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Introduction
Unmanned Combat Aerial Vehicle (UCAV) research has allowed 

the state of the art of the remote-operation of these technologies to 
advance significantly in modern times, though mostly focusing on 
ground strike scenarios. Within the context of air-to-air combat, 
millisecond long timeframes for critical decisions inhibit remote-
operation of UCAVs. Beyond this, given an average human visual 
reaction time of 0.15 to 0.30 seconds, and an even longer time to 
think of optimal plans and coordinate them with friendly forces, 
there is a huge window of improvement that an Artificial Intelligence 
(AI) can capitalize upon. While many proponents for an increase in 
autonomous capabilities herald the ability to design aircraft that can 
perform extremely high-g maneuvers as well as the benefit of reducing 
risk to our pilots, this white paper will primarily focus on the increase 
in capabilities of real-time decision making.

There are a number of obstacles to a system being an effective AI 
within this context. The main developmental difficulties for this type of 
problem are the vast number of inputs and outputs to be considered, 
as well as the uncertainty and randomness inherits in the problem. 
Additionally, in combat one’s opponent could attempt to not match an 
AI’s training data; hostiles can and will actively seek to fool and exploit 
the system. Regarding implementation, the ability to verify and validate 

the AI is crucial. Safety specifications and operating doctrines need to 
be guaranteed to be followed via formal methods. Of course computing 
systems can crash and sensors can fail, though this is just as true for 
manned aircraft, and redundancies can be put in place.

Fuzzy control has been proven effective in problems containing 
almost all of these difficulties. Fuzzy is robust, adaptable, high-
performing, computationally efficient, and provides an excellent 
framework to synthesize formal models for the purposes of verification 
and validation [1]. However, to date, it suffers heavily from the “curse 
of dimensionality”; that is, as the scope of the problem increases, the 
computational cost increases rapidly [2]. A standard fuzzy-based 
system would be extremely computational intractable for a problem 
such as air-to-air combat.

This intractability not only comes from the run-time associated 
with evaluating a fuzzy controller of immense size, but also the 
creation of the controller. A genetic fuzzy system is a methodology 
in which a genetic algorithm creates all of the components of the 
controller [3]. Genetic fuzzy systems have found immense success in 
developing high-performing controllers in small-scale problems [4]. 
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While this automates the process, the computational cost of the genetic 
algorithm for searching over a practically infinite solution space causes 
the traditional genetic fuzzy system to be infeasible in more complex 
problems. Methodologies have been developed to help mitigate this, 
but one method in particular is capable of applying fuzzy control to 
problems of this scope.

The Genetic Fuzzy Tree (GFT) has shown an incredible ability to 
obtain unparalleled levels of performance in very large and complex 
problems that contain all of the difficulties that alternative intelligent 
systems have issues coping with. This new subtype of genetic fuzzy 
system was recently developed during Dr. Ernest’s graduate studies, 
under the guidance of Dr.’s Cohen and Schumacher and supported 
by the Dayton Area Graduate Studies Institute. The aim of this 
initial work was to control a flight of ground strike UCAVs in a low-
fidelity simulation environment [5,6]. The success of this study led to 
Psibernetix Inc. partnering with the US air force research laboratory 
(AFRL) to apply the GFT methodology to a much more complex 
problem.

Just as UAVs represented a revolutionary capability for the USAF 
in the mid-1990s, Manned-Unmanned Autonomous Teaming in 
an air combat environment will certainly represent a revolutionary 
leap in capability of airpower in the near future. Air combat, as it is 
performed by human pilots today is a highly dynamic application 
of aerospace physics, skill, art, and intuition to maneuver a fighter 
aircraft and missile against an adversary moving at high speeds in three 
dimensions. Today’s fighters close on each other at speeds in excess of 
1,500 MPH while flying at altitudes above 40,000 feet. The selection and 
application of air-to-air tactics requires assessing a tactical advantage 
or disadvantage and reacting appropriately in microseconds. The cost 
of mistakes is high.

The US’s “near-peer” adversaries are developing capabilities which 
could challenge US air superiority. Anti-access environments with 
modern, overlapping ground and air threats present an existential 
threat to modern day pilots and fighter aircraft. Future aircraft are 
likely to employ a high level of coordinated autonomous offensive and 
defensive capabilities, requiring reaction times which surpass that of a 
human pilot, in order to survive in such hostile environments. These 
future fighters may be optionally manned or employ autonomous 
UCAV wingmen, capable of performing air combat. These fighters 
would employ with a battle management system on-board which 
would possess an intelligent agent which would select tactics, manage 
weapon employment, determine own-ship reactions, and supervise the 
reactions of its wingmen.

Psibernetix has created ALPHA, a GFT that serves as an AI for 
flights of UCAVs in air-to-air combat missions. While currently a 
simulation tool, ALPHA is aimed towards “increasing autonomous 
capabilities to allow mixed combat teams of manned and unmanned 
air fighters to operate in highly contested environments” [7]. This 
project began in May of 2015, and as of November, already has 
produced significant results. The GFT methodology has already found 
great success in various domains, however the level of performance 
so far obtained here in a realistic simulation environment serves as a 
tremendous breakthrough in the realm of fuzzy control. 

Problem Statement
ALPHA’s current primary objective is to serve as an intelligent 

hostile force for pilots to train against within the AFSIM simulation 
environment [8]. While the models showcased within this document 

for platforms do not mimic any system specifically, AFSIM realistically 
represents a modern air combat environment with appropriately-
behaving models for aircraft, sensors, and weapons. Data is collected 
from sensors, fused real-time, and sent to ALPHA, complete with noise 
and potential failures. This data feed is received at and commands 
sent to unique UDP ports for each platform, causing this problem to 
contain some of the software complexities that would be present in 
actual hardware implementation.

For current mission profiles, ALPHA’s red forces are handicapped 
with shorter range missiles and a reduced missile payload than the blue 
opposing forces. ALPHA also does not have airborne warning and 
control system (AWACS) support providing 360° long range radar 
coverage of the area; while blue does have AWACS. The aircraft for 
both teams are identical in terms of their mechanical performance. 
While ALPHA has detailed knowledge of its own systems, it is given 
limited intelligence of the blue force a priori and must rely on its 
organic sensors for situational awareness (SA) of the blue force; even 
the number of hostile forces is not given. Both to mirror training 
exercises and to offset these weaknesses, ALPHA is typically given a 
numeric advantage over the blue forces. However this is not always the 
case and ALPHA is capable of controlling any finite number of friendly 
aircraft. The current problem is focused on purely beyond visual range 
air-to-air combat missions; no ground targets or friendly platforms 
requiring escort are considered at this time. 

The mission analyzed in this document features two blue fighters 
vs. four red. The red aircraft begin over a defended coastline and 
the blues are 54 nautical miles due west. The blues each have 4 long 
range missiles (LRMs) and 4 acrobatic short range missiles (SRMs), 
whereas the reds have 4 medium range missiles (MRMs) onboard each 
platform. The reds’ radar is long range with a +/- 70° azimuth angle and 
a 15 degree elevation angle. The initial state of the mission is displayed 
below in Figure 1, with the blue AWACS off-screen, due northwest of 
the blue fighters.

Even in its current developmental stage, ALPHA is taking in an 
enormous amount of data from the system. Over 150 inputs are 
considered in this example mission already; some of which ALPHA 
utilizes both the current value as well as the time history of the input. 
Examples of inputs include all positional, velocity, and acceleration 
states, estimated missile range data, visibility of each platform, bogey 
ratio, and number of shots taken by hostile platforms. ALPHA currently 
has control of the motion and firing capabilities of each aircraft, with 
control over more complex sensors planned for future work.

The initial merit for success of ALPHA was to be able to consistently 
outperform a baseline controller that was previously utilized by 
AFRL within AFSIM. Within the first months of development this 

 

Figure 1: Graphical display of the AFSIM simulation environment, Sprites for 
aircraft not to scale.
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milestone was passed. The current goal of this study is to further 
push the envelope of how effective the system can be against trained 
fighter pilots. Preliminary testing against human opponents has been 
conducted and more formal and thorough ALPHA vs. human testing 
is planned (Figure 2). 

Methodology and Implementation
The GFT methodology utilizes a collection of Fuzzy Inference 

Systems (FISs) with varying levels of connectivity. Unlike in a standard 
genetic fuzzy system, here a genetic algorithm, or other learning system, 
is utilized to train each system in the Fuzzy Tree simultaneously [5]. 
Each FIS has membership functions that classify the inputs and outputs 
into linguistic classifications, such as “far away” and “very threatening”, 
as well as if-then rules for every combination of inputs, such as “If 
missile launch computer confidence is moderate and mission kill shot 
accuracy is very high, fire missile”. By breaking up the problem into 
many sub-decisions, the solution space is significantly reduced. The 
cost of this approach is a risk of not accommodating for all sources of 
coupling. Through optimal design this can be minimized if not entirely 
mitigated. Unlike in Fuzzy Decision Trees or Fuzzy Networks, the 
fuzzy nodes of a GFT are not individual components of FISs, but rather 
are unique FISs themselves [9-11].

A key strength of this methodology is the priority given to 
flexibility and ease of design. While most of the complex decisions 
are determined by a collection of FISs, other algorithms can be easily 
included in the system, as well as common-sense heuristics. For 
example, past GFTs created by Dr. Ernest have included a Cooperative 
Task Assignment Algorithm, Fuzzy Clustering Route Solver, and No 
Communications Fire Control System [12-14]. Where an optimal 
solution to a sub-problem is known, it is directly utilized. An example 
of the layout of this type of system is displayed in Figure 3. The ability to 
input lessons learned from expert knowledge, such as current doctrines 
and teachings of expert fighter pilots, combined with the ability to fully 
optimize these concepts via a learning system is a significant factor in 
the success of the GFT. This architecture, utilization of fuzzy logic, 
and Psibernetix’s use of the Python programming language allows the 
development of these systems to be rapid and very cost-effective [15]. 

ALPHA currently has branches for high-level tactics, firing, 
evasion, SA, and defensiveness. As an example of this structure, the 
defensiveness branch of the Fuzzy Tree quantifies each aircraft’s 
defensiveness relative to each threat it faces. The primary output of 
this branch is a measure between 0 and 100 percent. This defensiveness 

measure is utilized to plan missile evasion maneuvers, alter angles 
of approach to (or retreat from) hostiles, and determine and adjust 
higher-level tactics. 

This branch is a two-tiered FIS cascade. The first layer measures 
the effective range of the threat by taking in 2-dimensional distance 
and altitudes of the hostile and friendly platform. This feeds into the 
second layer which takes in the effective range and combines it with the 
threat’s azimuth and the threat’s turning rate in the North-East axis, 
both with respect to the friendly aircraft. Each of these measurements 
is broken down into tactically useful membership functions for the 
FIS. These classifications collectively form a picture upon which 
ALPHA can make decisions. The defensiveness measure has the sole 
responsibility for deciding which friendly aircraft should begin evasive 
maneuvers against hostile missiles whose targets are unknown in 
the current implementation of ALPHA. It is also solely responsible 
for determining when defensive missile firings should occur. The SA 
branch will utilize this measure often, and the effective range FIS itself 
has applications in many other areas. 

ALPHA has inputs to alter behaviors based on mission 
performance. If the enemy is successfully defeating intended kill shots, 
ALPHA will adjust the range at which shots are taken in order to not 
waste the extremely limited ammunition. If the initial estimation of 
the enemy missiles’ capabilities is inaccurate, defensiveness factors 
will be adjusted to allow ALPHA to more properly engage the current 
foe. Additional on-line learning capabilities are planned, such as 
a continuously updated 3-dimensional modelling of each enemy’s 
weapon engagement zone (WEZ) for each of their weapon types. 

Rather than utilize a standard genetic algorithm as a learning system, 
Psibernetix’s patent-pending EVE learning system has trained ALPHA 
[16]. EVE has been shown to have unparalleled learning capabilities 
in extremely complex problems where obtaining the absolute optimal 
solution is not necessary or practical [13]. For example, an air-to-air 
missile does not need to perfectly penetrate the cockpit and physically 
strike the pilot of an aircraft, and finding a course of action (CoA) 
that utilizes 0.05 milligrams less fuel to complete an objective is not 
mission critical. A learning system that could guarantee obtaining 
these solutions would be computational intractable and would never 
provide an answer. EVE is a GFT whose objective is the creation and 
optimization of other GFTs. Through multiple recursive application, 
EVE has been trained to train other GFTs very effectively. 

 

Figure 2: Side-view during active combat.  Past and current missile detonation 
locations marked.  Two Blue vs. four Red, all Reds have successfully evaded 
missiles, one Blue has been destroyed, Blue AWACS in distance.

 

Figure 3: Example Fuzzy Tree layout.
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The computational cost and complexity of training an AI within 
AFSIM is a limiting factor for many alternative methods. The very 
lightweight nature of the GFT, in combination with Psibernetix’s 
efficient fuzzy logic module, PsiberLogic, and utilization of the Cython 
computer language in computationally costly procedures allows 
Psibernetix to accomplish this task with a budget desktop PC [17-19]. 
While it is not necessary, EVE can intelligently allocate jobs and utilize 
a heterogeneous computing network. Genetic algorithms and EVE are 
perfect examples of parallelizable algorithms; a population of ALPHA 
controllers are developed, their performance measured entirely 
independently of each other, a new population of ALPHAs are created, 
and the process repeats for some duration.

EVE training for ALPHA initially took place with it fighting 
against the baseline controller utilized previously by AFRL, but now 
occurs against different static versions of it. EVE here is optimizing 
FISs as well as other parameters such as thresholds and formations. 
Each ALPHA in the EVE generation calls a separate instance of AFSIM, 
with unique port numbers assigned to each platform. Stops are put in 
place to prevent extremely long missions from hanging the system. 
Each ALPHA and AFSIM combination takes up only one core, easing 
the difficulty in implementing this process. AFSIM can operate in 
an event-stepped fashion, running through the mission as fast as the 
processor allows. Figure 4 depicts the training process.

The fitness function, or equation which measures the performance 
of each instance of ALPHA, has been designed to completely capture 
the meaning of good behavior. Merely rewarding friendly kill shots 
and punishing friendly misses and deaths could produce a competent 
controller. This can be improved upon though, as it is both possible 
to complete a mission with the enemy just barely being unable to get 
kill shots off and alternatively finish missions in which no red was ever 
close to a blue WEZ. The two versions of ALPHA that produce these 
performances should be valued significantly differently. To that effect, 
the defensiveness of each red aircraft is constantly being taken away 
from the controller’s performance measure. This makes EVE seek 
ALPHAs that complete missions in both a time and safety optimal 
fashion, with optimal friendly missile accuracy and minimized enemy 
missiles fired. Future work could contain different sensors and missions 
that would allow EVE to train ALPHA to defeat the entire blue force 
without ever being detected.

This training has led to tactical and well-performing decision 
making by ALPHA. More training missions to form a training portfolio 
are planned, along with additional static blue variants of ALPHA such 
as some focusing on aggression with others emphasizing defensive 
tactics. The fact that the intended opponent is a team of humans is 
an interesting complexity that is difficult to account for in the typical 
machine learning setting. The pilots could perform extremely strange, 
errant, and apparently suboptimal behaviors just to confuse or exploit 
ALPHA. Very lengthy, inefficient, and even suicidal maneuvers can 
differ significantly than the opponents ALPHA faces through training 
with EVE. To account for this and enable post-training testing and 
adjustments, a simple User Interface was created to allow humans to 
fly against ALPHA in-house. The human operators have been able to 
achieve a modest, but reasonable, amount of control over two blue 
aircraft to compete against ALPHA. 

Results and Conclusions
As a result of EVE training, implementing lessons learned from 

expert fighter pilots, and adjustments from preliminary human testing, 
the current version of ALPHA is already a deadly opponent to face. 

Formal results will be presented in future publications; this section will 
focus on displaying preliminary capabilities and findings of ALPHA. 
Again, ALPHA is currently trained to utilize a force of superior 
numbers, but weaker capabilities. In order to complete missions safely, 
the blue forces must be manipulated into poor positions, as their kill 
range is farther than the reds’.

As one example, ALPHA can perform lethal cooperative tactics if 
the opposing force allows ALPHA to pincer it. The flow of this tactic is 
shown in Figure 5, in 3 distinct phases. The northernmost ALPHA is 
designated WOLF-1 and WOLF-4 the southernmost. In the first phase, 
ALPHA seeks to obtain the flank by having WOLF-1 and WOLF-4 
climb altitude and approach the blues at opposite and wide angles. 
WOLF-2 and WOLF-3 reduce velocity and climb altitude, to maintain 
range from the incoming blues. 

The second phase begins as WOLF-1 fires a MRM to evoke a 
defensiveness response by blue, having no intent of actually killing 
its target. This missile is shot at a range in which the blue aircraft will 
need to evade away from WOLF-1 or be hit, but will be able to do so 
successfully. If fired pre-emptively, the blues can take an alternative 
evasion route, and if WOLF-1 delays this shot, it will be past the abort 
range in the incoming blues’ superior WEZ. If done correctly, this 
forces a situation that WOLF-4 can capitalize. Shortly into the second 
phase, WOLF-4’s launch computer reports that the enemy could easily 
evade a missile, but this does not take into consideration the fact that 
the optimal evasion route has been cut off. Two kill shots are fired from 
WOLF-4, and then the final phase of the tactic begins. WOLF-1 and 

Figure 4: EVE parallel training setup.

 

Figure 5: Tactic displaying ALPHAs utilization of flanking the opponent.
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WOLF-4 maintain the flank, but keep wide approach angles in order 
to be able to evade any potential blue shots. If they are not fired upon, 
but WOLF-4’s missiles miss, they will be in position to fire weapons 
again. By now, WOLF-2 and WOLF-3 have climbed to high altitude 
and increased in speed. If the flankers fail their tactic or are fired upon, 
the middle group can then advance and engage the blues. 

In a different example, the blues shoot first, preventing the reds 
from getting an early positional advantage. This mission is lengthier 
and will be broken out into 6 less distinct phases. Phases 1 and 2 are 
shown in Figure 6. Due to blue’s longer range, ALPHA must evade these 
missiles, and let blue advance. In phase 1, the southern blue, BLUE-2, 
fires a LRM at WOLF-4. In phase 2, the northern blue, BLUE-1, fires 
a LRM at WOLF-2 and WOLF-1, and BLUE-2 fires again at WOLF-4. 

These initial missiles are of enough danger to ALPHA that after 
determining who is the target of each hostile missle, the reds must 
perform optimal evasive maneuvers to survive this wave. Afterwards, 
the blues split, with BLUE-1 heading to the north. As BLUE-2 is 
aggressively heading towards it, WOLF-3 maintains distance from 
the blues even though it was not fired at, which will prove to be a 
vital component to the success of the mission. This aggressive range 
presentation in the first phases by blue does not allow ALPHA to end 
the mission quickly utilizing the pincer tactic from Figure 5. 

ALPHA has the ability to continue to seek positional dominance 
even during evasive maneuevers. For example, if evading missiles 
from approximately the same direction, two reds will elect to perform 
maneuvers in differing directions if possible. Additionally, ALPHA 
does not stop tracking defensiveness to all other hostiles if evading a 
missile nor does performing an evasive maneuver stop ALPHA from 
considering taking shots at all threats. ALPHA also does its best to 
prevent the opposing force from acquiring positional dominance 
during these times; it will take defensive shots to keep hostile aircraft 
from obtaining such an advantage. 

All the initial blue missiles were defeated in before phases 3 and 
4, displayed in Figure 7 below. ALPHA then takes advantage of an 
improper move by the blues. In phase 3, BLUE-2 has managed to get 
a close shot at WOLF-3, but had to over-extend to do so. This allows 
WOLF-4 to turn and fire a MRM. BLUE-2 begins to evade, and BLUE-
1 comes to assist his wingman in phase 3, getting a shot off on WOLF-1 

that would otherwise have secured a deadly pincer against BLUE-2. As 
BLUE-1 has had to turn back to the south, WOLF-2 does an about-
face and secures the escape route of the blues. WOLF-3 successfully 
defeats BLUE-2’s missile, and turns northward, pursuing the blues 
while WOLF-1 is evading BLUE-1’s missile. WOLF-4 can advance and 
pursue the blues uncontested, and moving into phase 5, fires a MRM at 
BLUE-1, forcing it to turn again and evade to the north.

Note that ALPHA ends phase 4 being in a very favorable position, 
despite blue’s early and extreme aggression. In order for the blue force 
to have accomplished the amount of disruption as it has thus far into 
the mission, a significant amount of ammunition has been utilized. 
Even if ALPHA were to be in a less favorable position come phase 5, the 
blue forces could not maintain the current pace of aggression before 
running out of LRMs and being at a severe disadvantage. When any 
of the red aircraft have a level of defensiveness above a threshold, they 
attempt to utilize their MRMs in a defensive manner. While ALPHA 
has been shot at multiple times, as can be seen clearly in Figure 8, it has 
taken no defensive shots. Effectively, ALPHA has not felt threatened 
thusly throughout this mission. While the first example mission in 
Figure 5 shows ALPHA taking an early strike and ending a mission 
quickly, this mission thus far highlights ALPHA’s ability to face a 
highly aggressive enemy. The key to red’s success going into phase 5 
has been consistently forcing the blues to choose between two negative 

 

Figure 6: Phases 1 and 2 of example mission.

 

Figure 7: Phases 3 and 4 of example mission.

 

Figure 8: Side-view of example mission showing traces to phase 4.
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outcomes. Had BLUE-2 not pushed aggressively towards WOLF-3, it 
would have had to expend even more resources to keep both WOLF-3 
and WOLF-4 away; a pace it could not keep for much longer anyway. 
BLUE-1 could have abandoned his teammate, allowing BLUE-2 to be 
killed by the end of phase 4, but had it done so, red would have BLUE-1 
surrounded come phase 5 regardless.

Figure 9 below displays the final phases of this mission. By phase 
5, BLUE-2 has been destroyed by a second shot from WOLF-4, and 
WOLF-2 is to the north, keeping a safe distance but continuing to 
block an easy route for BLUE-1 to escape. WOLF-4’s missile aimed at 
BLUE-1 was able to be defeated. WOLF-3 is the closest come phase 6, 
and once within lethal range fires the shot that kills the remaining blue 
fighter, ending the mission with a red victory. 

ALPHA’s ability to defeat AI-flown enemies is only one measure 
of success; it must also be able to defeat highly trained and experienced 
fighter pilots. ALPHA was assessed by Colonel (retired) Gene “Geno” 
Lee. As a former United States Air Force Air Battle Manager, Geno 
is a United States Air Force Fighter Weapon School graduate and 
Adversary Tactics (Aggressor) Instructor, and has controlled or flown 
in thousands of air-to-air intercepts as a Ground Control Intercept 
officer, as a Mission Commander on AWACS, and in the cockpit of 
multiple fighter aircraft. 

Geno noted how the first generation of red ALPHA held its own 
against the blue variant of ALPHA, but the resulting engagements often 
ended with heavy losses for both sides. Psibernetix and Geno worked 
together to develop tactics, techniques, and procedures to overcome 
red ALPHA’s payload and no-AWACS disadvantage, capitalize on 
blue’s mistakes, and take advantage of numeric platform superiority 
(when the situation presented itself). The current revised red ALPHA 
model presented the blue adversary with credible offensive tactics 
and timely defensive reactions that challenged blue’s radar sort logic, 
compressed their engagement timeline, and rapidly put blue into a 
defensive position from which they could not escape. The net result 
after a prolonged engagement was blue’s total defeat with no or 
minimal losses by red ALPHA. 

When Geno took manual control of the blue aircraft against 
the reds controlled by the baseline controller AFRL had previously 
been utilizing, he could easily defeat it. However, even after repeated 
attempts against the more mature version of ALPHA, not only could 
he not score a kill against it, he was shot out of the air by the reds every 
time after protracted engagements. He described ALPHA as “the most 
aggressive, responsive, dynamic and credible AI (he’s) seen-to-date.” 

As stated prior, ALPHA’s high performance is not its only strength; 

the underlying methodologies lend themselves very well to verification 
and validation. Verification and validation can best be described as the 
process by which you can argue a particular system both satisfies its 
design requirements (verification) as well as accomplishes the goals 
of the overall system it is designed for (validation). More commonly, 
verification asks the question, “did I build it right?” and validation asks 
the question, “did I build the right thing?” As higher levels of autonomy 
become a reality, tests and evaluations for the purposes of verification 
and validation (V&V) become a primary barrier to the fielding of more 
advanced algorithms. The DoD Autonomy TEVV Strategy states “the 
most difficult and challenging component of [Autonomous Systems] 
is the intelligent, learning, and adaptive software embedded within 
them.” and then states “Autonomous systems are characteristically 
adaptive, intelligent, and/or may incorporate learning. For this reason, 
the algorithmic decision space is either non-deterministic, i.e. the 
output cannot be predicted due to multiple possible outcomes for each 
input, or is intractably complex. Because of its size, this space cannot be 
exhaustively searched, examined, or tested; it grows exponentially as all 
known conditions, factors, and interactions expand. Therefore there are 
currently no established metrics to determine various aspects of success 
or comparison to a baseline state enumerated” [20]. Therefore, a key 
challenge to the V&V of intelligent software is to design an adaptive 
learning algorithm that can simultaneously provide transparency into 
its decisions, behaviors, and factorial affects in real time. 

Fuzzy logic, by design, provides a mechanism to algorithmically 
reason about the world while still maintaining a clear and understandable 
linkage between the human designer and the system under design by 
leveraging the capability to synthesize linguistic, natural language 
requirements into real world models. Another particularly special 
advantage to fuzzy logic is the ability to provide real time transparency 
into the internal layers during and after training. Unlike other 
learning methods, there is essentially no “hidden layer” in specific 
instantiations of fuzzy logic. At any time, the GFT can be transformed 
into a first order logic model, translating what is traditionally referred 
to as “degree of truth” into a bounded range of “facts, objects, and 
relations.” Specifically, we have developed the ability to run the FIS 
structures within the ALPHA GFT with the exact same algorithm that 
provides the transformation into a first order logic model [21]. Using a 
Satisfiable Modulo Theory based model checker, these first order logic 
models of the FIS rule structure can be verified against a set of defined 
properties for all possible initial conditions at once. Additionally, the 
FIS model can also be transformed into a hybrid system, representing 
both the discrete behavior as well the continuous representation of the 
fuzzification process within each set of active rules. Analysis to date 
on hybrid systems has been effective in demonstrating continuous 
system properties like stability [22]. However, within the ALPHA 
GFT, properties like stability are not as interesting as say, sensitivity 
or robustness. The fuzzy logic GFT to hybrid conversion can provide 
insight into the degree to which any given input, or n-factorial inputs, 
affect the output both during training and execution.

These preliminary capabilities showcase the most complex 
implementation of a fuzzy-logic based AI in the realm of UCAV 
control. Utilizing the GFT methodology, ease of verification and 
validation and extremely high mission performance do not come 
partnered with a high computational cost. Again, ALPHA can 
currently operate alongside AFSIM on a single 3.2 GHz core of a CPU. 
In this fashion, ALPHA can operate at an average frequency of 154 
Hz; every 6.5 milliseconds ALPHA can take in the entirety of sensor 
data, organize the data and create a complete mapping of the scenario, 
analyze its current CoAs and make changes, or create an entirely new 

 

Figure 9: Phases 5 and 6 of example mission.
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CoAs for a flight of four aircraft. Many opportunities still exist within 
ALPHA’s code for increased speed optimization. A significant portion 
of this time is spent running UDP servers and interpreting data. If a 
separate process completed this task for ALPHA, such as a direct feed 
from sensors with their own computational capabilities, ALPHA could 
function even faster. This can be emulated by timing only the post data 
manipulation computations, which results in ALPHA averaging over 
1,100 Hz for the same flight of four fighters. 

Thus, ALPHA can currently operate in the domain of microseconds; 
one of the side-benefits of fuzzy control. This is utilizing low-budget, 
consumer grade products. The human mind is an extremely powerful 
machine that will likely always have unbeatable performance in certain 
areas. However, the speeds at which ALPHA can intelligently operate 
serve as a distinct advantage within the context of air-to-air combat. 

Combining these strengths in a mixed manned and unmanned 
fighter squadron could prove to be an extremely effective fighting 
force. ALPHA controlled aircraft would happily volunteer to take risky 
tactics and have the manned craft perform safer support roles. Due to 
the transparency and linguistic nature of fuzzy logic, ALPHA would 
be an extremely easy AI to cooperate with and have as a teammate. 
ALPHA can continuously determine the optimal ways to perform tasks 
commanded by its manned wingmen, as well as provide tactical and 
situational advice to the rest of its flight. 

ALPHA requires further work before its initial embodiment is 
considered complete. Significant strengths and capabilities still remain 
to be built, and further training needs to be completed. However, 
these early results showcase its current strength and the ability to play 
defensively against a stronger, but outnumbered opponent and wait 
for key moments to strike and become aggressive. This behavior is 
mostly tied to the utilization of our defensiveness measure. A different 
offensiveness classifier is planned to further refine when ALPHA 
should perform certain tactics. Developments further into the future 
can include capabilities for different aircraft, weapons, sensors, and 
mission objectives.

EVE and Psibernetix have created GFTs for problems containing 
extremely large solution spaces, but primarily in the bioinformatics 
domain of drug effectiveness prediction. The ability to bring all the 
strengths of the sub-methods to problems of enormous dimensionality 
has enabled these successes. The largest solution space EVE has 
trained a GFT over thus far has been 2.97*10^(961). For this problem, 
a standard genetic fuzzy system would have a solution space of 
10^(3.464 × 10^(106)), or many times larger than many googolplexes. 
The computational ceiling of the GFT method has not been discovered 
yet on even a single computer; as the problems ALPHA solves become 
more complex, the GFT will continue to scale well with the problem. 
The computational efficiency of both the methodologies utilized and 
technologies employed plays a significant part in this capability. As a 
less technical but still noteworthy result, ALPHA’s current state as of 
the writing of this document was created in just months. 

There is no quality of the GFT methodology that specializes it for 
aerial combat. Numerous potential defense applications exist for this 
type of AI, such as surface and undersea naval operations. While many 
potential application areas lack a hostile intelligent force, there are 
numerous applications that contain the same volume of complexities 
and uncertainties. The GFT is especially desirable when the problem 
has any of the following qualities; a need to be verified and validated 
for either safety or performance assurance, computational efficiency as 

to not require an entire computing cluster, an inability to pre-script 
control due to uncertainties in the environment, or a requirement to 
be able to transparently monitor the system and its intent at all times. 
Examples include robotic surgery, design automation, and cyber 
security, among many others. 
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