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Background
A major interest of current genomics research is devoted to disease-

gene association studies, that is, studies aimed to identify DNA variants 
presumably associated with susceptibility (or protection) to a common 
disease. Advances in genotyping and sequencing technologies, 
coupled with the development of sophisticated statistical methods, 
have afforded investigators novel opportunities to define the role of 
sequence variation in the development of common human diseases. 
[1,2]. Considering that during the last years the genotyping efficiency 
has heavily increased, research groups have now to cope with genomic 
large-scale and high density SNP association analysis through all the 
genome. It is expected that these genome-wide association studies may 
identify alleles related to complex disorders, and therefore finding the 
underlying causative relationships is currently a major challenge.

It is estimated that SNPs occur once per 100~300 bases in the 
human genome, which represents over 10 million SNPs in our whole 
genome [3]. Thus, in large-scale association studies, genotyping 
all SNPs in a candidate region for a large number of individuals is 
still costly and time-consuming. Sets of nearby SNPs on the same 
chromosome are inherited in blocks (this pattern of inherited SNP 
variants on a single block is a haplotype), and although blocks may 
contain a large number of SNPs and can be very variable in size, only 
few SNPs might be needed to uniquely tag and identify the haplotypes 
in a block (what is called a haplotype tagging SNP, or htSNP or tagSNP). 
This is due to the correlation between alleles at nearby variant sites, 
named linkage disequilibrium (LD), that exists because of the shared 
ancestry of contemporary chromosomes that is erode by mutation and 
recombination [4]. From the initial efforts to characterize the human 
genome by studying its common variability [5,6], the HapMap Project 
was born as a public effort to build a map of these haplotype blocks 

and their htSNPs. This map of blocks and htSNPs allows reducing 
significantly the number of SNPs required to interrogate the entire 
genome for association with a disease phenotype from more than 14 
million SNPs that exist today to roughly 500,000 htSNPs. This will 
make genome scan approaches to find regions that affect diseases in 
a much more efficient and comprehensive way, since effort will not 
be wasted typing more SNPs than necessary and all regions of the 
genome can be included. Results from these whole genome scans 
promise to be successfully translated into useful applications in areas 
such as medical diagnosis [7] or pharmacogenomics [8]. HapMap is 
then a useful resource that allows selecting a group of SNPs to analyze 
a possible association between custom genomic regions with the 
studied pathology. HapMap, together with other ambitious genomic 
projects (e.g. Perlegen), has allowed changing the classical perspective 
of analyzing a single functional polymorphism on a single gene to the 
current analysis of multiple genes from the same pathway, or even the 
whole genome.

Several and very different genotyping techniques have arisen in 
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less than a decade. Companies like Sequenom [9], Applied Biosystems 
[10,11], Illumina [12] or Affymetrix [13,14] have been developing their 
own exclusive techniques to identify SNPs with very diverse throughput 
capacities (which is constantly increasing due to continuous innovations, 
most of them in chemistry) but also developing different strategies in 
terms of hardware and software. What they all have in common is that 
they can be used for large-scale genotyping experiments, and so they all 
have to face the same issue: data management. The software packages 
that the companies usually provide with their genotyping platforms 
have been developed with the main aim in mind of making the 
generated data management as comfortable and powerful as possible. 
However, the lack of flexibility and serious limitations of these software 
packages encourages for local dedicated developments. In addition, it is 
often required to use multiple genotyping platforms to perform a single 
experiment, as the genotyping methods are very different and certain 
SNPs may be better detected with one or other genotyping technique. 
Therefore, corporate software does not usually allow dealing with all 
the experiment data as a whole. The complexity of these tools will 
well vary with the specific needs of each group: from a simple set of 
platform-specific Visual Basic macros like TIMS [15] to SNPator [16], 
an example of an ad hoc online package designed to cover the needs of 
the large-scale genotyping process of the Spanish National Genotyping 
Centre (http://www.cegen.org/) on multiple platforms.

The high throughput genotyping (HTG) capability does not only 
depend on the genotyping techniques, but also on the data handling 
approaches that had to manage all that new overwhelming amount 
of information [17]. The critical issues that arise on HTG projects 
always concern the data: inspecting it for possible errors, the whole 
management and the later analysis. As mentioned above, some useful 
free tools have appeared during the HTG expansion in order to cover 
the management part using databases and web interfaces [18,19], even 
with great visual aids [20], while they implement internal consistency 
checks and embed different algorithms for data analysis. Data managers 
such as SNPator [14], SNPP [17] or SNPLims [16] are also capable of 
exporting the data in appropriate formats for later deeper analysis, a 
basic request for any HTG project as it is very hard to implement all the 
algorithms that all users may need, but the limited format offer for some 
researchers may still force them to find a more appropriate tool such as 
GDF, that provides the input format for several different programs on 
the association and population studies field.

Although SNPator’s data importing module implements many of 
the features considered in GDF, a major advantage of GDF is that it can 
work locally, and this feature may be of great help for researchers that 
have to deal with low to medium SNP genotyping projects, especially for 
those researchers that wish to preserve as much as possible the privacy 
of their research projects. Although web-based implementations are 
obviously useful, some researchers may not be fully comfortable with 
the idea of storing their data in servers where they do not have full 
control of it, and this may even lead to some bioethical concerns. 
GDF represents a much more flexible alternative that could even be 
embedded into a larger software package already developed, or into any 
local pipeline for specific research needs.

Implementation

The GDF has been designed to work as a flexible interface between 
the researcher and the raw genotyping data dumped by the platforms 
(Figure 1). The researcher may need to process the raw data in a 
particular way, and for that reason the proprietary software from the 
genotyping platforms may be not very flexible. The main idea is to allow 
merging complementary information with the raw data, allowing the 

researcher to obtain not only general summarizing reports, but also to 
perform a customizable quality control of the results and to have that 
raw data parsed into input files for specific analysis software packages 
(Table 1).

Data reading module

The reading process of the raw data exported directly from the 
genotyping platforms works line by line, as each line contains a single 
genotype. Most platforms share this characteristic in plain text tabulated 
files, and therefore, by using a different recognition pattern for each 
platform, it is possible to identify and dissect even any forthcoming 
technology.

Each platform has its own format, but all of them provide at least 
the information concerning the codes of the SNPs that were genotyped, 
the sample IDs and the genotyping calls. The reading module of GDF 

INPUT Genotyping Platforms

Sequenom
SNPlex
Illumina
Affymetrix*

Generic formats
HapMap
SNPs vs. Samples tables
Samples vs. SNPs tables

OUTPUT Association Studies

GeneHunter
Haploview`
PLINK
MEGA-2
Arlequin
Phase
Hapblock
EMLD
Unphased
MDR

Population Studies
Structure
Arlequin
Haploview

Table 1: File formats handled by GDF. Being a flexible interface between raw 
data and specific analysis programs, GDF deals with several input formats com-
ing directly from the genotyping platforms, from the HapMap project, or even from 
custom made tables. The Affymetrix format coverage is not full though (*), as only 
general reports may be obtained from it through GDF due to its usual data size, but 
for the rest of the input formats GDF is able to parse their genotypes and provide 
the input for several programs of analysis for association and population studies.

GDF
Report

Analyze

Read

  EXTRA INFO
(optional  data)

GENOTYPES
   (raw data)

GENOTYPING
PLATFORMS

   INPUT FILES
(formatted  data)

QUALITY
CONTROL

INFORMATION
 SUMMARIES

Figure 1: The GDF data workflow. The raw data coming from the genotyping 
platforms is directly read by GDF, while extra information may be added to 
characterize it. This combination is then processed and exported if requested 
into input files for specific software of analysis, along with a complete report of all 
the internal checks performed.
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also allows to store additional information collected by the different 
platforms (plate information, well position on the plate, manual edition 
of the call or the score of the result for instance). All this information 
may be later analysed and used to enrich the output, but only these 
three fields are mandatory.

Once the line is recognized by the pattern recognition engine the 
reading function starts to process it, saving the platform detected and 
storing all the dissected data into an appropriate hash indexed by gene, 
sample ID and SNP position. The first and third indexes are automatically 
given by GDF unless they are indicated in a complementary input file, 
but they must be always consider to allow the user to group sets of SNPs 
and to sort them in case this is needed.

Complementary input files

Since the raw data from the genotyping platforms can possibly not 
contain all the data the researcher may need, GDF gives the option of 
providing extra information through complementary input files, and 
this information is then concatenated with the raw data. The kind of 
information that can be supplemented in these extra files could be 
related to the need of grouping information (e.g. by ethnic or population 
groups), sample characterization, translation for non-explicit platform 
alleles, or even signalling samples that should be excluded from some 
particular analysis.

Configuration file

This is a three column tabulated plain text file where the SNPs can 
be grouped in genes or any kind of grouping strategy. A number (e.g. 
chromosome location) can also be attached to each SNP. The first row 
must contain the fields’ names, which must be “GENE”, “SNP_ID” and 
“POSITION”, and the rest of the lines must contain the data.

This file is often used to divide the output in different files, one for 
each gene, to sort the SNPs by their position to build the appropriate 
haplotypes or to filter SNPs to be processed as GDF will not process any 
SNP that is not present in this file.

Pedigree and population file

Pedigree and population information may be assigned to each 
processed sample respectively in pedigree format and in a tabulated text 
headed file with three columns: samples, populations and population 
ids. This may be desired when expecting GDF to provide in its output 
the input formats for specific programs, such as Structure [21] (will not 
work without population information) or Phase [22] (the case-control 
running option will not be available if the appropriate column is not 
present in the input file) for instance. The GDF web interface detects 
which files have been uploaded, and allows the user to select only the 
available outputs for the data that is to be used.

Allele translation file

Raw data coming from platforms such as Taqman, Illumina or even 
older versions of the SNPlex format do not provide explicit calls for 
each genotype. A code is given to each result instead of the appropriate 
base (al1 or al2, A or B, A1 or A2 …), and the translation of that code 
is SNP specific and then stored in a configuration file. To deal with 
that code in the output data from any of the mentioned platforms 
GDF allows importing a tabulated text file that, without any headers, 
indicates in three columns the SNP name, the code and its translation. 
This information is then used to convert internally all the data to the 
proper formats and to give the desired outputs.

SNPs and samples not to be processed

As the raw genotyped data file may be difficult to edit, and being 
this not the best option, a filtering option was implemented through file 
input. Thus, if a list of SNPs or samples is provided (text files with all the 
desired SNPs or samples in a single column) GDF will not process the 
data associated with them. This may help, for instance, to remove from 
the statistics or from the specific output files samples or SNPs that have 
been wrongly genotyped due to experiment errors, or to treat separately 
data coming from different projects that have shared the experiment 
but that should not be analysed together.

Results
We have developed a program written in Perl, as it is one of the most 

popular reference programming language for fast and comprehensive 
text handling [23]. GDF performs a series of internal analysis such as 
quality control and consistency checks, and provides formatted data 
to be given as input for several different programs for association and 
population studies (Table 1).

Several projects present in the literature have used GDF as the data 
pre-processing tool when they had to deal directly with raw genotypes 
(e.g. [24,25]). As a practical example, GDF was used to deal with 137.015 
genotypes generated by the Sequenom platform, creating the input files 
for additional analysis using Structure, Unphased, Haploview, PHASE, 
and MDR, in 31 seconds. This led to the replication of DTNBP1 as a 
schizophrenia susceptibility locus [26].

Another common use of GDF is to parse tables of samples and SNPs 
that may have been manually edited, or data from the HapMap project 
extracted directly from its website or from intermediate repositories 
such as SPSmart [27,28]. For instance, the study of the CYP21A2 gene 
reveals a low SNP density on HapMap, but it can be merged through 
GDF with the SNP information obtained by direct sequencing of 
21-hydroxylase deficiency patients [29] in order to highlight haplotypes 
associated with this pathology.

Internal Data Analysis
Validation analyses tests

This group of analysis includes all the error and consistency checks 
performed by GDF. One of the primary aims of this sub-program is to 
let the user revise the raw data from the platform, and thus it allows the 
user to know if there are any incoherencies (e.g. a duplicated genotype 
does not match) present for a given genotype. If control samples were 
introduced in the experiment, or any sample is just genotyped more 
than once, a quality control will be carried out in order to detect 
inconsistencies.

Another analysis performed is the check for more than two alleles 
found for a single SNP. Considering that bi-allelic SNPs are the most 
common variation, highlighting these situations is needed as they 
would normally represent a flagrant error, possibly at the experimental 
design of the experiment or at the genotyping software assignation.

Informative analyses

All the rest of the tests performed by GDF are meant to describe 
the data analysed, in order to provide a broader understanding of 
the experiment. The most important ones would be the detection of 
data skews (inconsistent genotypes for the same SNP tested on the 
same sample), monomorphic SNPs, and the highlighting of SNPs or 
samples with no valid result in all the experiment, but the summary 
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and statistics performed with GDF given at the end of each run are 
also very informative: the total of the data input lines is presented, and 
compared with the total numbers of genotypes detected, valid results 
and failed genotypes. Table 2 gives a detailed description of these 
checks. In case repeated genotypes (such as quality controls or just 
replicas) are entered, GDF will display a quality control section at the 
output, detailing the numbers of repeats, how many did actually match 
and how many did not match.

Output Files
Files under demand

These files contain all the available input formats for the specific 
analysis programs. Currently, the linkage pre-makefile format is 
included, which is valid for popular association studies programs such 
as GeneHunter [30], Haploview [31] or PLINK [32], or for a meta-
analysis software package named MEGA-2 [33] that is able to support 
28 target programs by combining the linkage format with a pedigree and 
a mapping file. Additionally, GDF can also be used to obtain the input 
format for other popular association studies software such as Arlequin 
[34], EMLD [35], Hapblock [36], MDR [37], Phase [20] and Unphased 
[38,39]. Input formats for population studies software like Structure 
[21] may also be obtained. Except the input format for Arlequin, the 
rest of the programs will work directly with the files generated by GDF. 
Arlequin needs some minor manual edition in order to include the 
configuration headers.

Automatically generated files

This set of files contains valuable information obtained from the 
input files. For instance, the GDF generates a set of files that contain 
information on genotyping errors or undesired inconsistencies. There 
are also three useful files that are generated by default: i) a text table 
containing a matrix of SNPs versus samples which will state all the 
results in an efficient manner for visual inspection, ii) a statistic file 
for samples with information of the percentage of missing genotypes 
on each one, and iii) a statistics file containing information about the 
alleles observed, SNP heterozygosity values, minor allele frequencies, 
or the result of checking for Hardy-Weinberg equilibrium and its 
statistical significance using a simple chi-square test.

Performance in memory and time

As GDF is meant to work with large amounts of data coming 
from HTG experiments, its performance had to be measured in order 
to predict the running time and the computer resources that could 

be needed for the biggest experiments. For that reason we tested its 
performance on an ordinary PC with an Intel Pentium IV 3.4GHz 
processor and 1GB RAM. We then measured the computational 
resources demanded by GDF with respect to the number of genotypes 
that had to be processed. The summary of the benchmarking results of 
GDF are reflected on the top graph of Figure 2, where the memory and 
time linear tendencies can be observed, validating the adequacy of the 
internal GDF code which could otherwise depend exponentially on the 
amount of processed data. This fact is critical to allow future evolution 
of the program.

The lack of perfect linearity regarding the demand of memory and 
time needed by GDF as more SNPs and samples are processed seems to 
indicate that there are underlying factors affecting GDF’s performance 
(see the bottom graphs of Figure 2), such as the percentage of repeated 
genotypes present on the experiment (quality control) that significantly 
reduces the amount of memory needed. The invested time per genotype 
strongly depends on the platform used, as there are platforms that 
provide much more information for each genotype that is also processed 
by GDF. Providing more information implies more complex line pattern 
recognition, and that is the major latency present on the program. Thus, 
platforms like SNPlex include in their outputs information concerning 
genotyping quality scores and manual edition flags.

Interacting with the program

GDF can be run locally in command line, executing its code through 
a locally installed Perl interpreter. This is the most versatile option, 
and as there are plenty of versions of Perl depending on the operating 
system, GDF has been designed in order to be also independent to the 
platform. In addition, as some researchers may not be comfortable with 
command line commands, several graphical user interfaces (GUIs) 
have also been developed to work around this issue: i) an online PHP 
interface to the most updated version of GDF, which runs it directly 
on the web server without having to install anything locally, and ii) a 
Visual Basic interface that runs an encapsulated executable version of 
GDF for Windows platforms only. In both cases the user gets a four 
steps interface: i) the data input, where all the files that are going to 
be used must be selected, ii) the options selection, where all the GDF’s 
options may be chosen, iii) the formats request, where the programs to 
which the data should be formatted for should be highlighted, and iv) 
the final results. In this last step there will always be a screen output, 
accompanied by a link to all the files that were generated (one of them 
will be that screen output for later inspection).

Discussion
Performing of all of the automatic analyses described above 

provides more information about the raw data than the one provided 
by corporate software, independently from the genotyping platform 
used. The personalization of the analyses performed allows GDF users 
to find out data which is difficult to retrieve when using those corporate 
software packages, because of the appropriate options absence or the 
manual revising impossibility, such as platform errors or even pre-
genotyping problems.

The genotyped data is never the final step of the full analysis 
process. The data must always be processed by deeper analysis and 
specialized programs that will go far beyond to find information such 
as associations (case-control, TDT,…), haplotypes, present population 
substructures, and so on. Some platforms may give as output the input 
for a certain analysis program, but the researcher may prefer to be 
able to transform any kind of data coming from any platform into any 

Unused genes Genes present in the configuration file with all 
their SNPs untested

Unknown SNPs SNPs present in the data file but not in the 
configuration file

Untested SNPs SNPs present in the configuration file but not 
in the data file

Failed SNPs SNPs that failed in all the genotyped samples
Failed samples Samples with no successful genotype

No pedigree samples Samples with no pedigree information pres-
ent in the pedigree file if used

Unperformed tests samples SNPs that were not genotyped on a sample 
but they were tested on the rest

Overlapping information samples
Samples that carry a third allele, assum-
ing most genotyping techniques deal with 
bi-allelic SNPs

Table 2: Analyses performed by GDF. A description of the internal checks that 
GDF performs in order to improve the description of the data being analysed, 
which are given at the end of each run.
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desired format. GDF allows doing this through an appropriate internal 
variable structure and design that is prepared to easily deal with new 
upcoming input formats.

Providing a parallelizable version of the program is our next aim, 
as it would allow running it either on dedicated supercomputers or 
directly on personal computers with multiple-core machines.

Conclusion
GDF is a program to process HTG data specially produced by the 

biomedical community. Other fields of research are now benefiting 
from HTG such as those interested in quantitative characters’ analysis 
in species of commercial interest, for instance. Any researcher may 
then workaround some of the corporate software packages’ limitations 
embedding GDF in the genotyping routine. A set of improvements to 
this process have been implemented inside GDF, and their use is fairly 
straightforward. But the best advantage for the researcher is probably 
not to be forced to use a local database, which will need expertise 
on installation and maintenance, nor even a remote one that could 
compromise the data privacy. Previous similar work has been done 
using a SNP database to hold the data while processing it, but GDF 
allows dealing directly with the data.
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Figure 2: Performance analyses. Multiple experiments performed with 
Sequenom and SNPlex were grouped and summarized for this figure. Raw 
measurements of memory and time are presented on 2A to show the linear 
dependency of the resources needed, and a deeper analysis of those magnitudes 
is displayed on the two bottom graphs. The performance in time showed on 2B 
highly depends on the platform where the genotyping data comes from, due 
to the complexity of the pattern recognition applied to each line. The memory 
assigned to each genotype in each experiment is presented on 2C, depending 
on the amount of information that each genotype may be characterized with. 
This assigned memory does not really depend on the genotyping platform, but 
it drastically depends on the percentage of genotype repeats of the experiment.
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