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Abstract

Granulocyte colony stimulating factor (G-CSF) is an essential cytokine frequently used in clinics to restore
myelopoiesis and facilitate peripheral mobilization of hematopoietic stem cells. Endogenously secreted G-CSF acts
as a pleiotropic growth factor and mediates its biological functions [granulopoiesis] by binding specifically to
granulocyte colony stimulating factor receptor (G-CSF-R). The G-CSF-G-CSF-R pathway known for its pro-Th2 and
anti- inflammatory properties has been successful in reversing the course of diseases such as type 1 diabetes (T1D)
and myelin basic protein-induced experimental autoimmune encephalomyelitis (MOG-EAE). The promising benefits
of G-CSF have helped in establishing it as a successful candidate for several clinical trials. Even though cytokine
based immune intervention offers a highly feasible and attractive option for immune disease control, caution needs
to exerted on its usage as the functions of most cytokines vary depending upon the disease where they are applied,
the research model being tested, as well as the modality of treatment (e.g., dose, duration and route) and, G-CSF
despite its beneficial anti- inflammatory properties has also exerted bifurcated roles depending upon the disorder
and dosage in which it’s applied.
This review aims to summarize the findings associated with the function and role of granulocyte colony-stimulating
factor (G-CSF) and its dichotomous role in immune related therapies. Here we specifically focus on SLE and T1D,
two autoimmune disorders in which G-CSF may exert physiological effects in opposite directions.
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Introduction
Cytokine based therapies have long been considered as a potential

means for treating several disorders of the immune system including
cancer [1-5], Crohn’s disease, multiple sclerosis (MS), rheumatoid
arthritis (RA) [6-9], systemic lupus erythematosus (SLE), and type 1
diabetes (T1D) [10,11]. The advent of recombinant technology eased
longstanding concerns regarding their production and hence, the
availability of these small, short-term growth factors. As a result,
cytokines now represent a highly feasible and attractive option for
immune disease control. Indeed, translational and clinical
investigators are actively pursuing the prospect for including these
natural immune mediators as a part of a variety of therapeutic based
approaches, including testing of combination cytokine-based strategies
[12-15]. The goal of most such efforts, at least those involving
autoimmunity, is to induce immunological tolerance through a
restoration of appropriate immune regulatory mechanisms [10,16]. A
complicating factor is that the functions of most cytokines vary
depending upon the disease where they are applied, the research
model being tested, as well as the modality of treatment (e.g., dose,
duration and route). This review summarizes the findings associated
with the function and role of one cytokine receiving much attention
for its potential in immune related therapies, granulocyte colony-
stimulating factor (G-CSF). Here we specifically focus on SLE and
T1D, two autoimmune disorders in which G-CSF may exert
physiological effects in opposite directions.

G-CSF and G-CSF Receptor Expression and Functions
G-CSF is a hematopoietic growth factor used widely in clinics to

restore granulopoiesis during therapeutic or disease-induced
myelosuppression [1-3]. G-CSF binds specifically to the granulocyte
colony stimulating factor receptor (G-CSF-R; also designated CD114,
encoded by the Csf3r gene) to promote the survival, proliferation,
activation, and terminal differentiation of mature neutrophilic
granulocytes from their precursors in the bone marrow (BM) [17,18].

Marked diversity exists amongst the range of tissues and cells
involved with the production and expression of G-CSF and its
receptor. Apart from cells of monocyte/macrophage origin, which are
considered to be its primary sources, endothelial cells, fibroblasts, and
even cells of mesodermal origin have been included in the list of G-
CSF producers [4]. Neutrophils and their precursors bear the
maximum density of G-CSF-R, which is also expressed on myeloid
progenitor cells, platelets, monocytes, and hematopoietic stem cells.
Among lymphocytes, G-CSF-R expression is considered to be
constitutive on B cells and inducible on T cells [19]. In addition, G-
CSF-R expression has been identified in various non-hematopoietic
tissues and cell lines such as human placenta and small cell lung
cancer, among others [1,4]

The G-CSF receptor is a single polypeptide chain composed of three
domains: an extracellular, a single transmembrane and a small
intracellular. The extracellular portion of the receptor contains a
conserved cytokine receptor homologous (CRH) domain, an Ig like
domain and three fibronectin type III like domains. The Ig and CRH
portions have been predicted to be associated with ligand binding
whereas the three fibronectin domains likely confer stability and
proper signaling for the receptor [20]. Despite lacking any intrinsic
kinase activity, the intracellular portion of the receptor, composed of
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conserved regions (Boxes 1, 2 and 3) and four tyrosine residues, serves
as the signal transduction domain of the receptor [20].

Ligand binding induces homodimerization of the receptor and
phosphorylation of its four intracellular tyrosine residues by non-
receptor tyrosine kinases including Jak1, Jak2, Tyk2, Lyn, Syk and Hck
[21]. As a result of the multiple cytosolic tyrosine kinases that undergo
activation upon G-CSF stimulation, G-CSF-R signals through several
pathways including JAK-STAT, RAS-RAF-MAP-ERK and PI3K-AKT.
The specific function of each of these pathways relative to G-CSF-R
activation is not well understood. However, several early studies have
helped in determining that Jak1 along with Tyk2 are essential for
receptor tyrosine phosphorylation and STAT activation following G-
CSF stimulation. Jak1 plays a non-redundant role in G-CSF signaling
and the JAK-STAT pathway associated STAT3 and SOCS3 play
specific roles in G-CSF driven granulopoiesis. SOCS3 is an integral G-
CSF/STAT3 target gene that controls the magnitude and duration of
G-CSF-R signaling, thereby regulating the synthesis of bone marrow
derived neutrophils. Therefore, STAT3 negatively regulates the
terminal stages of bone marrow granulopoiesis and circulating
neutrophil levels through SOCS3 dependent and independent
mechanisms [22].

The SRC kinase LYN phosphorylates a variety of adaptor molecules,
such as GAB2, SHC, CBL, as well as enzymes such as SHP-1, SHP-2,
and SHIP-1. LYN plays a major role in G-CSF mediated cell
proliferation, survival and metabolism, as well as in the induction G-
CSF primed pro-inflammatory responses in neutrophils [23-25].
Phagocytic cells from Src-deficient (Hck-/-, Fgr-/- or Hck-/-Fgr-/-Lyn-/-

triple knock-out) mice are defective in superoxide production,
degranulation, or migration [26-29]. Moreover, the SRC kinase
associated AKT pathway apart, from promoting differentiation, also
generates reactive oxygen species [23]. Thus different tyrosine kinases
are activated following G-CSF stimulation depending upon the type of
biological response summoned.

G-CSF and its receptor are essential for regulating granulopoiesis
under both basal and emergent circumstances [22]. Deficiency or
disruption of the cytokine or its receptor results in several
complications in both mice and humans. Mice lacking G-CSF exhibit
approximately 20% of normal circulating neutrophils and display a
diminished ability to counter infection from Listeria monocytogenes,
primarily due to a reduction in infection driven granulopoiesis [30].
Mice lacking G-CSF-R also have impaired production of neutrophils
that exhibit an increased susceptibility to apoptosis [30,31]. In
humans, several mutations in the intracellular region of G-CSF-R that
affect myeloid maturation have been reported in congenital
neutropenia and acute myeloid leukemia patients [32-36], thus
shedding light on the prominent role of G-CSF-R mutations within
myeloid disorders. As these mutations primarily truncate the C
terminal cytoplasmic region of the receptor, understanding the role of
each tyrosine and their associated pathway downstream of G-CSF-R
can help in designing better and effective intervening strategies for
these debilitating disorders.

Clinical Use of G-CSF
G-CSF has been used for almost two decades for the treatment of

congenital and acquired neutropenia, as well as for reducing febrile
neutropenia, either prior to or during intensive cytoreductive
chemotherapy in cancer patients [37]. G-CSF was initially evaluated in
phase I clinical trials for cancer patients to increase their neutrophil

numbers. As it was well tolerated and potent in action [38-40],
subsequent trials showed its efficacy as an adjunct to
chemotherapeutic agents as well as a separate granulocytic agent. The
capacity of G-CSF to thwart neuronal degeneration and to drive
neurogenesis in acute ischemia has also led investigators to consider it
as a promising drug for stroke, as well as degenerative and
autoimmune diseases of the brain [41,42]. In addition, G-CSF has
recently gained prominence for its role in the mobilization and
transplantation of peripheral blood stem cells (PBSC), which represent
a majority of allogenic stem cell transplants [43]. The beneficial effects
of G-CSF have also been utilized in the treatment of autoimmune
diseases, including MS and T1D in combination with anti-thymocyte
globulin (ATG), where it has been shown to deliver long-term benefits
through immune regulation [5,12,13,44], as it will be further discussed
below.

G-CSF in the Adaptive Immune System
G-CSF has received attention for its role as an immune regulator

and modulator of adaptive immunity [41], with G-CSF treatment
almost being synonymous with the induction of anti-inflammatory
responses. G-CSF plays an immunosuppressive role on T cells, either
directly or indirectly, as the expression of G-CSF-R on T cells is
controversial [4,45]. Specifically, early studies were unable to detect G-
CSF-R gene expression or binding to 125I-G-CSF by normal T cells,
leading to the conclusion that T cells do not express G-CSF-R
[4,46,47]. This view was later challenged when the expression of G-
CSF-R was detected by single-cell RT-PCR on human CD4+ and CD8+

T cells after in vivo and in vitro exposure to G-CSF, suggesting that G-
CSF-R expression is inducible on T cells exposed to its ligand [45]. In
both mice and humans, G-CSF preferentially polarizes T cells from a
Th1 to Th2 phenotype by altering cytokine production [45,48]. G-CSF
also decreases T cell proliferation to both mitogens and alloantigens
and reduces their cytotoxic activity [49].

Pretreatment with G-CSF protected mice against T cell-mediated
bacterial superantigen shock by causing a systemic suppression of IL-2
production [50] and against a lethal dose of lipopolysaccharide (LPS)
by reducing serum TNF-α levels [51]. T cells obtained from G-CSF-
treated mice also secreted reduced levels of IL-2 and IFN-γ and
elevated levels of IL-4 in response to an in vitro challenge with LPS
[49], confirming the suppressive role of G-CSF on inflammatory
cytokines. In experimental models of acute graft vs. host disease
(aGVHD), G-CSF pre-treatment of donor mice reduced the severity of
aGVHD and improved the survival of recipient mice[49]. A similar
result was observed when PBSCs mobilized with G-CSF were
transplanted in place of conventional BM stem cells. Although PBSCs
produced a log more T cells than conventional BM stem cells, their
mobilization using G-CSF helped with early engraftment and
reconstitution of myeloid cells [52]. The selective mobilization of type
2 dendritic cells (DCs) and induced polarization of donor T cells
towards the Th2 phenotype (with IL-4 and IL-10 secretion) have been
attributed with attenuated allogenic responses in aGVHD [49,53].

G-CSF has also been instrumental in altering the inflammatory
response in human studies. G-CSF treatment of healthy human
volunteers modified the ex-vivo response from their whole blood cells
to stimulants such as lipoteichoic acid, phytohemagglutinin or LPS, by
reducing their capacity to secrete pro-inflammatory cytokines (TNF-α,
GM-CSF, IFN-γ and IL-12) and by increasing the production of
soluble TNF receptors and IL-1 receptor antagonist (IL-1ra) [54,55].
In vitro treatment with G-CSF also down regulated the responses of
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peripheral blood mononuclear cells (PBMC) to allogenic Daudi cells
by inhibiting their secretion of TNF-α [56]. In accordance with the
anti-inflammatory role of G-CSF, a spontaneous increase of IL-4 and
reduction of IFN-γ were observed in PBSCs after G-CSF
administration [45]. Moreover, CD4+ T cells obtained from healthy
human volunteers primed in vivo with G-CSF secreted elevated levels
of IL-10 and TGF-β in response to in vitro alloantigen stimulation and
acquired the properties of T regulatory cells (Tr1), which suppressed
allogenic T cell responses [57]. Finally, G-CSF has been used to
mobilize human BM regulatory T cells (Tregs) by reducing the
expression of CXCL12, thus favoring egress over retention within the
BM niche [58] .

Several studies have investigated whether G-CSF modulates
immune responses through monocytes, since these cells express G-
CSF-R [46]. G-CSF-treated monocytes - inhibited-T cell receptor-
mediated T cell proliferation, while the effect was abrogated by
addition of neutralizing IL-10 antibodies [59]. As a parallel to
experimental murine aGVHD studies using G-CSF [49], in vitro
experiments were carried out using cells obtained from humans
treated with G-CSF. G-CSF-primed monocytes reduced T cell
alloreactivity in mixed leukocyte reactions and this suppression was
identified as an indirect modulation of T cells by G-CSF through
monocytes [60]. G-CSF has also been shown to mediate the
conversion of monocyte-derived DCs into regulatory DCs using Tr1
cytokines such as IL-10 and IFN-α. These regulatory DCs functioned
as poor allo-stimulators, express altered levels of co-stimulatory
molecules and are impaired in their inability to secrete IL-12p70. In
addition, these regulatory DCs converted naïve CD4+ T cells into TGF-
β and IL-10 secreting Treg cells [61]. G-CSF treatment also expanded a
murine granulocyte myeloid precursor population with GVHD
suppressive functions [62], thus elucidating the interplay between
various cell types involved in G-CSF mediated immunomodulation.

Immunoregulatory Role of G-CSF in Autoimmune
Diseases

The immunoregulatory role of G-CSF in adaptive immunity has
been tested in several autoimmune disease models. G-CSF treatment
conferred protection in T cell-mediated autoimmune diseases such as
MS and T1D. A 7-d long administration of a 200ug/kg/d dose of G-
CSF starting at the onset of clinical symptoms conferred a substantial
protection against myelin basic protein-induced experimental
autoimmune encephalomyelitis (EAE, a model for MS) in SJL mice
[5]. The significant reduction in demyelination was accompanied by a
reduced recruitment of T cells to the central nervous system. The G-
CSF treatment also induced an imbalance in chemokine production
from macrophages and a deviation of T cell response to a Th2
phenotype. G-CSF treatment protected C57BL/6 mice from MOG-
induced EAE in a similar fashion [6].

Similarly, a 200 ug/kg daily dose of G-CSF for 5 weeks protected
NOD mice against cyclophosphamide (CY) accelerated T1D (Table 1).
G-CSF reversed the disease by preventing the loss of CD4+CD25+ Treg
cells and by accelerating the recovery of CY-depleted T cells.
Furthermore, G-CSF negated the effects of IFNγ and the chemokine
burst triggered by the CY treatment [44]. Monotherapy of NOD mice
with G-CSF from 4 to16 weeks of age reversed the incidence of
spontaneous T1D and protected the mice from destructive insulitis.
Protection was attributed to the recruitment of immature CD11clo
B220+ plasmacytoid DCs (pDC) and CD4+CD25+ Treg cells. TGF-β
secreted by these Treg cells was instrumental in suppressing diabetes

transfer through diabetogenic effector T cells in NOD-SCID recipients
[12]. However, the modest difference in Treg cell numbers suggests
that other regulatory mechanisms may also participate. The impact of
myeloid derived suppressor cells (MDSC) was explored upon
treatment with G-CSF in NOD mice. Treated mice exhibited an
increase in both the Ly6G+ granulocytic MDSCs (gMDSC) and the
Ly6C+ monocytic MDSC (mMDSC) in accord with a report
demonstrating that adoptive transfer of MDSCs could reduce T1D
incidence in NOD models [63]. The above finding suggests a novel
role for G-CSF mediated MDSCs in regulating T1D. A combination
therapy of G-CSF with ATG was also successful in reversing new-onset
diabetes in NOD mice [13]. A recent clinical trial testing this
combination therapy met the primary endpoint of preserved c-peptide
at 12 months, suggesting that G-CSF, when combined with a T
lymphocyte depleting therapy, can provide beneficial therapeutic
effects in patients with T1D [64].

To summarize G-CSF reduces autoimmune inflammation in T1D
and MS models by inducing tolerogenic DCs, Treg cells and MDSCs,
inhibiting T cell activation and proliferation, as well as by inhibiting
pro- inflammatory cytokines.

Pro-inflammatory Role of G-CSF in Autoimmune
Diseases

Although the above studies argue in favor of anti-inflammatory
clinical benefits of G-CSF, this cytokine plays a pro-inflammatory role
in autoimmune diseases such as SLE and RA [7,65]. Neutralization of
endogenous G-CSF significantly reduced the severity of collagen-
induced arthritis in the mouse and was proven equally effective as
treatment with a TNF inhibitor. The reduced disease severity was
associated with a blunted mobilization of granulocytic cells from the
BM to the inflamed joints and accompanied by lesser cellular infiltrate
and cellular activation from the joints [8]. Similarly, G-CSF treatment
induced flares in a dose-dependent manner in patients suffering from
RA [9]. To the contrary, G-CSF treatment lowered disease severity in
rats with adjuvant arthritis [66]. These contrasting results suggest that
alternate mechanisms can be deployed by this cytokine for the same
disease in different systems.

Dosage seems to play a role in the dual effects of G-CSF (Table 1).
G-CSF administered in chronically low doses (10 ug/kg) accelerated
lupus severity in MRL/lpr mice in spite of a polarized Th2 phenotype.
In contrast, a high dose regimen of G-CSF (200 ug/kg) prevented
nephritis, considered as the end stage of lupus disease in mice [67]. We
have also reported a link between G-CSF and lupus pathogenesis using
the bm12-induced chronic graft vs. host disease (cGVHD) model of T-
cell mediated systemic autoimmunity [68]. Sle2c2 is a suppressor locus
in the NZM2410 lupus-prone mouse. Congenic mapping narrowed
down Csf3r as the primary candidate gene for Sle2c2, and the
NZM2410 allele of Csf3r (Csf3rN as opposed to the wild type B6 allele
Csf3rS) carries a polymorphism in exon 10 (rs13477964) that results in
a S378N change in its extracellular domain [68]. Mixed BM chimeras
and functional assays identified non-B, non-T BM derived cells as the
primary cells mediating this suppression, suggesting that Csf3rN-
expressing myeloid cells are responsible for Sle2c2 suppression [69].
Induction of cGVHD was blunted in mice carrying the Sle2c2 locus.
We hypothesized that Sle2c2 suppression is mediated by defective G-
CSFR signaling, predicting that G-CSF therapy would exacerbate
autoimmune responses. In support of this hypothesis, treatment of
Sle2c2 congenic mice with G-CSF broke their resistance to bm12-
cGVHD in a dose-dependent manner [68]. In addition, a few clinical
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reports have associated G-CSF treatment of neutropenic SLE patients
with flares [70,71], suggesting that a partial inhibition of the G-CSF
pathway could prevent flares in SLE patients. Overall, these studies
indicate that G-CSF plays a dichotomous role, by acting as a friend
promoting tolerance in T1D and EAE, but as a foe in SLE and RA by
inducing pro-inflammatory responses. Since G-CSF dosage seems to

play an important role in mediating these opposite functions, G-CSF-
R signaling strength and kinetics could contribute towards to the
dichotomy of G-CSF treatments. In addition, studies focusing on the
responses of G-CSF-R expressing cell subsets to G-CSF could provide
important clues regarding the mechanisms employed by G-CSF in
these disorders.

Agent Dose Subjects Outcome References

T1D

Neupogen 200 ug/kg/d for 5 wks Male NOD

mice

Protected from CY-accelerated T1D by expanding Treg
cells and abrogating CY-mediated cytokine and
chemokine burst

[44]

Neupogen 200 ug/kg/d for 5 d Female NOD mice Recruits immature pDCs and functional Treg cells and
suppresses diabetes transfer in NOD-SCID recipients

[12]

Neupogen + ATG 6 ug/d for 8 wks Female NOD mice Combination therapy reversed new onset diabetes and
improved glucose control overtime with attenuation of
pancreatic inflammation and increased CD4/CD8 ratio
and splenic Treg cell numbers

[13]

Neulasta 1 mg/kg single dose Female NOD mice Protected against T1D by inducing CD8α(-) DCs to
recruit Treg cells

[98]

rh-G-CSF 600 ug/d for 5 d T1D patients Improved lower limb pain and ulcers [99]

Neulasta + ATG 6 mg every 2 wks for 6
treatments

T1D patients Combination therapy preserved β cell function in T1D
established patients

[64]

SLE

Neupogen 10 ug/kg for 5 d for 6 weeks MRL-lpr/lpr mice Accelerated disease [67]

Neupogen 200 ug/kg for 5 d for 6 wks or

200 ug/kg for 5 d at 13 wks of
age

MRL-lpr/lpr mice Reduced disease [67]

Neulasta 12 ug 3 times per wk B6.Sle2c2 mice Restored induced autoimmunity in lupus resistant mice [68]

rh-G-CSF 12 cycles of 48 U /d for 6 d SLE patients Reduced neutropenia but induces flares in 3 of 9
patients

[100]

rh-G-CSF 1ng/ml- in-vitro culture Neutrophils from SLE
patients and healthy
controls

Neutrophils from SLE patients displayed resistance to
apoptosis- inhibiting effects of G-CSF ; neutropenic
patients displayed highest resistance

[101]

Neupogen variable Neutropenic SLE patient Induced lupus severe flares in 2/18 patients and mild
flares in 4/18 patients

[71]

rh-G-CSF NA Neutropenic SLE patient Cutaneous flare [70]

Table 1: G-CSF treatment studies in T1D and SLE.

Neutrophils in T1D and SLE
Neutrophils, being the primary target of G-CSF pathway, have

recently gained prominence both in the innate and adaptive arms of
the immune system [65,72,73]. Here we review the various roles
played by neutrophils in T1D, SLE, and EAE, [65,74,75] as well as
explain how G-CSF might act in opposite directions in these
autoimmune diseases.

At disease onset, T1D patients present with low circulating
numbers of neutrophils [75,76]. The mild neutropenia generally
observed in the preclinical phase of the disease persists for a few years
after disease onset but eventually resolves in the later phase of the
disease. Neutrophils in patients with T1D are also considered to be
hyporesponsive and exhibit lower levels of oxidative metabolism in
comparison with those isolated from healthy individuals [77]. The

reduced activity of neutrophils has been demonstrated to be a function
of hyperglycemia as decreased degranulation has been exhibited in
patients with diabetes lacking tight glycemia control, and can be
modeled using glucose infusions [78]. The reduction of neutrophil
numbers in these studies was not a singular phenomenon as basophils,
eosinophils, monocytes, and total white blood cell counts were
reduced at onset [80], suggesting that a stem-cell “Mobilopathy” may
be present in T1D and be a root cause of the lower white blood cell
counts [79,81]. Indeed, treatment of the NOD mouse model of
spontaneous T1D with G-CSF from early in life resulted in increased
immunoregulatory potential [44] increasing both Treg cell numbers as
well as MDSCs [13]. The fact that G-CSF treatment increases
neutrophil numbers while protecting NOD mice from T1D runs
counter to the idea that neutrophils are pathogenic. The postulate that
neutrophils are not necessary for T1D initiation in the NOD mouse
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model was bolstered by our data demonstrating that long-term
depletion of neutrophils using an anti-Ly6G antibody had no impact
on diabetes development [82]. These data suggest that G-CSF therapy
could promote enhanced mobilization of immature
immunoregulatory cells and in doing so induce a regulatory
environment that dampens the autoimmune assault on the beta cells.

In parallel to the hypo-responsiveness of neutrophils in T1D,
evidence has been accumulating in support of a pathogenic role for
neutrophils in lupus [65]. A positive correlation has been found
between disease severity and neutrophil aggregation in lupus patients
[83]. Lupus neutrophils are generally more responsive against any
stimuli and exhibit a higher propensity to undergo spontaneous and
enhanced NETosis when treated with lupus serum containing high
amounts of nucleic acid immune complexes [84,85]. Increased
number of apoptotic neutrophils [86]; impaired degradation of NETs
[87,88] and enhanced complement activation [89]–leading to
autoantibodies against NETs and subsequent activation of pDCS with
IFN-α secretion have also been reported [90-92]. The number of low
density granulocytes is expanded in the circulation of lupus patients
and this alternate subset of neutrophils mediates pathogenic effects by
enhancing vascular damage and inhibiting vascular repair [90].

A subset of neutrophils coined neutrophil B helpers (NBH) found
in the marginal zone of mice and humans [93] promote B cell
activation and antibody production through the secretion of BAFF
[94]. It has not been formally established whether lupus is associated
with an expanded NBH subset, but elevated BAFF levels have been
consistently associated with systemic autoimmunity [94,95]. A causal
variant within neutrophil cytosolic factor (NCF2) identified as a
susceptibility gene in both childhood- and adult-onset SLE reduced
the production of reactive oxygen species (ROS) and enhanced the
susceptibility to lupus within patients [96]. This was similar to the
association between loss of function polymorphisms in Ncf1 and RA
[97-101]. On the other hand, ROS reduction due to Ncf1 deficiency
delayed T1D in NOD mice [82], highlighting again the dichotomous
function of genes regulating neutrophil activities.

Conclusion
As neutrophils, the primary cellular targets of G-CSF, function in a

variety of ways in autoimmune disease, this cytokine cannot be
presumed to play a universal anti-inflammatory role. We hypothesize
that G-CSF activates two opposite ends of an activity based-spectrum,
resulting in tolerance induction in settings of T1D versus one of
disease amplification in SLE. Further studies of G-CSF/G-CSFR
pathway are needed to test the hypothesis that its modulation in two
opposing directions may have therapeutic effects in these two
autoimmune diseases. In addition, more information is needed on the
specific role that G-CSF plays in activating or modulating cells other
than neutrophils in these disorders. Dissecting the role of G-CSF by
narrowing down its cellular targets and potential side effects could
help in designing better immunomodulatory therapies against
disorders in the future.
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