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Introduction
An overview of glucose physiology

Glucose is the principal substrate for energy metabolism and 
disorders that affect its availability or use can result in hypoglycaemia. 
A normal blood glucose level is maintained by the interplay of 
glucose production and glucose utilisation. The key sources of glucose 
production include glucose ingestion from the diet and the adaptive 
metabolic processes of glycogenolysis and gluconeogenesis [1] (Figure 
1). 

Endogenous glucose supply depends on the breakdown of glycogen 
stores for the first a few hours after birth, followed by synthesis of 
glucose from lactate, glycerol and amino acids. When glucose levels 
begin to decline during fasting states, hormonal and metabolic pathways 
are triggered to raise the blood glucose level. Hormonal equilibrium 
is maintained by the appropriate response of insulin and counter-
regulatory hormones such as epinephrine, glucagon, growth hormone 
and cortisol. The central nervous system integrates the counter-
regulatory hormonal responses, and coordinates the neuroendocrine, 
autonomic and behavioural responses to hypoglycaemia [2]. 

Insulin has numerous effects on glucose physiology. It suppresses 
hepatic glycogenolysis, gluconeogenesis, lipolysis and ketogenesis. 
It also causes the translocation of glucose transporters (GLUTs) 
in muscle and adipose tissue to increase their glucose uptake [3]. 
Epinephrine inhibits insulin secretion while decreasing insulin action, 
stimulates hepatic and renal glucose production and facilitates lipolysis 
[4]. Glucagon raises glucose levels by activating glycogenolysis and 
gluconeogenesis [5]. Cortisol and growth hormone regulate blood 
glucose levels by increasing glucose production, decreasing glucose 
utilization and promoting lipolysis [6,7]. 

During fasting, glucose is generated through the activation of 
glycogenolysis. As fasting progresses, plasma insulin levels decrease 
while glucagon levels increase, stimulating glycogenolysis. When 
glycogen stores in the liver are exhausted, gluconeogenesis becomes 
the predominant source of glucose production. Lactate, glycerol, 
pyruvate and amino acids (such as alanine and glutamine) are the main 
gluconeogenic substrates used for glucose production [8] (Figure 1). 

Fasting also generates large amounts of acetyl-CoA through 
β-oxidation of fatty acids (Figure 2). The accumulated acetyl-CoA 
can either undergo ketogenesis or enter the Krebs cycle. Active long-
chain fatty acids (acyl-CoA) need carnitine as a transport to enter the 
mitochondrial membrane. Carnitine palmitoyltransferase-I (CPT-I) 
present in the outer mitochondrial membrane combines with long-chain 
acyl-CoA to form acylcarnitine, which penetrates the inner membrane 
of mitochondria to gain access for β-oxidation. The acylcarnitine then 
reacts with CoA, catalysed by carnitine palmitoyltransferase-II (CPT 
II). Acyl-CoA is reformed in the mitochondrial matrix and carnitine 
is liberated. Fatty acid oxidation produces ketone bodies, an alternate 
energy fuel [8,9].

Insulin is the key hormone involved in regulating the blood glucose 
level. Glucose and other substrates, such as amino acids, by raising the 
intracytosolic ATP/ADP ratio in the β-cell of pancreas cause insulin 
secretion. In the β-cell, rise in ATP inhibits the plasma membrane 
sulphonylurea receptor1 (SUR1), leading to a sequence of events; 
closure of the KATP channel, depolarization of the cell membrane and 
calcium influx through voltage-gated calcium channels, resulting in 
release of insulin by exocytosis from the storage granules [10].

Historical perspective

In 1954 Irvine McQuarrie described ‘idiopathic hypoglycaemia of 
infancy’ in his presidential address to the American Paediatric Society 
[11]. Cochrane et al. (1956), described leucine sensitive hypoglycaemia 
[12]. Both the above authors identified familial cases and implied a 
genetic basis for hypoglycaemia. Yalow and Berson published the first 
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Abstract
Hypoglycaemia is common in clinical practice and can be a manifestation of many underlying conditions. It is 

a biochemical finding and not a diagnosis. Therefore an understanding of the molecular mechanisms that lead to 
hypoglycaemia is important. At a genetic level, hypoglycaemia can be due to many different genetic disorders both 
metabolic and endocrine. Some of these genetic disorders present with severe and profound hypoglycaemia in the 
newborn period yet others can be mild and subtle. Recent advances in the fields of genomics and molecular biology 
have begun to give fundamental novel insights into the mechanisms regulating blood glucose levels. This state of 
the art review article will provide an in-depth knowledge into the genetic mechanisms that lead to hypoglycaemia.
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Figure 1: The gluconeogenic, glycolytic, glycogenolysis and glycogen synthesis pathways are shown. Glycerol and amino acids entering the gluconeogenic 
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characterised by unregulated insulin secretion from pancreatic β-cells. 
In the face of hypoglycaemia, infants with CHI have inappropriately 
elevated serum insulin levels, low ketone bodies, and low fatty acids 
and show a glycaemic response to glucagon. Infants with CHI typically 
need a glucose infusion rate of more than 8 mg/kg/min to maintain 
normoglycaemia. In patients with CHI mutations in the key genes 
(ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A, HNF1A 
and UCP2) regulating insulin secretion have been identified [18]. 
Integrity of the pancreatic β-cell ATP sensitive potassium (KATP) 
channel depends on the interactions between the pore-forming inward 
rectifier potassium channel subunit (KIR6.2) and the regulatory subunit 
sulfonylurea receptor 1 (SUR1). The ABCC8 and KCJN11 genes (both 
localized to chromosome 11p15.1) encode the two components of KATP 
channel and most of the severe forms of CHI are due to recessively 
inactivating mutations of these genes [19].

Deficiency of counter-regulatory hormones

Combined pituitary hormone deficiency (CPHD)/congenital 
hypopituitarism: A diagnosis of CPHD is made when a patient has 

application of the insulin radioimmunoassay and showed that leucine 
sensitive hypoglycaemia was due to insulin [13]. Drash and Wolf in 
1965 used diazoxide successfully to control hypoglycaemia [14]. The 
terminology, nesidioblastosis was replaced by idiopathic hypoglycaemia 
of infancy in 1970’s. Pathologists described nesidioblastosis to be 
a normal feature of the pancreas in neonates and young infants and 
paediatricians later abandoned this terminology [15]. The genetic basis 
of hyperinsulinaemic hypoglycaemia (HH) was first reported in early 
1990’s [16,17]. Today mutations in nine different genes expressed in 
the β-cells of the pancreas have been implicated in the pathophysiology 
of different forms of HH [18].

Outline of the genetic mechanisms leading to hypoglycaemia

Defects in a large number of endocrine and metabolic pathways 
can lead to hypoglycaemia. Table 1 is a summary of the known genetic 
causes of hypoglycaemia. Each of these causes is discussed in more 
detail below.   

Congenital hyperinsulinism (CHI): CHI is a cause of HH in 
neonates and infants. CHI is a genetically heterogeneous disease 

Hyperinsulinism Congenital Hyperinsulinism [18,19]

Deficiency of counter regulatory hormones

Congenital hypopituitarism
ACTH deficiency

Isolated GH deficiency
Congenital glucagon deficiency

Cortisol deficiency
Congenital Adrenal hyperplasia
Adrenal Hypoplasia Congenita

Familial Glucocorticoid deficiency
Dopamine β-hydroxylase deficiency

[22-24]
[25-27]

[28]
[29]

[30,31]
[32-36]

[37]
[38]

[39,40]

Disorders of hepatic glycogen synthesis and release 

GSD I – Von Gierke Disease 
GSD type III 

GSD VI (Hers Disease)
GSD IX b, c

GSD 0 

[42,43]
[44,45]

[46]
[48,49]

[51]
Disorders of fructose metabolism Hereditary Fructose intolerance [53]

Disorders of gluconeogenesis
Fructose-1, 6-bisphosphatase deficiency

Phosphoenolpyruvate carboxykinase deficiency (PEPCK)
Pyruvate carboxylase deficiency

[55]
[57,58]

[60]
Disorders of galactose metabolism Galactosaemia [62-64]

Hereditary Defects in Amino Acid Metabolism

Maple Syrup Urine Disease 
Propionic acidaemia

Methylmalonic acidaemia
Tyrosinaemia

[66,67]
[69]

[68,70]
[72]

Hereditary Defects in Fatty Acid Metabolism

Defects in β-oxidation 
   MCAD deficiency
   LCHAD deficiency
   SCHAD deficiency

[75]
[76]
[78]

Disorders of Carnitine Metabolism

Primary Carnitine deficiency
(CPT- I) deficiency
CACT deficiency 

(CPT-II) deficiency 

[80]
[82]
[83]

[84,85]
Disorders of mitochondrial metabolism ETF deficiency / ETFDH deficiency [86]

Disorders of Ketone body synthesis and utilisation

HMG Co A synthase deficiency
HMG Co A lyase deficiency

β-ketothiolase deficiency
SCOT deficiency

[89]
[90]
[92]

[94,95]

Syndromes Associated with Hypoglycaemia

Beckwith-Wiedemann Syndrome (BWS) 
Laron syndrome

Glucocorticoid Resistance syndrome
Leprechaunism

Rabson-Mendenhall syndrome
Sotos syndrome

Timothy syndrome

[96]
[98]
[99]
[100]
[100]
[104]
[105]

Miscellaneous disorders Defects in Citrin metabolism
Activating AKT2 mutations

[108]
[110]

Table 1: Genetic causes of hypoglycaemia.
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multiple pituitary hormone deficiency. CPHD may also occur as a 
component of one of several mid-line defect syndromes like Septo-
optic Dysplasia (SOD). Hypoglycaemia is common in the newborn 
period due to deficiency of the counter-regulatory hormones such as 
Growth Hormone (GH) and adrenocorticotropic hormone (ACTH) 
[6,7,20]. CPHD presents with hypoglycaemia, hypothyroidism and 
microphallus in a neonate [21]. The PIT-1 gene on chromosome 
3p11.2 is a pituitary-specific transcription factor necessary for the 
development of somatotroph, lactotroph, and thyrotroph lineages 
[22]. Mutations of PIT-1 are associated with deficiencies of GH, 
prolactin, and TSH. The LHX4 gene on chromosome 1q25.2 encodes 
the LHX4 protein, which is needed for the expression of other pituitary 
transcription factors including LHX3 (gene on chromosome 9q34.3). 
Mutations of LHX4 lead to autosomal dominant CPHD. The PROP-1 
protein has both DNA binding and transcription activation ability and 
its expression allows pituitary ontogenesis. Mutations of PROP-1 (gene 
on chromosome 5q35.3) are also associated with CPHD. Homozygous 
inactivating mutations in HESX1 gene (chromosome 3p14.3) produce 
a complex phenotype with pituitary hypoplasia that resembles septo-
optic dysplasia [23,24].

ACTH deficiency: Isolated ACTH deficiency is a rare disorder 
causing severe hypoglycaemia due to secondary adrenal insufficiency 
with low or absent cortisol and normal levels of other pituitary 
hormones. It can present in infancy following specific genetic 
mutations, pro-opiomelanocortin (POMC on chromosome 2p23.3) or 
T-box transcription factor (TPIT) mutations. Both POMC and TPIT 
mutations are inherited as autosomal recessive (AR) traits. Complete 
loss of POMC-derived ACTH occurs with loss-of-function mutations 
of the POMC gene, whereas inactivating TPIT mutations disrupt 
terminal differentiation of corticotropic cells specialized in POMC gene 
expression resulting in severe hypoglycaemia and seizures [25-27].

Isolated GH deficiency: Genes involved in the aetiology of isolated 
GH deficiency include those that encode GH, growth-hormone-
releasing hormone receptor (GHRHR) and transcription factor SOX3 
[28]. GH deficiency causes hypoglycaemia due to the absence of its 
counter-regulatory role in glucose homeostasis.

Congenital glucagon deficiency: There are few clinical reports 
of glucagon deficiency due to absence of α-cells in the pancreas [29]. 
Being a counter-regulatory hormone, glucagon deficiency might result 
in severe hypoglycaemia, however no human case of genetically proven 
glucagon deficiency has yet been reported. 

Cortisol deficiency: Primary adrenal insufficiency or Addison’s 
disease can occur in isolation or as part of a syndrome with 
hypoglycaemia. Type 1 autoimmune polyendocrinopathy syndrome 
(APS1: adrenocortical insufficiency, candidiasis, ectodermal dysplasia) 
has a childhood onset and is recessively inherited. APS1 is caused by 
mutation in the autoimmune regulator gene (AIRE) on chromosome 
21q22.3. Isolated autoimmune Addison’s disease and type 2 
autoimmune polyendocrinopathy syndrome (APS2: adrenocortical 
insufficiency, thyroid disease, type 1 diabetes) have complex multigenic 
inheritance. The major susceptibility loci for APS2 are within the MHC 
region of chromosome 6p21, CTLA4 (2q33) and PTPN22 (1p13). In 
recent years additional loci in CYP27B1, FCRL3 and CIITA have been 
reported [30,31].

Congenital adrenal hyperplasia (CAH): CAH encompasses a 
group of AR disorders, characterised by deficiency of enzymes involved 
in the synthesis of cortisol and aldosterone. Clinical features include 
hyponatraemia, hypotension, hypoglycaemia and ambiguous genitalia. 

The most common enzyme deficiencies are 21-hydroxylase and 
11β-hydroxylase. Genetic mutations are identified in the gene locus/
chromosome as shown in [32-36].

Adrenal hypoplasia congenita (AHC): AHC is a genetically 
inherited combined glucocorticoid and mineralocorticoid deficiency 
with hypogonadotropic hypogonadism. Clinical signs and symptoms 
in infants with AHC include failure to thrive, vomiting, dehydration, 
and hyperpigmentation. Salt wasting (hyponatraemia), hyperkalaemia, 
metabolic acidosis, and hypoglycaemia are common. AHC affects 
primarily boys and is caused by mutation of the DAX1 (NR0B1) gene 
on chromosome Xp21.2 [37].

Familial glucocorticoid deficiency (FGD): FGD is an AR 
inherited isolated deficiency of glucocorticoids with elevated ACTH 
and normal aldosterone and renin levels. Pathologic evaluation of 
children affected with this disorder reveals that the zona glomerulosa 
of the adrenal glands is well preserved. The zona fasciculata and zona 
reticularis are markedly atrophic. Common clinical presentations of 
FGD include hypoglycaemia, seizures and increased pigmentation. 
FGD can be caused by mutations in the genes MC2R (FGD type 1), 
MRAP (FGD type 2), STAR and MCM4 mapped on chromosomes 
18p11.21, 21q22.11, 8p11.23, 8q11.21 respectively [38]. 

Dopamine β-hydroxylase deficiency: Dopamine β-hydroxylase 
(DβH) deficiency is a very rare form of AR inherited primary autonomic 
failure, characterised by a complete absence of noradrenaline and 
adrenaline and increased plasma dopamine levels [39]. Symptoms can 
begin at birth with hypotension, hypothermia and hypoglycaemia. 
Older children have reduced ability to exercise because of autonomic 
maladaptation with exertion. This rare genetic disease is caused by 
mutations in the DBH gene, mapped to chromosome 9q34, encoding 
this key enzyme in noradrenaline synthesis [40]. 

Disorders of hepatic glycogen synthesis and release 

The Glycogen Storage Disease (GSD) types I, III, VI, IX and 0 affect 
glucose homeostasis and presents typically with fasting hypoglycaemia 
and hepatomegaly [41]. Table 2 summarise the GSD’s which cause 
hypoglycaemia.

GSDI-Von Gierke Disease: GSD type Ia is the most common 
and severe form of glycogenosis. In GSD Ia, glucose-6-phosphatase 
(G-6-Pase) is defective whereas in GSD Ib translocase that transports 
glucose-6-phosphate across the microsomal membrane is defective. 
Patients with GSD Ia present clinically with hepatomegaly and seizures 
and the biochemistry is characterised by hypoglycaemia, lactic acidosis, 
hyperuricaemia and hyperlipidaemia. Deficiency of G-6-Pase blocks 
the final steps of glycogenolysis and gluconeogenesis [41]. GSD Ia is 
caused by homozygous or compound heterozygous mutation in the 
G6PC gene, which encodes glucose-6-phosphatase on chromosome 
17q21, whereas Ib is due to mutations in the SLC37A4 gene located 
on chromosome 11q23.3. GSD Ia and b are AR disorders [42]. Carrier 
detection and prenatal diagnosis are possible for GSD type Ia [43].

GSD type III: GSD type III is caused by deficiency of glycogen 
debranching enzyme. The enzymes α(1→4)→α(1→4) glucan transferase 
and amylo-α(1→6)-glucosidase together with phosphorylase, are 
vital in degradation of glycogen. In GSD IIIa, both liver and muscle 
debrancher enzymes are deficient but in IIIb, liver enzymes alone 
are deficient. The debrancher enzyme converts glycogen to glucose-
1,6-phosphate. Deficiency leads to liver disease, hypoglycaemia 
and seizures [41]. GSD III is caused by homozygous or compound 
heterozygous mutation in the gene encoding the glycogen debrancher 
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enzyme (AGL) on chromosome 1p21.2 and is an AR inherited disease 
[44]. Using mutation analysis or DNA based linkage prenatal diagnosis 
of GSD III can be made [45].

GSD VI (Hers Disease): Hers disease is a rare form of GSD due 
to phosphorylase deficiency. Liver glycogen phosphorylase catalyses 
the rate limiting step in glycogenolysis. In patients with Hers 
disease, defective liver phosphorylase results in growth retardation, 
hepatomegaly and hypoglycaemia [41]. The phosphorylase enzyme 
is found in the liver and in red blood cells. GSD VI is caused by 
homozygous or compound heterozygous mutation in the PYGL gene 
on chromosome 14 and is an AR inherited disease [46].

GSD IXb, c: GSD IX is due to phosphorylase kinase deficiency. 
A cascade of enzymatic reactions involving adenylate cyclase, cyclic 
AMP dependent protein kinase and phosphorylase kinase activates 
phosphorylase, the rate-limiting enzyme of glycogenolysis. This cascade 
of reactions is stimulated primarily by glucagon. Both GSD IXb and c 
forms present with hepatomegaly, hypoglycaemia, liver dysfunction, 
fasting ketosis and hypotonia [41,47]. GSD IXb and c are AR inherited 
and is caused by mutation in the PHKB and PHKG2 genes encoding 
phosphorylase kinase on chromosome 16 [48,49].

GSD 0: Glycogen synthetase deficiency appears in childhood with 
fasting hypoglycaemia and ketosis. In patients with GSD disease type 0, 
fasting hypoglycaemia occurs within a few hours after a meal because 
of the limited stores of hepatic glycogen. Feeding relieves symptoms 
but postprandial hyperglycaemia and hyperlacticacidaemia occurs 
[41]. Unlike other forms of GSD, moderately decreased glycogen 
stores in the liver characterise this type of GSD. Symptoms range from 
asymptomatic hyperglycaemia to recurrent hypoglycaemic seizures 
[50]. AR mode of inheritance has been described in GSD 0 and the 
gene is mapped to GYS2 locus on chromosome 12 [51].

Disorders of Fructose Metabolism
Hereditary Fructose Intolerance (HFI)

Unlike glucose, fructose can enter the cells in the absence of insulin 
via the fructose transporter GLUT5. The liver enzyme fructokinase 
phosphorylates fructose to fructose-1-phosphate (F-1-P), which 
undergoes hydrolysis (by Aldolase B) to form dihydroxyacetone 
phosphate (DHAP) and glyceraldehyde. Glyceraldehyde then 
undergoes phosphorylation to glyceraldehyde-3-phosphate. The latter 
and DHAP in higher concentration enter the gluconeogenic pathway 

through fructose-1-6 bisphosphate by the action of aldolase A (Figure 
3). Aldolase B is an essential enzyme in the process of gluconeogenesis. 
The absence of this enzyme explains the clinical hypoglycaemia in 
HFI. Deficiency of aldolase B leads to accumulation of F-1-P [52]. 
Symptoms begin with ingestion of fructose with jaundice, vomiting, 
lethargy, irritability, convulsions with severe hypoglycaemia. HFI is an 
AR disease caused by impaired functioning of human liver aldolase B 
due to mutations in ALDOB gene on chromosome 9q22.3. At least 54 
subtle/point mutations and two large intragenic deletions have been 
found in the ALDOB gene [53].

Disorders of Gluconeogenesis
Fructose-1,6-bisphosphatase deficiency

Fructose-1,6-bisphosphatase catalyses the conversion of fructose-
1,6-bisphosphate to fructose-6-phosphate. A deficiency of fructose-
1,6-bisphosphatase impairs the formation of glucose from all 
gluconeogenic precursors. Patients present biochemically with fasting 
hypoglycaemia and lactic acidosis. Diagnosis can be confirmed by 
measuring the enzyme activity in liver biopsy tissue. Incidence of 
fructose-1,6-bisphosphatase deficiencies is 1 in 20,000 live births [54]. 
The gene coding for fructose-1,6-bisphosphatase (FBP1) is located on 
chromosome 9q22; mutations are characterized, making the carrier 
detection and prenatal diagnosis possible [55].

Phosphoenolpyruvate carboxykinase deficiency (PEPCK)

PEPCK deficiency is a rare disease. PEPCK is an essential enzyme 
in gluconeogenesis which catalyzes the conversion of oxaloacetate 
to phosphoenolpyruvate. In the face of PEPCK deficiency patient 
presents with hypoglycaemia, lactic acidaemia, hepatomegaly, 
hypotonia and developmental delay [56]. Diagnosis can be made on 
the basis of reduced PEPCK activity in liver. PEPCK deficiency is 
both a mitochondrial and cytosolic enzyme deficiency, encoded by 2 
distinct genes on chromosome 14q11.2-q12 (PCK2 gene) and 20q13.31 
(PCK1gene) respectively [57,58].

Pyruvate carboxylase deficiency

Pyruvate, lactate and alanine enter the first enzymatic step of 
gluconeogenesis in the presence of pyruvate carboxylase. Clinical 
features of pyruvate carboxylase deficiency include hypoglycaemia 
severe developmental delay, necrotising encephalopathy, and death in 
early infancy. Biochemical manifestations include metabolic acidosis, 
ketonuria, and elevated plasma concentrations of lactate, pyruvate, and 

Disorders  Enzyme deficienc Clinical features Gene/locus   
Chromosome

GSDIa/
Von Gierke Glucose-6-phosphatase Severe hypoglycaemia, Hepatomegaly, 

elevated lactate, lipids 
G6PC gene 

17q21 [42]

GSD Ib Glucose-6-phosphate translocase Same as GSD Ia with neutropenia and
 impaired neutrophil function

SLC37A4
11q23.3 [43]

GSD IIIa/Cori Amylo,1,6 glucosidase
(Liver and muscle)

Hepatomegaly, muscle weakness, 
hypoglycaemia, hyperlipidaemia

AGL
1p21.2 [44]

GSD IIIb Amylo,1,6 glucosidase
(Liver only)

Hepatomegaly, hypoglycaemia,
hyperlipidaemia

AGL
1p21.2 [44]

GSDVI/Hers disease Liver phosphorylase Hepatomegaly and mild to moderate hypoglycaemia PYGL
14q22.1 [46]

GSD IXb Phosphorylase kinase
(Liver and muscle)

Hepatomegaly and mild hypoglycaemia 
on prolonged fasting

PHKB
16q12.1 [48,49]

GSD IXc Phosphorylase kinase deficiency, Liver/Testis Hepatomegaly, recurrent hypoglycaemia,
Liver cirrhosis

PHKG2
16p11.2 [48,49]

GSD 0 Glycogen synthetase deficiency Hypoglycaemia and hyperketonaemia GYS2
12p12.1 [51]

Table 2: Glycogen storage disorders presenting with hypoglycaemia.
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alanine. The long-term prognosis is poor [59]. Pyruvate carboxylase 
deficiency is caused by missense mutation in PC gene on chromosome 
11q13.2 [60].

Disorders of Galactose Metabolism
Galactosaemia 

Lactose, a disaccharide present in the milk, is hydrolysed by 
intestinal lactase to glucose and galactose. Galactokinase phosphorylates 
galactose to galactose-1-phosphate, which in turn forms UDP-
galactose in the presence of galactose-1-phosphate uridyltransferase 
(GALT). Finally epimerase interconverts UDP galactose to UDP 
glucose. Galactosaemia cause severe hypoglycaemia in the neonatal 
period following ingestion of milk feeds. Classic form of galactosaemia 
designates complete GALT deficiency and characterized by Jaundice, 
hepatomegaly, vomiting, seizures, cataracts and mental retardation. 
Epimerase deficiency has two distinct forms of galactosaemia: benign 
form where the enzyme is deficient in the erythrocytes and leukocytes 
whereas in the severe form the enzyme deficiency is generalized and 
they resemble GALT deficient type of galactosaemia [61]. 

All three forms of Galactosaemia are AR inherited. Galactokinase 
deficiency is caused by mutations in the GALK1 gene on chromosome 
17q25.1 [62] whereas mutations in GALT gene on chromosome 9p13.3 
cause GALT deficient type of galactosaemia [63]. Epimerase deficient 
galactosaemia is due to homozygous or compound heterozygous 
mutation in GALE gene on chromosome 1p36. Carrier testing and 
prenatal diagnosis can be done by direct enzyme analysis of chorionic 
villi or amniocytes [64].

Hereditary Defects in Amino Acid Metabolism
Maple Syrup Urine Disease (MSUD) 

MSUD, propionic acidaemia and methylmalonic acidaemia are 
due to defects in degradation of branched chain amino acids causing 
accumulation of organic acids. Human branched chain α-ketoacid 
dehydrogenase (BCKDH) causes decarboxylation of leucine, isoleucine 
and valine using thiamine pyrophosphate as a coenzyme. This 
mitochondrial enzyme complex has for subunits: E1α, E1β, E2 and E3. 
A deficiency of this enzyme causes MSUD and inhibits the entry of the 
branched chain amino acids into gluconeogenesis through Krebs cycle. 
Affected Infants develop vomiting, lethargy, hypoglycaemia, metabolic 
acidosis and seizures by first week of life [65]. The urine smell of maple 
syrup, elevated plasma and urine levels of branch chain amino acids 
will make the diagnosis. The prevalence is estimated at 1 in 185,000 
live births. MSUD is an AR inherited disorder, mutations in E1α, E1β, 
E2 and E3 genes with loci on chormosome19q13.1, 6q14.1, 1p21.2 and 
7q31-q32 respectively, cause the disease [66,67]. 

Propionic acidaemia

Propionic acid is an intermediate metabolite of isoleucine, valine, 
threonine and methionine. These amino acids are carboxylated to 
methylmalonic acid by the mitochondrial enzyme propionyl CoA 
carboxylase (subunits α and β) in presence of cofactor biotin; deficiency 
blocks the entry of these amino acids into gluconeogenic pathway. 
Clinical features are similar to MSUD. In addition to hypoglycaemia, 
acidosis and ketosis these patients will have hyperglycinaemia [68]. 
Incidence varies from 1:2000 to 1:5000 live births.  Propionic acidaemia 
is an AR inherited disorder following mutations in genes for α (PCCA 
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gene) and β (PCCB gene) subunits mapped to the chromosomes 13q32 
and 3q21-q22 respectively [69]. 

Methylmalonic acidaemia

Methylmalonic acid is derived from the propionic acid. 
Methylmalonic acid is converted to succinic acid by enzyme, 
methylmalonyl CoA mutase in presence of coenzyme 
adenosylcobalamin, deficiency of which inhibits amino acids from 
entering the gluconeogenic pathway. Its clinical features are variable 
with normal to severe forms having lethargy, vomiting, hypotonia, 
seizures and coma. Anaemia, neutropenia, thrombocytopenia, 
hyperglycinaemia, hyperammonaemia and hypoglycaemia are 
common. Diagnosis can be confirmed by measuring propionate 
incorporation or mutase activity in cultured fibroblasts or by identifying 
the gene (MUT gene) mutation on chromosome 6p12.3 [68,70].

Tyrosinaemia 

Three enzyme deficiencies cause tyrosinosis but only 
fumarylacetoacetate hydrolase (FAH) deficiency (type I) presents 
with hypoglycaemia. Fumarate in the tyrosine metabolic pathway is 
converted from fumaryl acetoacetate by FAH, deficiency results in 
accumulation of succinyl acetone in blood and urine (Figure 4). In 
the absence of fumarate, tyrosine does not enter the Krebs cycle and 
gluconeogenic pathway [71]. The elevated levels of succinyl acetone 
in serum and urine confirm the diagnosis. Tyrosinaemia type 1 is an 
AR trait. The gene for FAH has been mapped to choromosome15q, 
mutation resulting in tyrosinaemia [72]. 

Hereditary Defects in Fatty Acid Metabolism
Normal fatty acid metabolic pathway 

Free fatty acids (FFA) are important substrates for ketogenesis 
to provide the brain with an “alternative fuel” source and for 
gluconeogenesis during the fasting state, especially after hepatic 
glycogen stores are depleted. During lipolysis, triglycerides are 
converted into fatty acids and glycerol. The FFAs in the blood stream 
are taken up by muscle and are converted to acyl-CoA by acyl-CoA 
synthetase. The process of β-oxidation converts the long carbon chains 
of FFAs to acetyl-CoA, which then enter the Krebs cycle. The “carnitine 
shuttle”, catalysed by carnitine palmitoyltransferase-I and II (CPT- I 
and II), allows acyl-CoA to penetrate the outer and inner mitochondrial 
membranes respectively, facilitated by the inner membrane exchange 
transporter, carnitine-acylcarnitine translocase. Once inside the 
mitochondrial matrix, acetyl-coA is generated by β-oxidation of 
acyl-CoA via a 4-step process involving dehydrogenation, hydration, 

oxidation and thiolysis. Acetyl-CoA enters the Krebs cycle. The NADH 
and FADH2 produced by both fatty oxidation and in Krebs cycle are 
used by electron transport chain to produce ATP (Figure 2) [9]. 

Defects in β-oxidation causing hypoglycaemia

Medium-chain Acyl Co-A Dehydrogenase (MCAD) deficiency : 
The enzyme MCAD is responsible for the dehydrogenation step of fatty 
acids as they undergo β-oxidation to acetyl CoA in the mitochondria, 
providing energy after glucose and glycogen stores are exhausted 
[73] (Figure 2). Acetyl-Co A enters the Krebs cycle and when the 
capacity of Krebs cycle to metabolize acetyl-Co A exceeds so they are 
then converted to ketone bodies. In MCAD deficiency, the patient on 
prolonged fasting or illness develops hypoketotic hypoglycaemia. This 
usually presents in the first 3 years of life with vomiting, seizures and 
coma. Elevated ammonia levels, increased plasma C8:0, C10:0 and C10:1 
acylcarnitines and acylglycines are diagnostic markers [74]. MCAD 
is an AR inherited disorder. MCAD gene (ACADM gene) has been 
mapped on chromosome 1p31.1. Prenatal diagnosis can be made by 
demonstration of marked reduction in octanoate oxidation in cultured 
amniotic cells and enzyme assay of skin fibroblasts from the aborted 
foetus [75].

Long-chain 3-hydroxyacyl Co-A Dehydrogenase (LCHAD) 
deficiency: As in MCAD deficiency, LCHAD deficiency causes 
restriction of β-oxidation resulting in increased oxidation of glucose 
as a respiratory fuel to meet the demands for energy. If the reserves 
of glycogen are limited, this may result in severe hypoglycaemia. 
Clinical manifestations are severe hypoketotic hypoglycaemia and 
cardiomyopathy; typically appear for the first time after a fast. An 
elevated level of 3 hydroxy-acyl carnitine in blood spot or plasma is 
diagnostic [73]. LCHAD deficiency is an AR disorder with the gene 
(HADHA gene) located on chromosome 2p23.3. Prenatal diagnosis is 
possible by mutation analysis [76].

Short-chain 3-hydroxyacyl-CoA Dehydrogenase (SCHAD) 
deficiency: SCHAD deficiency is a rare fatty acid oxidation disorder 
presenting with hyperinsulinaemic hypoketotic hypoglycaemia. Most 
patients present with vomiting and seizures due to hypoglycaemia 
and unexpected deaths have been reported. SCHAD deficiency causes 
hyperinsulinism by activation of glutamate dehydrogenase (GDH) via 
loss of inhibitory regulation of GDH by SCHAD [77]. In some patients 
elevated levels of hydroxybutyryl-carnitine which might help with the 
diagnosis. Measurement of SCHAD activity in fibroblasts allows the 
diagnosis of affected individuals. SCHAD deficiency is an AR inherited 
disorder, caused by mutations in HADH gene located on chromosome 
4q25 [78].

Disorders of Carnitine Metabolism
Primary carnitine deficiency

Primary carnitine deficiency is an AR disorder of fatty acid 
metabolism due to deficiency of functional organic cation transporters. 
Clinical features include lethargy, refusal of feeds, hepatomegaly, 
cardiomyopathy, hypotonia and rapid deterioration to coma and 
death. Biochemical analysis shows hypoketotic hypoglycaemia, 
hyperammonaemia and deranged liver function tests. Diagnosis is 
based on markedly reduced serum acylcarnitine and raised urinary 
carnitine levels [79]. Demonstrating reduced carnitine transport in skin 
fibroblasts from the patient confirms the diagnosis. Primary systemic 
carnitine deficiency is caused by mutations in the SLC22A5 gene, 
which encodes the sodium ion-dependent organic cation\carnitine 
transporter (OCTN2), mapped on chromosome 5q31.1 [80].

Tyrosine metabolism

Tyrosine → 4 Fumarylacetoacetate → FAH → Fumarate + Acetoacetate

Krebs cycleSuccinylacetone 

Figure 4: Outline of tyrosine metabolism. Fumarylacetoacetate formed in the 
process of tyrosine metabolism is broken down to fumarate and acetate by 
fumarylacetoacetate hydrolase (FAH). Acetoacetate, a ketone body, can be 
converted to acetyl-CoA, which in turn can enter Krebs cycle. Deficiency of 
FAH results in accumulation of succinyl acetone and causes the symptoms 
of Tyrosinaemia type 1.
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Carnitine Palmitoyltransferase-I (CPT-I) deficiency

CPT-I deficiency presents with hepatic encephalopathy and severe 
hypoketotic hypoglycaemia precipitated by fasting or fever. Marked 
elevation of free carnitine level is characteristic of CPT-I deficiency [81]. 
The CPT-I enzyme defect can be demonstrated in cultured fibroblasts 
or lymphoblasts. Mutations in CPT-I gene lead to CPT-I deficiency and 
the gene is located on chromosome 11q13.3. Molecular genetic testing 
and biochemical analysis of cells obtained through chorionic villus 
biopsy or amniocentesis can facilitate prenatal diagnosis [82].

Carnitine-acylcarnitine Translocase – CACT deficiency 

CACT is an inner mitochondrial membrane carrier protein for 
acylcarnitine, a deficiency of which will prevent the entry of long-chain 
fatty acids into the mitochondria for fatty acid oxidation.  Patients 
usually present with fasting hypoglycaemia, hyperammonaemia and 
cardio respiratory collapse [79,83]. Diagnosis can be made using 
cultured fibroblasts or lymphoblasts. CACT deficiency is caused by 
mutations in the SLC25A20 gene on chromosome 3p21.31 [83].

Carnitine palmitoyltransferase II (CPT-II) deficiency

Severe forms CPT-II deficiency leads to neonatal deaths with subtle 
dysmorphism, kidney and cerebral malformations. Lethal neonatal 
form and severe infantile form, both symptomatic with hypoketotic 
hypoglycaemia, hyperammonaemia may succumb to cardiorespiratory 
collapse. A late onset form presents with rhabdomyolysis, 
myoglobinuria and elevated creatinine kinase levels following exercise 
[81]. Demonstrating deficient enzyme activity in cultured fibroblast 
can make diagnosis. CPT-II gene is located on chromosome 1p32.3, 
mutation in which lead to CPT II deficiency. Molecular genetic testing 
using DNA obtained by amniocentesis or biochemical testing of 
amniocytes for CPT-II activity is diagnostic [84,85]. 

Disorders of Mitochondrial Metabolism
A large number of mitochondrial disorders can present with 

hypoglycaemia. Mitochondrial disorders usually present as a metabolic 
crisis in combination with one or several organ manifestations. 
Lactic acidosis, hypoglycaemia, elevated serum transaminases and 
conjugated bilirubin are common signs of mitochondrial hepatopathy. 
Mitochondrial depletion syndromes caused by mutations in DGUOK, 
MPV17, SUCLG1, POLG1, or C10ORF2 have been identified that lead 
to mitochondrial hepatopathy [86]. In addition mutations in nuclear 
translation factor genes (TRMU, EFG1, and EFTu) of the respiratory 
chain enzyme complexes have recently been identified [86]. 

Disorders of Ketone Body Synthesis and Utilization

HMG-Co A synthase deficiency

HMG-Co A synthase is the rate-limiting step in the formation 
of ketones from acetyl-Co A in fatty acid beta-oxidation pathway 
[87]. This enzyme is expressed only in the liver. HMG-CoA synthase 
deficiency is an AR inherited disorder and presents with vomiting, 
lethargy, tachypnoea and dehydration to coma and possibly death. 
Hypoketotic hypoglycaemia is common. Hepatomegaly is seen with 
normal cardiac and skeletal muscle function [88]. The mutations in the 
gene for HMG-CoA synthase (HMGCS2 gene) deficiency have been 
identified on chromosome 1p13-p12 [89].  

HMG-Co A lyase deficiency

HMG-Co A lyase is a rate limiting enzyme that catalyses the 

conversion of HMG-CoA to acetoacetate. Patients with deficiency of 
HMG-Co A lyase enzyme become symptomatic in infancy or early 
childhood with vomiting, severe fasting hypoglycaemia, acidosis, 
dehydration and rapid deterioration into coma. Laboratory findings 
include acidosis mild ketosis and hyperammonaemia [87]. Diagnosis 
can be confirmed by enzyme assay in fibroblasts and leukocytes. This 
enzyme deficiency is AR inherited and the gene – HMGCL – has been 
mapped on chromosome 1p36.11. Prenatal diagnosis by assay of 
enzymes in cultured amniocytes is possible [90].

β-ketothiolase deficiency (Mitochondrial acetoacetyl CoA 
thiolase deficiency)

This enzyme deficiency causes a defect involving ketone body 
metabolism and isoleucine catabolism. Clinically β-ketothiolase 
deficiency is characterized by intermittent ketoacidotic crisis with 
normal interval periods. Clinical symptoms of ketoacidotic crisis 
include vomiting, dehydration, dyspnoea, hypotonia, lethargy, and 
convulsions and may progress to coma. Both hypo and hyperglycaemia 
and hyperammonaemia may be noted [91]. Diagnosis can be confirmed 
by assay of the enzyme in cultured fibroblasts. Mutations in ACAT1 
gene on chromosome 11q22.3 cause β-ketothiolase deficiency and are 
AR inherited [92]. 

Succinyl-CoA: 3-Ketoacid CoA Transferase –SCOT deficiency

SCOT deficiency is a ketolytic defect in which extra hepatic tissues 
cannot use the ketone bodies produced by the liver. Intermittent 
episodes of severe ketoacidosis on fasting with normal interval period 
are the characteristic feature of SCOT deficiency. Hypoglycaemia 
has been documented in these patients. Deaths have been reported 
following severe episodes of ketoacidosis. Deficient enzymatic activity 
can be shown cultured fibroblasts [93]. Genetic mutations have been 
identified on SCOT gene (OXCT1) on chromosome 5p13.1 in patients 
with this enzyme deficiency. Prenatal diagnosis can be made using 
amniocytes SCOT enzyme assay [94,95].

Syndromes Associated with Hypoglycaemia
Beckwith-wiedemann Syndrome (BWS) 

Beckwith-wiedemann Syndrome (BWS) is a human loss-of-
imprinting syndrome primarily characterized by macrosomia, 
macroglossia, abdominal wall defects and exhibits a predisposition to 
tumorigenesis. The relevant imprinted chromosomal region in BWS 
is 11p15.5, which consists of two imprinting domains, IGF2/H19 and 
CDKN1C/KCNQ1OT1 [96]. BWS has five known causative epigenetic 
and genetic alterations: loss of methylation (LOM) at KvDMR1, gain 
of methylation (GOM) at H19DMR, paternal uniparental disomy, 
CDKN1C mutations and chromosomal rearrangements [96]. BWS is 
the commonest syndrome associated with HH. Hypoglycaemia occurs 
in about 50% of children with BWS and, in the majority of infants, 
it resolves spontaneously. However, in a small group of patients the 
hypoglycaemia can be persistent and may require pancreatectomy. The 
mechanism of persistent HH in patients with BWS is unclear [97].

Laron syndrome

Laron syndrome (primary growth hormone resistance or 
insensitivity) is characterised by short stature associated with normal 
or high serum growth hormone (GH) and low serum insulin-like 
growth factor-1 (IGF1) levels, which fail to rise after exogenous 
GH administration. In the neonatal period they often present with 
hypoglycaemia and micropenis. Hypoglycaemia is common in the 
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infancy and childhood periods. Clinical features include protruding 
and high forehead, shallow orbits, hypoplastic nasal bridge and small 
chin. They have relative obesity and the puberty is often delayed. Laron 
syndrome is due to mutations in the GHR gene (5p13-p12), resulting 
in low growth hormone binding protein levels and defective IGF-I 
production. Transmission is AR. A Laron syndrome-like phenotype 
with associated with immunodeficiency is due to gene dysfunction 
of the signal transducer and activator of transcription 5b (STAT5b).  
Mutations in STAT5b have also been observed in typical Laron 
syndrome [98].

Primary Generalised Glucocorticoid Resistance (PGGR)

PGGR causes a glucocorticoid action defect, characterised by 
activation of the hypothalamic-pituitary-adrenal (HPA) axis, elevated 
levels of corticotropin-releasing hormone and adrenocorticotropic 
hormone and high levels of adrenal cortical hormones. Chronic fatigue 
is the presenting feature in some patients and profound hypoglycaemia 
has been reported in those with complete glucocorticoid resistance. 
Clinical manifestations of mineralocorticoid excess (hypertension, 
hypokalaemic alkalosis) and androgen excess (ambiguous genitalia, 
gonadotropin-independent precocious puberty) are often seen. PGGR 
is primarily due to mutations in the hGR (human glucocorticoid 
receptor) gene, located on the long arm of chromosome 5 (q31.3). 
The molecular mechanisms through which these hGR mutants affect 
glucocorticoid signal transduction have been identified in reported 
cases of glucocorticoid resistance [99].

Extreme insulin resistance syndromes 

Leprechaunism and Rabson-Mendenhall Syndrome are extreme 
insulin resistance syndromes that are associated with hypoglycaemia. 
They are AR inherited disorders due to mutations in the insulin 
receptor gene (INSR; 19p13.3-p13.2) [100].

Leprechaunism is the most severe form of insulin resistance; 
characterized by severe growth retardation, dysmorphism, lipatrophy 
and muscular hypotrophy. These patients experience episodes of 
hypoglycaemia due to an accelerated fasting state secondary to insulin 
resistance [101,102]. 

Rabson-Mendenhall syndrome is a rare disorder characterized by 
growth retardation, dysmorphism, enlarged genitalia, hypertrichosis, 
coarse facies, fasting hypoglycaemia, postprandial hyperglycaemia and 
extreme hyperinsulinaemia [103].

Soto’s syndrome

Soto’s syndrome is characterised by a typical facial appearance, 
overgrowth and learning disability that may be mild to severe. Neonatal 
hypoglycaemia has been reported in 2-15% of Soto’s syndrome cases. 
Soto’s syndrome is caused by heterozygous mutation in the NSD1 gene 
or by a deletion in the 5q35 region including genomic sequence in 
addition to the NSD1 gene [104].

Timothy syndrome

Timothy syndrome is a calcium channelopathy characterised by 
cardiac, hand, facial and autism caused by mutations in the CaV1.2 
L-type calcium channel gene, CACNA1C mapped on 12p13.33. These 
patients suffer from intermittent hypoglycaemia (HH) and death 
usually follows severe ventricular tachyarrythmia [105].

Miscellaneous Disorders
Defects in citrin metabolism

Citrin is the hepatic mitochondrial aspartate glutamate carrier. 
Citrin deficiency is an AR genetic disorder causing metabolic 
derangements in aerobic glycolysis and gluconeogenesis. The citrin 
protein transports aspartate from mitochondria to cytoplasm which 
is essential for converting citrulline to arginosuccinic acid. Therefore, 
deficiency of citrin disrupts the urea cycle. Clinical manifestations 
include neonatal intrahepatic cholestasis (NICCD), failure to thrive 
and dyslipidaemia due to citrin deficiency (FTTDCD) and recurrent 
hyperammonaemia [106,107]. Hypoglycaemia is consistent in both 
NICCD and FTTDCD. A diagnosis of citrin deficiency can be made 
with the elevated plasma levels of ammonia, citrulline and arginine. A 
biallelic mutation in SLC25A12 gene on chromosome 7q21.3 confirms 
the diagnosis [108].

AKT2 mutations causing hypoglycaemia

AKT (Protein Kinase B) plays a key role in multiple cellular 
processes such as glucose, lipid and amino acid metabolism, cell 
division and apoptosis. AKT2 is more specific for the insulin receptor-
signalling pathway and activation of AKT2 mediates the effects of 
insulin on body tissues. Gain-of-function AKT2 mutations result in 
severe hypoglycaemia by inhibiting hepatic glucose production. These 
patients have severe fasting hypoglycaemia requiring continuous 
gastric feeding to maintain normal plasma glucose levels. Their 
biochemical picture resembles hyperinsulinaemic hypoglycaemia 
(hypoketonaemia, low serum fatty acids and low levels of branched 
chain amino acids) except for undetectable plasma insulin levels. The 
mutation leads to glutamate-to-lysine substitution at position 17 in the 
pleckstrin homology domain of AKT2 and results in constitutive plasma 
membrane localization and activated signalling. AKT2 gene has been 
mapped on chromosome 19q13.1-q13.2 causing hypoinsulinaemic 
hypoglycaemia with hemi-hypertrophy (HIHGHH) [109,110].
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