 
several limb deformities and uterine hypoplasias/aplasia [93]. Other 

syndromes listed in table 3 are associated with Müllerian aplasia. While 
some candidate genes have mutations known to cause MRKH, very few 
such mutations have been found. The recent advent of high-resolution 
array based studies has led to newly recognized variants at certain 
chromosome loci that harbor genes of interest in Müllerian aplasia [94]. 
Nik-Zainal et al. [94] identified three microdeletions at 16p11.2, 17q12, 
22q11.2 that were significantly enriched when the syndromic Müllerian 
aplasia case population was compared to the control population. Nested 
in the 16p11.2 location, TBX6 was identified as an important gene in 
paraxial mesoderm development [94]. Nested in the 17q12 location are 
HNF1β and LHX1 (also known as LIM1, previously discussed) [94]. 
Ledig et al. [95] found recurrent deletions affecting TBX6, HNF1β, and 
LHX1 in their cohort of MRKH patients. Four other genes; RTDR1, 
RAB36, GNAZ, and BCR; were identified in the 22q11.2 location; 
however, no mutations in these genes have been described in humans 
[94]. Microdeletions at these loci had been previously described in 
association with other congenital malformations involving spine, 
genitourinary tract, and the cardiovascular system [94]. Duplication 
in the SHOX gene has recently been identified in two daughters 

Syndromes Somatic Findings
Uterine

Anomaly
Etiology

Deletion 4p
(Wolf-Hirschhorn
syndrome)

Microcephaly, mental
retardation, growth
retardation, cardiac anomalies

Absent uterus
Chromosomal [del
(4)(p16.3]

Oculoauriculovertebral
spectrum
(Goldenhar syndrome)

Hypoplastic malar,
maxillary and mandibular regions,
microtia,
hemivertebrae or hypoplastic vertebrae

“Rokitansky
sequence”

Unknown:
multifactorial,
epigenetic
inheritance,
environmental disruption

Female
pseudohermaphroditism,
renal and gastrointestinal
anomalies

Genital ambiguity,
urologic and
gastrointestinal
anomalies, vertebral
and radial anomalies,
renal absence

Absence of uterus Unknown

Al-Awadi/Raas-
Rothschild

Absence or reduction
of limbs, facial abnormalities, pelvic
and genital abnormalities

Müllerian aplasia
Autosomal recessive
WNT7A Mutation

Müllerian aplasia,
Klippel-Feil anomaly

Short neck, low
hairline, restricted
mobility of upper spine, middle ear
anomalies

Müllerian aplasia Unknown

MURCS association
Müllerian aplasia,
renal aplasia,
cervicothoracic somite dysplasia

Müllerian aplasia Unknown

Roberts

Tetraphocomelia,
craniofacial
abnormalities, corneal
clouding, cardiac and renal anomalies

Agenesis of
uterus and
agenesis or
atresia of vagina

Autosomal recessive
ESCO2 Mutation

Thalidomide embryopathy

Tetraphocomelia,
midline facial
hemangioma, nerve
palsies, cardiac defects

Müllerian aplasia Teratogen

Mosaic trisomy 7
Cystic kidneys,
oligohydramnios

Absence of uterus Chromosomal

Urogenital dysplasia
(hereditary renal dysplasia)

Potter facies,
Pulmonary hypoplasias, limb
deformations, renal dysplasia

Absence of uterus
Unknown:
multifactorial, epigenetic
inheritance

Listed here are genetic syndromes that may be associated with Müllerian aplasia. Other phenotypic characteristics of the genetic syndromes, modes of inheritance, and 
known genetic mutations are presented.

Table 3: Syndromes associated with müllerian aplasia.
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with MRKH type I and their phenotypically normal father [96]. 
Microdeletions in 1q21.1 have also been found most often associated 
with thrombocytopenia-absent radius syndrome (TAR) [97]. The 
incidence of uterine and genital abnormalities is estimated to be 6% of 
cases of TAR syndrome. A few cases of TAR with associated MRKH in 
females have been described in the literature, but this is a rare occurrence 
[58,98,99]. The above chromosome loci and genes discussed may 
partially explain the familial and syndromic cases of Müllerian aplasia; 
however, most cases remain sporadic [82]. In one retrospective review 
of women with Müllerian aplasia undergoing IVF via a surrogate, 
no cases of Müllerian anomalies were reported in the reproductive 
offspring suggesting no dominant inheritance pattern [100]. Recent 
case reports of discordant monozygotic twins have suggested the 
involvement of epigenetic factors in MRKH [101]. Recently, Rall et 
al. [2] analyzed 8 MRKH patients and 8 controls using whole-genome 
expression and methylation. The authors found that the estrogen 
receptor 1 (ESR1), Wilms Tumor 1 (WT1), and GATA binding protein 
4 (GATA4) had increased expression in MRKH patients [2]. This was 
a significant finding given that WT1 and GATA4 play significant roles 
in male sex differentiation via regulation of AMH and that estrogen has 
been reported to regulate AMH [102,103]. The authors hypothesized 
that the increased expression of the genes might lead to increased AMH 
promoter activity during development and subsequent Müllerian duct 
regression leading to a MRKH phenotype [2]. Gene expression clearly 
plays a significant role in development, and recently microRNAs have 
been shown to be important for post-transcriptional regulation of gene 
expression in the development and function of the female reproductive 
tract [104]. Conditional mouse knockouts of DICER1, an important 
RNAse for proper formation of miRNAs, demonstrated shortened 
uterine horns and oviductal diverticuli [105]. In these mice, 28 miRNAs 
were found to be downregulated [105]. Of the identified 28, 23 miRNAs 
were predicted to target previously mentioned important candidate 
genes such as Wnt5a, Hoxa9, and Hoxa10 [105]. This suggests an 
important role for miRNAs in the development and function of the 
female reproductive tract.

Endocrine Disruptors of Müllerian Duct Development
The developing female reproductive tract is highly sensitive to 

synthetic hormones and exposure to these substances in utero can lead 
to the development of Müllerian anomalies [9]. Some investigators 
have used these endocrine disruptors to help determine the genetic 
basis of development of the female reproductive tract. Diethylstilbestrol 
(DES), a synthetic form of estrogen, has been shown to downregulate 
Wnt7a, Hoxa10, and Hoxa11 through activation of ESR1 [106,107]. 
Post DES exposure, HOXA9 expression is shifted from the oviducts 
to the uterus while HOXA10 and HOXA11 expression in the uterus is 
decreased causing the characteristic ‘T-shaped’ uterus that resembles 
the human phenotype [2,9,108-110]. Clearly a greater understanding 
of endocrine disruptors in the environment and their role in the 
development of Müllerian defects may help elucidate the underlying 
genetic mechanisms.

Reproductive Outcomes and a possible role for Gene 
Therapy in patients with Müllerian
Anomalies

Despite the relative rarity of Müllerian anomalies, they can 
significantly impact reproductive outcomes usually affecting the 
maintenance of pregnancy rather than conception [3,4]. As previously 
stated, the most commonly encountered are uterine anomalies that 

occur in approximately 3-4% of women (despite fertility), 5-10% 
of women with recurrent pregnancy loss, and up to 25% of women 
with preterm delivery or late first or second trimester loss [4,6,111-
113]. Understanding the underlying genetic mechanisms of abnormal 
development of the female reproductive tract may help us understand 
these adverse outcomes. It has been recently suggested that Hox 
family genes may not simply be important to the understanding of 
our embryologic development, but may also serve a regionally specific 
regulatory role in the adult female reproductive tract [114]. For 
example in adult mice, Hoxa10 expression in the endometrium has 
been shown to be critical for successful implantation and subsequent 
fertility [115-117]. This begs the question, could alterations in HOX 
gene expression in the endometrium of humans explain implantation 
and maintenance of pregnancy problems seen in humans affected by 
Müllerian anomalies? Rackow et al. [118,119] have demonstrated that 
in the case of both submucosal uterine fibroids and endometrial polyps, 
both acquired structural abnormalities of the uterine cavity known to 
adversely affect reproductive outcome, that HOX gene expression is 
globally decreased in the uterus of affected individuals compared to 
controls. These significant findings indicate an ongoing role for HOX 
gene expression in the normal physiological changes of the adult. It is 
unclear whether the ‘adult’ functions are a continuance of the original 
embryonic pathways, or if there are new patterns of gene expression 
regulated by HOX in the adult [114].

 Many patients affected by Müllerian anomalies may have normal 
reproductive outcomes; however, intervention is recommended in 
the event of adverse obstetric outcomes. Surgical intervention may be 
necessary for many of these patients (i.e. septate uterus), but perhaps 
there is role for gene therapy to increase HOX expression in the other 
patients with uterine anomalies and poor reproductive outcomes that 
are at this time difficult to explain. Future research should be aimed at 
determining whether HOX gene expression is altered in patients with 
Müllerian anomalies and if this expression demonstrates an association 
with reproductive outcomes.

Conclusions
Recent focus on the genetic basis of female reproductive tract 

malformations has provided insight into the underlying molecular 
mechanisms that govern this process crucial to the survival of 
our species. Several genes thought to play a significant role in this 
developmental pathway have been identified by analysis of knock 
out mouse models and through identification of genetic syndromes 
that feature anomalies of the female reproductive tract. Müllerian 
anomalies can significantly impact reproductive outcomes; therefore, 
future studies should focus on continuing to uncover the underlying 
genetic and molecular mechanisms of the development of the female 
reproductive tract as many of these embryologically defined genes 
may have a role in adult reproductive functions. In the not to distant 
future, perhaps gene therapy could be used to target these genes with 
maintained expression in the adult to change reproductive outcomes 
for patients.
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