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Introduction

Major factors that determine the success of HIV therapy in-

clude the measurement and monitoring of CD4 counts, RNA

(ribonucleic) levels, and the determination of the type of viral

sequences and drug resistance mutations. CD4 is a primary re-

ceptor used by HIV-1 to gain entry into host T cells. The HIV-1

virus attaches to CD4 with a particular protein in its viral

Abstract

Recently, genotypic testing (the identification of viral

mutations and their associated drug resistance) has be-

come a popular procedure to identify drug resistance

before advising alternative therapy regimens.

Since major drug resistance factors are associated with

the frequency of viral mutations, many researchers have

explored HIV’s mutation frequency at specified nucle-

otide sequence positions in response to different types

of drug therapy. However, only a handful of papers dis-

cuss major genetic signatures that lead to positive pa-

tients’ responses to a specific type of drug therapy.

Using existing clinical drug resistance libraries, we

were able to determine the most common mutations in

the HIV protease (PR) enzymes associated with the suc-

cess and failure of Protease Inhibitor (PI) HIV/AIDS

drug regimens. A total of 2,079 patient records selected

from the Stanford HIV drug resistance database has been

considered in identifying genetic sequences associated

with positive responses to PR-inhibitors drug regimens.

We show that patients who responded positively to Pro-

tease Inhibitor therapy have consistently maintained

specific nucleic acids bases at specific positions of their

HIV nucleotide sequences. When virus sequences ob-

tained from groups of patients who did not respond well

to PI therapy were compared against virus sequences at

the same positions from patients who did respond well,

we noticed that the two patient groups differ at these

positions.

envelope known as gp120. The binding to CD4 creates a shift

in the conformation of the viral gp120 protein allowing HIV-1

to bind to two other cell surface receptors on the host cell. Fol-

lowing another change in shape of a different viral protein

(gp41), HIV inserts a fusion peptide into the host T cell that

allows the outer membrane of the virus to fuse with the T cells

membrane. HIV infection leads to a progressive reduction in

the number of T cells possessing CD4 receptors and, therefore,

the CD4 count is used as an indicator to help physicians and

clinicians decide when to begin treatment in HIV-infected pa-

tients. Treatments often start when the CD4 count reaches a

low point of around 200 cells per microliter. CD4 tests are also

used to judge treatment efficacy.  A novel method for counting

CD4 in resource-poor settings has been described in (Rodriguez

et al.,  2005).

Another important indicator used to monitor HIV treatments

is the viral load. Viral load assays include the measurement of

HCV ribonucleic polymerase chain reaction (PCR), Roche

Amplicor HIV-1 Monitor (Erali and Hillyard,  2005),  the

branched chain DNA  using VERSANT HIV-1 RNA 1.0 Assay

(kPCR) (Troppan et al.,  2009), and nucleic acid sequence-based

amplification NucliSens HIV-1 QT test (Ginocchio et al.,

2003).  Datasets considered in this research include RNA lev-

els measured using the PCR qualitative approach. The main

goal of HIV drugs is to reduce viral load as much as possible

for as long as possible. Some viral load tests measure down to

400 or 500 copies of HIV per unit of blood; others go as low as

200 or even 50 copies. High levels—from 30,000 (in women)

to 60,000 (in men) and above are linked to faster disease pro-

gression. Levels below 50 offer the best RNA reading.

Several sequence detection methods have been used to ob-

tain viral sequences and detect drug resistance mutations. Ma-

jor methods to obtain viral sequences include the 454 Life Sci-

ences GS20 sequencing platform (Binladen et al.,  2007) (which

allows massively parallel picoliter-scale amplification),
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pyrosequencing of individual DNA molecules (Ronaghi et al.,

1996; Nyrén, 2007), bidirectional sequencing (Mitsuya et al.,

2008) and array sequencing (Miyada et al.,  2008) (which has

been used for sequence detection). Since different sequencing

methods have different error tolerance, we selected patients’

RNA sequences obtained using the pyrosequencing sequenc-

ing procedure (Wang et al.,  2007).

During the previous two decades, HIV data mining has taken

different forms including modeling the rate of change of CD4

counts with respect to the change in RNA level and aligning a

nucleotide or amino acid sequences for phylogenetic analysis

tracing the epidemiology of HIV. However, it has become evi-

dent that the most efficient way to provide effective treatment

analysis is by investigating viral drug resistance. Different forms

of viral mutations take place due to the type and concentration

of considered drugs, pre-treatment patients’ conditions (such

as initial CD4 count and interaction with other medications),

patients’ adherence, and demographic conditions. Such analy-

sis can be used by clinicians to monitor and adjust patients’

health progress.

Four types of drug regimens are available to treat human

immunodeficiency virus type 1 (HIV-1) infection (FDAWebsite,

2008): 1. The nucleoside reverse transcriptase inhibitors (NRTI)

attempt to prevent the RT enzyme from changing the genetic

code (RNA) into DNA by binding the RT enzyme to NRTI build-

ing blocks instead of the naturally occurring DNA blocks.  2.

The non-nucleoside reverse transcriptase inhibitors (NNRTI)

attempt to inhibit the RT enzyme by reducing its conforma-

tional flexibility. 3. Protease inhibitors (PI) prevent the pro-

tease enzyme from  assembling functioning virus from a raw

material HIV virus. 4. The fusion inhibitors prevent HIV from

attaching to a cell (only one fusion inhibitor, Enfuvirtide, has

been approved).

Each of the above treatment methods can be rendered inef-

fective by one or more types of drug resistance (Johnson et al.,

2008). HIV drug resistance occurs when HIV changes or mu-

tates such that an antiretroviral drug loses its effectiveness to

stop the spread of the virus. HIV viral mutations result from

errors in duplicating the virus’ genetic code and hinders the

development of therapeutic drugs that can eliminate or restrain

the process of viral duplication (Sandstrom et al.,  2008). In

addition to mutations resulting from errors in replication of

genetic information, other types of HIV drug resistance muta-

tions may occur in response to a specific therapeutic drug. For

example, the single mutation at position 184 involving a tran-

sition from methionine to valine (M184V) mutation is particu-

larly associated with the 3TC (Lamivudine) treatment (Diallo

et al.,  2003). Attempts to study HIV sequence mutations using

sequence alignments techniques also showed adequate success

(Phillips et al.,  2008). An up-to-date and comprehensive sur-

vey for major mutations associated with NNRTI, NRTI, and PI

drugs can be found in (Johnson et al.,  2008; Shafer and

Schapiro,  2008). However, only a few research papers discuss

major genetic signatures that lead to positive patients’ response

to a specific type of drug therapy.

Research Objectives and Relevant Analysis Tools

Due to the drastic effects of drug resistance on the effective-

ness of HIV therapy, it has become important for physicians to

use genotypic resistance data (protease and RT mutations) in

making decisions regarding the best therapy that avoids drug

resistance. The most common use of drug resistance datasets is

to use the HIV virus’ genotype and phenotype datasets to inter-

pret HIV mutations in response to anti-retroviral therapy (Rhee,

2007; Wrin et al.,  2000). This aids in the determination of ap-

propriate regimens using drug resistance databases such as those

developed in (Rhee et al.,  2003; Vondrasek  and Wlodawer,

2002; Macke et al.,  2007).

Many online HIV databases such as (Los Alamos National

Laboratory, Rhee et al.,  2003; Graziano et. al.,  2008; NIAID

Division of AIDS, University of California; San Francisco, HIV

InSite) are available to obtain mutation frequencies and posi-

tions due to drug resistance. Using these databases, researchers

and clinicians can obtain patients’ datasets including sequence

database, resistance database, immunology database, and vac-

cine trial database. Analyses tools are provided in most online

databases to obtain relevant correlations such as genotype-treat-

ment correlations, genotype-clinical correlations, and genotype-

phenotype correlations. Main objectives for using online data-

bases would be to obtain underlying data and references that

show which mutations cause resistance and to which drugs

(Rhee et al.,  2003), obtain statistical analyses such as correla-

tions between CD4 and RNA levels for considered treatments

(Graziano et al.,  2008), obtaining rate of change of CD4 and

RNA levels based on base CD4 count at the start of a consid-

ered patient or a considered therapy, and obtain rate of change

CD4 and RNA levels based on preceding CD4 counts for a

considered patient or a considered therapy (Graziano et al.,

2008).

One of the most comprehensive HIV drug resistance libraries

is the Stanford HIV database developed by (Rhee et al.,  2003).

This library contains genetic data on HIV isolated from more

than 10,000 individuals including about 2,000 individuals from

Northern California described in recently published studies. Each

patient record consists of a patient’s genotypes, treatments, plasma

HIV-1 RNA levels, and CD4 counts at various clinical trials.

Patients are classified, among anti-retroviral treatment-naive HIV-

1 infections, according to the prevalence of mutations associated

with anti-retroviral drug resistance in protease (PR) and reverse

transcriptase (RT) regions.

In this work, we use 2,079 patient records available in the

Stanford drug resistance database to generate lists of genetic

sequences for patients responding well to drug regimens. We

compare those sequences to HIV sequences obtained from pa-

tients with poor response to HIV drug regimens. Statistical

analysis is provided for RNA locations that indicate significant

differences between positive and negative drug responses. We

aim to satisfy the following objectives:

1. Determine major mutations associated with the success and

failure of common HIV drug therapies.

2. Develop a software package that can be used to predict (and

explain) the probability of success or failure of a given drug

using historical patient's records in association with avail-
able genetic datasets obtained from the two libraries.
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3. Provide genetic sequence positions where a patient’s posi-

tive response to PI drug regimens differs from patients who

did not respond well to PI regimens.

Data Selection and Proposed Mathematical Models

To prepare our datasets, we selected all patients with consis-

tent improvements of CD4 values and decline of the RNA lev-

els. Out of 2,079 records stored in the Stanford PR database,

we found 189 patient IDs with monotonically non-decreasing

CD4 counts and increasing RNA levels throughout their clini-

cal trial history. We then selected ten sets each with 189 ran-

domly chosen patients that did not satisfy the monotonically

non-decreasing criteria. For each patient in the eleven chosen

datasets, we selected viral RNA mutations sequences associ-

ated with the selected patients’ treatments. At the end of this

process, we obtained one dataset containing 189 sequences for

patients who responded well to their drug regimens, and ten

datasets each containing 189 sequences representing patients

who did not respond well to their drug regimens. Figure 1 de-

picts a selected patient’s nucleotide RNA sequence file with

the corresponding CD4 counts and RNA levels. We used Eq.

(1) to calculate the probability distribution of each base (A, C,

T/U, G) in each of the 297 nucleic acids bases’ positions among

the 189 sequences:

1
( , )

( , )  1, 2,3, 4 0,2,  ... 296

k i j

r i j

k
N

k
B P

P B P i j

λ

λ

=

=
∑

= = =    (1)

tions (Stanford database library uses the * symbol to indicate

unrecognized nucleic acid bases).

Table 1 shows that all patients satisfying the 100% CD4 in-

crease and RNA decline criteria do not have Adenine at their

first nucleic acid sequence positions. Looking at P
0
, we can

deduce that there are 130 C bases in the first position of those

189 sequences (we truncated the probability distribution to three

decimals). The probability distribution of the T base at position

296 is 0.962963, which indicates that, given that we have 189

sequences, there are 182 T bases at position 296 of the 189

RNA sequences.

Having obtained the eleven probability distribution matri-

ces, we implemented the χ2 test to verify if the ten randomly

selected nucleic bases distributions, obtained from the prob-

ability distribution matrices for patients with minimum response

to the PI therapy, differ from the distribution of the nucleic

sequences for patients who showed good response to PI therapy.

Significant dependency between the two patients’ groups will

reduce our datasets and, hence, minimize our ability to use them

for further analysis. To determine how much each of the four

nucleic acids (A, C, T/U, and G) contributed in the rejection of

the null hypothesis, we calculate the χ2 value (with a p-value of

7.82 and α-value of 0.05 for three degrees of freedom for the

four types of nucleic acids bases) for the four nucleic acids.

Figure 2 and Table 2 (that summarizes Figure 2 data) show that

in seven of the ten independent sets, Adenine contributed in the

indecency (in distribution) of the two datasets at positions 187

Figure 1: Nucleotide sequence, CD4 count, and RNA level for patient 23438 for three treatment trials (weeks 0, 4, and 7).

A  C  T G 

P0 0 0.687 0 0 

P2 0 0.687 0 0 

P3 0 0 0.687 0 

P4 0 0.693 0 0 

P5 0.693 0 0 0 

P6 0.216 0 0 0.449 

. . . . . 

. . . . . 

P296 . 0.021 0.962 0 

Table 1: Part of the results obtained from Eq. (1) to calculate

the probability distribution values of A, C, T/U, G bases at dif-

ferent nucleotide acid positions using patients’ sequences that

satisfy the monotonically CD4 increase and RNA decrease cri-

teria.

In Eq. (1), λ represents the total number of considered sequences

(λ = 189), k represents a considered sequence number

(k=1…189), and j represents a base position for each of the 297

bases (in each of the 189 sequences). The probability function

P
r
 (B

i
, P

j
) represents the probability distribution of base B

i 
(A,

C, T/U, G) at position  P
j
. The operator N

k
(B

i, 
P

j
)  produces a

value of one if base i exists at position j of sequence k, other-

wise, it produces a zero. At the end of the probability distribu-

tion calculation process, we obtained 11 matrices, each with 297

rows (representing the 297 base positions) and 4 columns (rep-

resenting the probability distribution of each of the four bases,

A, C, T/U, and G as calculated from Eq. (1)). Table 1 depicts

part of the 297×4 probability distribution matrix resulted from

Eq. (1)’s implementation using 189 patients’ nucleic acids se-

quences (this matrix represents data for patients who satisfy the

monotonically increasing CD4 counts criteria). The total prob-

ability distribution at each row of Table 1 might not equal to one

due to the unavailability of sequenced datasets at different posi-

Patient 23438’s CD4 Count Patient 23438’s  RNA Level 
23438 0 159 
23438 4 186 
23438 7 335 

23438 0 5.6 
23438 4 3.6 
23438 7 2.8 

Patient 23438’s viral  Sequence 
>PtID 23438 | Alias ACTG320_1044 | Week 0
CCTCAAATCACTCTTTGGCAACGACCCSTCGTCTCAATAARRGTAGGGGGGCAACTAAAGGA
AGCTCTATTAGATACAGGAGCAGATGATACTGTATTAGAAGAAATGAATTTGCCAGGAAGA
TGGAAACCAAAAATGATAGGGGGAATTGGAGGTTTTATCAAAGTAAGACAGTATGATCARA
TACCCATAGAMATCTGTGGACAKAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGT
CAACATAATTGGAAGAAATCTGTTGACTCAGATTGGYTGCACTTTAAATTTT
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and 267. Thymine has contributed significantly in seven of the

ten randomly selected datasets at position 59. The figure and

table also show base-positions that contributed significantly to

the dependency of the ten randomly selected datasets.

Having determined the independency of the distribution of

the ten selected datasets from datasets associated with patients

who showed positive response to the PI regimens, we proceeded

to investigate the type and position of nucleic acid bases that

differ most between the two types of datasets at each nucleic

acid position. We used the calculated 11 [297×4] probability

distribution matrices (one for each of the eleven datasets)  to

calculate the variation between the monotonically increasing

CD4 count probability distribution matrix and each of the ten

randomly selected patients’ probability distribution matrices that

do not satisfy the monotonically increasing CD4 count criteria.

To do this, we calculated Euclidean distances between each

probability distribution value in the monotonically increasing

CD4 count probability distribution matrix and each of the other

ten randomly selected non-monotonically increasing CD4 count

probability distribution matrices. We thus obtained ten Euclid-

ean distance matrices. Although in what follows we show de-

tailed Euclidean distances calculations for the A bases, all as-

sumptions and equations are applicable to the other three bases

(C, T, and G).

Assuming that α
Ai

  represents the probability distribution of

base A at position i in the consistently increasing CD4 counts

file, and β
Ai

 represents the probability distribution of base A at

position i in the non-monotonically increasing CD4 counts

datasets, we can calculate the square of Euclidean distance for

base A at position i (E
Ai

) using the formula:

2
( ) .Ai Ai AiE α β= −  (2)

We considered E
Ai

 values that display a 95% match between

α
Ai

and β
Ai

  to be significant values. Therefore, we assigned

any E
Ai

 value greater than 0.025 to 1 (to indicate a significant

difference between α
Ai
 and  β

Ai
) and those values less than 0.025

are assigned to 0 (to indicate non- significant differences). Thus,

if S
Ai

 represents the significance of a considered Euclidean dis-

tance E
Ai

 then:

1,  0.025

0,  0.025

Ai

Ai

Ai

E
S

E

>
= 

≤

Having evaluated S
Ai

 values for all E
Ai

, we obtained ten col-

umn values (each with 297 entries) representing significant (rep-

resented by 1) or non-significant (represented by 0) distances

between α
Ai

 values and each of the ten sets of the β
Ai

 values.  The

same procedure was applied to the significant matrices for each

of the other three types of nucleic acids bases C, T/U, and G.

Results and Discussions

Figures 3, 4, 5 and 6 represent average S
Ai

, S
Ci

, S
Ti
, and S

Gi

values at each of the 297 RNA positions. Nucleic acid posi-

tions shown in each figure represent each of the S
Ai

, S
Ci

, S
Ti
,

and S
Gi

 values calculated using Eq.(2). Values close to 1 indi-

Figure 2: The results of χ2 test. Ten randomly selected patients’ datasets (of CD4, VL, and nucleotide sequences) passed the null

hypothesis test with χ2 of 7.82 and p-value of 0.05 for three degrees of freedom (for the four types of nucleic acids bases).

Frequency of 

significant 

occurrences 

(in ten random sets) 

Adenine nucleotide 

positions 

Cytosine 

nucleotide 

positions 

Tyrosine 

nucleotide 

positions 

Guanine 

nucleotide 

positions 

7 187, 267 59 

6 108 213, 216 104 

5 5, 183, 186, 211 219 183,  278 46, 275 

Table 2: Adenine contributed significantly at positions 187 and 267 to the independence of seven of the ten considered datasets.
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Figure 3: Average Euclidean distances randomly selected from ten datasets, each containing 189 patients. Euclidean distances are

calculated between Adenine positions in patients who showed positive reaction to PR-inhibitor drug therapy, and the corresponding

Adenine positions for patients who did not react positively to PR treatments. Positions displayed at level of 1 indicate significant

differences from positive therapeutic reaction (hence, these positions are conserved in strains that do not develop PR-inhibitor

resistance).

Figure 4: Average S
Ci

 values at each of the 297 RNA positions (C=Cytosine).

Figure 5: Average S
Ti
 values at each of the 297 RNA positions (T=Thymine/Uracil).
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cate a 100% difference between the number of considered type

of nucleic acid calculated for patients who responded positively

to the PI regimens in comparison to those who did not respond

well to the same PI regimens (at a given position). For example,

Figure 4 shows that while Adenine exists in position 6 in the all

positively responding patients, it does not exist at position num-

ber 6 in any of the negatively responded patients. Figure 7 sum-

marizes the results depicted in Figures 4, 5, and 6. We chose to

display base positions where 77-100% significant differences

occur between positively responding patients and other patients.

It is clear from the figure that while position 6 displays a 100%

(represented here by A_1) difference as far as the existence of

Adenine in both patient groups, a significant 80% differences

(represented by A_8) are calculated between the two groups,

for Adenine, at positions 9, 27, 169, 224, and 276. Further-

more, 88% of the C base has changed between the two patient

groups at positions 3 and 8, and 77% of bases showed differ-

ences from the C base at positions 0, 104, and 211. Similarly,

unlike patients who responded well to PI regimens, 100% of

patients who did not respond well to the PI regimens did not

have a T/U base at position 255. Additionally, 88% of the se-

quences did not have T/U at positions 149, 272 and 287. Fi-

nally, Figure 7 shows that 100% of patients who did not re-

spond well to the PI regimens did not have G in positions 206

and 273 (unlike patients who responded well to the PI regi-

mens where G exists at these positions).

Conclusions

The results discussed in this paper show that certain features

in the HIV genome may be exploited to identify HIV strains

that are highly susceptible to certain drug regiments and have a

reduced chance of developing drug resistance. As shown in

this paper, an Adenine nucleoside in position 6 signifies a virus

that is less likely to become resistant to PR inhibitors. Further-

more, an Adenine in positions 9, 27, 169, 224, 276 or Thym-

ine/Uracil at positions 255, 149, 272, 287 and Cytosine at

positions 0, 3, 8, 104 and 211 may also signify similar behav-

ior. The method developed here can be used to detect the sus-

ceptibility of an HIV strain to PR inhibitors and other types of

Figure 6: Average S
Gi

 values at each of the 297 RNA positions (G=Guanine).

Figure 7: Adenine, Cytosine, Thymine and Guanine nucleotide positions where patients with positive response to PI drug regimens

have 77-100% Euclidean distance from patients with negative PI response. In the figure, A_1:6, for example, indicates that 100%

(represent as A_1) Adenine has been detected at position 6 in both monotonically increasing CD4 dataset while it has not been

detected at this position in all the ten randomly selected non-monotonically increasing datasets. Also, A_0.8 indicates that Adenine

depicts an 80% difference between the two sets at positions 9, 27, 169, 224, and 276.
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anti-viral drugs in patients. Further studies conducted on larger

sequence databases may also provide validation and more con-

served motifs/signatures that can be very useful for identifying

the susceptibility of HIV strains in patients. Future work in this

area will focus on the identification of nucleoside sequences

(whole motifs) instead of single nucleosides that may be con-

served among strains that are less likely to develop drug-resis-

tance.
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