
Review Article Open Access

Dabernat et al., J Genet Syndr Gene Ther 2013, 4:4 
DOI: 10.4172/2157-7412.1000138

Volume 4 • Issue 4 • 1000138Suicide Gene Therapy of Cancer
J Genet Syndr Gene Ther
ISSN: 2157-7412 JGSGT, an open access journal 

Keywords: Pancreas; Adenocarcinoma; Gene therapy; Suicide gene;
Targeted therapy 

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive 

cancer with a high mortality rate in a time window very near the 
discovery of the disease. Due to the lack of specific symptoms, the 
diagnosis is delayed and PDAC is usually detected at an advanced stage of 
the disease. The prognosis of patients with pancreatic adenocarcinoma 
is very poor and not improved by the usual chemotherapies, even after 
surgical resection of the tumor [1]. The 5-year survival is <5%. Surgery 
offers the only long term survival, but only to a limited number of 
patients (10 to 20%). Unfortunately, even when resection is possible, a 
large number of patients show recurrence of the disease suggesting the 
presence of undetectable micrometastases at the time of surgery [2]. 
Gemcitabine is the standard first-line chemotherapy since it improves 
the disease-related symptoms and doubles the survival rate for 18% 
of the patients [1]. More recently, folfirinox regimen (Irinotecan + 
Oxaliplatine + 5-Fluorouracyl) improved the overall survival of patients 
with pancreatic cancer, but the side toxicity is still debated to conclude 
whether or not it is preferable to gemcitabine alone [3]. A recently 
reported clinical trial shows that it does improve quality of life [4]. 
Thus, it appears that current therapeutic options for pancreatic cancer 
are very limited and at best, only improve the palliative treatment of 
the disease.

The success of targeted therapies in other cancers supported 
extensive efforts made to identify adjuvant or neoadjuvant therapies 
capable of improving the prognosis of PDAC, based on the molecular 
targets involved in cancer progression. Unfortunately, phase III studies 
have shown limited or even no improvement in patient survival 
in combination with gemcitabine. For example, 90% of pancreatic 
adenocarcinomas are mutated in KRAS, locked into its active form, 
bound to GTP. Tipifarnib, an inhibitor of farnesyl transferases, used 
with gemcitabine, however, failed to improve patients overall survival in 
phase III trials [5]. Thus far, only erlotinib, an inhibitor of the Epidermal 
Growth Factor (EGF) receptor 1 has shown moderate improvement in 
patient survival in combination with gemcitabine. However, in phase 
III clinical trials, the overall survival was raised of only 0.33 month 
(about 10 days, [6]). The Vascular Epithelial Growth Factor (VEGF) 
was targeted with its monoclonal antibody bevacizumab but modest 
increase of median survival was achieved and phase III trials were 
terminated early because of lack of benefits of the treatment [7]. Other 

targets are under current phase II trials such as inhibitors of hedgehog 
pathway, inhibitors of SRC or mTOR, associated with new means of 
drug delivery such as endoscopy ([8] for review). The prognosis is 
worsened by the lack of benefits of neoadjuvant or adjuvant therapies 
involving radiations [1]. 

Because other therapeutic options failed to be efficient in controlling 
the progression of pancreatic cancers, the field of cancer gene therapy 
is currently in an active state of preclinical and clinical investigations 
for this disease. Gene therapy needs to consider concomitantly aspects 
of safety, specificity and efficiency. The therapy should be specific of 
the tumor cells, sparing the normal cells. Moreover, the system should 
reach high numbers of tumor cells to hopefully induce sufficient toxicity 
to stop the progression of the tumor and hopefully induce regression. 
To meet these goals, efforts have been focused on choosing the proper 
therapeutic gene and the safest delivery system. 

Correcting altered genes

One approach is to design gene therapy of pancreatic 
adenocarcinoma based on genetic alterations found in the disease 
(Figures 1a and 1b). This implies characterization of each tumor at 
the molecular level before therapy is chosen if most common genetic 
alterations are not targeted. It was tried to restore the lost expression 
of a tumor suppressor or to inhibit oncogene expression in pancreatic 
tumor cells with special attention to the genes that show the highest 
frequencies of mutation in pancreatic adenocarcinoma [9]. Adenoviral-
driven expression of p16-INK4a and p53 has proven efficient in 
preclinical studies [10]. However, providing p16-INK4 alone was not 
sufficient [11]. Moreover, as p53 acts as a tetramer, the presence of a 
mutant inactive form leads to a dominant negative effect limiting p53 
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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a 5-year survival rate 

of less than 5%. The poor prognosis of the disease is associated with late diagnosis and a high degree of drug 
resistance has not been overcome during the past decades. Gemcitabine-based regimens are the first line therapy 
for advanced pancreatic cancer but are not curative. Recent new combination chemotherapies achieved significant 
benefits but toxicity makes their use controversial. Novel approaches are currently being developed; in particular 
cancer gene therapies are undergoing preclinical and clinical validation and are the topic of the present review. We 
will present different ways to design gene therapy against pancreatic cancers that have been validated in preclinical 
studies. We also reviewed the clinical trials already published or still ongoing. 
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gene restoration efficiency [12]. Restoring a wild type SMAD4 did not 
always block tumor cells [13] rendering the use of this tumor suppressor 
controversial [14]. Many oncogenes can be deregulated and/or mutated 
in pancreatic cancers. Among them, mutations in the KRAS oncogene 
occur in almost all pancreatic adenorcinomas [9]. Thus, it is tempting 
to use direct anti-KRAS strategies to inhibit tumor growth (Figure 
1b), since disappointing results have been obtained with inhibition 
of farnesyl transferases [1]. RNAi directed against mutated KRAS 
showed anti-tumor activity [15], limited the aggressive phenotype of 
the tumor cells [16] and potentiated gemcitabine antitumor activity 
[17]. Preclinical studies showed encouraging results with viral delivery 
systems such as oncolytic adenovirus [18]. However, this strategy has 
not been further tested in phase I clinical trials.

In fact, pancreatic adenocarcinomas present very complex genetic 
alterations profiles. The Pancreatic Cancer Genome project has 
analyzed 23,219 transcripts and identified an average of 63 somatic 
mutations per PDAC affecting 12 core signaling pathways and the 
overexpression of 500 different genes in 24 tumors [19]. These highly 
versatile and unpredictable molecular patterns can explain the failure 
of single gene/pathway targeted adjuvant therapies. It is now critical 
to test therapies targeting several pathways or therapies that induce 
specific tumor cell death. 

Delivering a Suicide Gene
With the suicide gene approach, a gene that encodes a protein 

triggering tumor cell death is delivered to the tumor cells (Figure 
1c). The expression of the therapeutic gene can directly kill the cells 
(diphtheria toxin, [20]), or can render the cells sensitive to certain 
otherwise non toxic prodrugs (Gene Directed Enzyme Prodrug 
Therapy, GDEPT, [21]), or based on gemcitabine association with the 

deoxycytidine kinase::uridine monophosphate kinase fusion gene [22]. 
The systemic administration of conventional chemotherapies fails to 
reach sufficiently the pancreatic tumor cells and affects the normal 
cells. The delivery of therapeutic genes directly in the tumors limits 
toxicity to normal cells while targeting more toxic drug to the tumor 
cells. Moreover, some of the GDEPTs produce locally, in the tumor, 
toxic compounds that can affect neighboring tumor cells which did not 
necessarily receive the therapeutic gene. It is called the bystander effect.

The ganciclovir (GCV, 2-amino-9[1,3-dhydroxypropan-2-
yloxymethyl]-3H-purin-6-one) is an analog to the 2’-deoxy-guanosine 
[23]. The thymidine kinase (TK) from Herpes Simplex Virus 1 (HSV-
1) shows high activity to monophosphorylate GCV, which is in turn 
phosphorylated into triphosphate GCV by cellular kinases. The GCV 
triphosphate is incorporated in place of dGTP during DNA replication 
leading to DNA polymerase inhibition, double strand breaks and 
apoptosis [24]. Bystander effect is observed and is dependent on 
connections through gap junctions between tumor cells. Preclinical 
studies have demonstrated efficiency of GCV/TK when delivered 
through various ways such as adenovirus [25], liposomes [26], 
adenovirus and retrovirus [27,28], oncolytic adenovirus [29]. Recently, 
we published a report showing the delivery of the HSV-TK gene with 
a lentivirus pseudotyped to target tumor-specific cell surface antigens 
[30]. In particular, we showed that the MUCIN-4 antigen was a potent 
molecule to target anti-cancer therapies for PDAC. 

5-Fluorouracile (5-FU) is a chemotherapeutic agent used against 
pancreatic adenocarcinoma despite severe side effects such as myelo-
suppression, dermatoses, diarrheas, or cardiac complications. To limit 
these collateral damages, it is possible to use gene therapy transferring 
the prokaryotic or yeast cytosine deaminase (CD) able to convert 
the non toxic 5-Fluorocytosine (5-FC) into toxic 5-FU [21]. Cellular 
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Figure 1: Different approaches of gene therapy in pancreatic cancers: (a) the vector carries the wild type (WT) version of a tumor suppressor gene lost in the tumor 
(b) The expression of an oncogene active in the tumor is suppressed by RNA interference or by the expression of a dominant negative form of the oncogene (c) A 
suicide gene toxic for the tumor cells is delivered in the tumor cells. The suicide gene might activate a non toxic prodrug within the tumor vicinity.  A bystander effect 
might kill the neighboring cells (d) Immunogenic genes are delivered in the tumor cells or in immune cells to trigger tumor-directed immune responses.
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enzymes convert the 5-FU into 5-Fluorouridine-5’-triphosphate (5-
FUTP). 5-FUTP inhibits nuclear to cytoplasm shuttling of RNAs. 
More importantly, 5-FUTP inactivates irreversibly the thymidylate 
synthase, limiting the cell supply in dTTP, which forces the 5-FUTP 
to be incorporated into the DNA where it causes damages to the 
genome followed by apoptosis [31]. 5-FU also shows bystander effect 
with simple diffusion of the compound in the vicinity of the tumor, 
which does not need gap junctions between the cells as for the GCV/TK 
system [32]. Multiple transfections of CD into the BxPC-3 pancreatic 
cell line grown into tumors in immune-deficient mice followed by 5-FC 
administration inhibited tumor growth [33]. Adenoviral CD transfer 
combined with Death Receptor 5 (DR5) antibody treatment produced 
additive cytotoxic effect in xenografts models [34]. The development 
of a mutant bacterial CD carried by an adenovirus gave encouraging 
results when combined to radiotherapy [35] as already demonstrated 
under hypoxic conditions [36]. Finally, a recent publication assessed 
the sensitivity of several pancreatic cell lines to 5-FC/CD in vitro 
and showed that the cells expressing CD were killed by clinical-
relevant doses of 5-FC [37]. However, in vitro transfer of CD and 
FUR1, encoding uracil phosphoribosyl transferase (UPRT), in several 
pancreatic cancer cell lines resulted in various sensitivity to prodrug 
treatment, suggesting that this therapy has little chance to work in vivo 
[38]. This is in agreement with previous clinical data obtained with 
5-FU that was found a less potent therapeutic option than gemcitabine 
[1]. It might be the reason why we did not find any clinical trials 
completed or ongoing testing the couple 5-FC/CD GDEPT.

Cyclophosphamide (CPA) is a prodrug wildly used to treat cancers. 
It is turned in 4-hydroxyphosphamide by enzymes belonging to the 
cytochrome P450 family in the liver where it becomes the acroleine and 
a cytotoxic phospharamide binding to DNA and triggering apoptosis 
[21]. It carries a strong bystander effect. Among the cytochrome P450 
family members, the CYP2B1 gene encodes the most potent enzyme 
for the transformation of CPA. It was tested in a preclinical study of 
cell therapy [39]. The 1-year survival was 36% among the 14 treated 
patients. None of them showed tumor progression and 4 had tumor 
regression (Table 1). Although published 10 years ago, this approach 
was not further tested in phase III clinical trials. In the meantime 

CPA/CYP2B1 therapy was assessed by gene therapy in preclinical 
models. CYP2B1 gene transferred with adenoviruses modified to 
target fibroblast growth factor receptors (FGFRs) using an FGF2-Fab’ 
conjugate was active in vivo in human xenografts [40] or more recently 
in vitro with a retroviral system [37].

Besides the exogenous suicide genes suitable for pancreatic cancer 
gene therapy, it is possible to restore the activity of endogenous 
apoptotic cascades often interrupted during cancer progression, leading 
to apoptosis resistance of the tumor cells. In this way, overexpression 
of pro-apoptotic genes like BAX and the tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) sensitized pancreatic tumor cells 
to apoptosis and to gemcitabin [41]. As apoptosis is regulated by 
the balance of activities of several anti-apoptotic and pro-apoptotic 
factors, the inhibition of inhibitors of apoptosis proteins (IAPs) by 
antisense approaches sensitized pancreatic tumor cells to TRAIL-
mediated apoptosis [42] or to chemotherapy [43]. More recently, 
silencing of XIAP by transfection with XIAP shRNA inhibited the 
growth of pancreatic cancer cells in vitro and in vivo [44] and increased 
chemosensitivity to 5-FU and gemcitabine [45]. Adenovirus-mediated 
transfer of p53 upregulated modulator of apoptosis (PUMA) in 
pancreatic cells harboring KRAS mutations led to tumor growth 
inhibition [46]. Combined therapy with adenoviral transfer of TNF-
alpha, gemcitabine and inhibition of nuclear factor-kappa B (NF-kB) 
had pronounced antitumor effects [47]. These recent approaches are 
quite preliminary and deserve further evaluations in the future.

Increasing Immune System Response
One possible option to approach gene therapy of pancreatic 

cancers is to create an immune response specific to the tumor cells 
also known as targeted immunotherapy (Figure 1d). This approach can 
be related to a sort of anti-tumor vaccination. Pancreatic cancers are 
accompanied by profound changes in immune surveillance programs 
probably because oncogenic KRAS-induced GM-CSF production 
promotes the development of pancreatic neoplasia by suppressing T 
cell antitumor response [48]. To regain immunity around the tumor 
cells, several molecules have been tested for pancreatic cancers 
such as IL-1, IL-2, TNF-α and IFNs (reviewed in [49]). The aim 

Table 1: Completed Clinical Trials of Gene Therapy for Pancreatic Cancer.

Clinical phase Target cells Vector Gene Outcome ClinicalTrials.gov identifie Reference

I/II Tumor cells
Encapsulated cells 
overexpressing the 
therapeutic gene

Cytochrome P450 2B1
14 treated patients: 4 with tumor 
regression, 10 with stable disease. 1 year 
survival double than with gemcitabine

Not available [39]

I Tumor cells Retrovirus
Cytocidal N-terminal 
truncated cyclin G1 
(Rexin G)

Treatment well tolerated but no evidence 
of anti-tumor activity Not available [59]

I/II Tumor cells Retrovirus
Cytocidal N-terminal 
truncated cyclin G1 
(Rexin G)

Treatment is safe. Dose response 
relationship between treatment and 
overall survival

NCT00504998 [60]

I Tumor cells Adenovirus Thymidine kinase Treatment is safe and needs further 
validation in phase II trials Not available [61]

I/II Tumor cells Plasmid DNA Diphtheria Toxin A 
chain

Treatment is safe but effectiveness on 
overall survival needs to be proven NCT00711997 [64]

I Patient’s T cells Non replicative 
canarypoxvirus CEA & B7.1

Treatment is not toxic. 3 patients out of 
12 with stable disease and signs of anti-
tumor immune response.

Not available [65]

I Patient’T cells Vaccinia virus CEA & MUCIN-1& co-
stimulatory genes

Little adverse effects of the treatment. 
5 out of 8 patients had T cell-specific 
response and increased overall survival

Not available [66]

I Tumor cells Adenovirus IL-12
Treatment is safe. 5 assessable patients 
with pancreatic cancer; 2 stable disease, 
3 progressive disease 

Not available [67]

III Tumor cells Adenovirus TNF-α Treatment is safe but not effective NCT00868114 [68]
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of antitumor immunotherapy is to induce an efficient cytotoxic T 
lymphocyte (CTL) response against pancreatic cancer cells. IL-2 and 
B7.1 co-transfer into pancreatic tumor cells led to complete remission 
of xenografted tumors and to memory immune response [50,51]. 
IFNG transfer with an adenovirus was also efficient in pre-clinical 
studies [52] and it appeared that the combination of peptide vaccine 
and gemcitabine provided an additive and synergistic effect, leading 
to an enhancement of antitumor activity [53,54]. Other IFNs have 
been tested in immunotherapy approaches. The delivery of INFA in 
carcinoembryogenic antigen (CEA)-expressing pancreatic tumors 
cells resulted in major cytotoxicity through CD8+ and natural killer 
(NK) cells at the tumor site [55]. Moreover, transfer of INFB with a 
lentivirus in xenograft models resulted in tumor progression inhibition 
[56]. CEA transfer in T cells was tested in a preclinical model to target 
antitumor response [57].

Clinical Trials Completed and Ongoing
Clinical trials designed to test gene therapy for pancreatic cancer 

are quite scarce. We interrogated the US National Institute of Health 
clinical trial and Pubmed databases and selected a few trials completed 
and also some that are still ongoing that were considered as true gene 
therapy because they involve the transfer of a therapeutic gene (Tables 
1 and 2). There was no trial involving the use of exogenous genes 
correcting altered genes, probably because pancreatic cancer is the 
result of numerous abnormalities affecting many genes and therefore, 
it is unlikely to obtain significant results when focusing on one gene 
or even one signaling pathway [19]. It appears that most clinical trials 
have been designed to transfer suicide genes or to direct immune 
system against the tumor cells (Tables 1 and 2). There is one clinical 
trial still recruiting, combining the transfer of the deoxycytidine kinase 
and the uridyl monophosphate kinase sensitizing the tumor cells to 
gemcitabine with the transfer of the gene encoding the somatostatin 
receptor subtype 2 (SSTR2), which behaves as a tumor suppressor 
(Table 2) [58].

Over the trials that have been completed and published, it appears 
that good clinical efficiency in pancreatic cancer still needs to be 
demonstrated. In particular, the retroviral transfer of the cytocidal 
N-terminal truncated cyclin G1 (Rexin-G) did not give any evidence of 
efficacy in one trial [59] but seemed to have a dose-dependent response 
in another trial (Table 1) [60].

Despite the numerous preclinical studies that have tested GCV/
TK, we found only three clinical trials testing this GDEPT with 
adenoviral transfer (Table 1). However, among all the possible gene 
therapies, GCV/TK is the most frequently tested for pancreatic cancers. 
One of the trials is still recruiting and the results are not available. 
Two other trials reported during the American Society of Clinical 
Oncology (ASCO) conferences in 2011 displayed encouraging results 
that will probably lead to phase II studies (Table 1) [60]. Noticeably 
however, preclinical studies showed that GCV/TK treatment can lead 
to resistance, probably because some of transferred genes can be lost a 

while after the beginning of the treatment [61,62]. Moreover, activation 
of the checkpoint kinase 1 (chk1) cell cycle regulator might control cell 
sensitivity to GCV/TK cytotoxicity [63]. These aspects of the GCV/TK 
approach might limit translation to phase III trials. The CPA/CYP2B1 
GDEPT did give encouraging results in a trial involving 14 patients 
[39] but still needs confirmation. The same statement can be done for 
the use of the diphtheria toxin A chain published recently [64].

Increasing immune system approaches were not more successful in 
delivering evidence of efficacy. The viral transfer of CEA and B7.1 into 
T cells was tested in a phase I trial but the results were not spectacular 
with only 3 out of 12 stable disease [65]. More promising results have 
been reported when several tumor-directing antigens, including CEA, 
together with co-stimulatory molecules were delivered to T cells with 
poxviruses since the overall survival was significantly increased in 
the patient demonstrating efficient immunization [66]. Providing the 
tumor environment with cytokines such as IL-12, or TNF-α did not 
result in regression of the tumors [67,68]. It will be interesting to see 
whether other genetic manipulation of patient’s T cells or the transfer 
of GM-CSF in the tumors will be more efficient when the clinical trials 
involving these approaches will be completed (Table 2).

Conclusion
Despite the numerous pre-clinical studies testing pancreatic cancer 

gene therapy, very few strategies have been transferred in clinical 
trials. Among the trials that have been published, only a few displayed 
encouraging results. This demonstrates the challenges of translational 
medicine, and the poor predictability of preclinical science when 
tested in the human diseases. In addition, this overall failure to 
provide efficient therapy highlights the need of using multiple agents 
simultaneously to elicit tumor cell killing. However, as very few trials 
have been published, it is still reasonable to think that gene therapy 
remains a promising strategy for pancreatic cancer because most of the 
“conventional” anti-cancer weapons have failed to cure or to improve 
survival. Combining different gene therapy approaches (transfer of 
several therapeutic genes) with current modalities may be the way 
to go in the future design of new clinical trials. Moreover, we would 
like to note that anticancer virotherapy can also be a promising tool 
in therapies against pancreatic cancers. It is designed to use oncolytic 
virus able to replicate only in the tumor cells and not in the normal 
cells. It combines gene therapy to increase anti-tumor toxicity. The 
oncolytic viruses are armed i.e. they express an exogenous gene 
increasing toxicity (suicide gene) or anti-tumor immune response. 
This very interesting and very promising approach has been recently 
reviewed [69].
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SST2R: Somatostatin receptor subtype 2; DCK: deoxycitidine kinase; UMK: uridylmonophosphaste kinase; PEI: polyethylenimine

Table 2: Ongoing Clinical Trials of Gene Therapy for Pancreatic Cancer.

Clinical phase Target cells Vector Gene ClinicalTrials.gov identifie
I Patient's T cells Not specified Anti-CEA Ig NCT00004178
II Patient's T cells Not specified Anti-mesothelin NCT01583686

Not specified Tumor cells HSV GM-CSF NCT00402025
I Tumor cells Plasmid DNA + PEI SST2R+ DCK + UMK NCT01274455

I/II Tumor cells Adenovirus Thymidine kinase NCT00638612
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