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Abstract

Gastric cancer remains a major global health threat, and most patients with advanced stage disease require
chemotherapy. Resistance to therapy is a major obstacle in the management of gastric cancer, which may be due to
cancer stem cells that are defined as “cancer cells within a tumor that possess the capacity for self-renewal and that
can cause the heterogeneous lineage of cancer cells that constitute the tumor.” Gastric cancer stem cells exhibit
characteristic biomarkers, signaling pathways, and crosstalk networks with tumor microenvironment. Targeting of
these characteristics, which play important roles in cancer stem cells resistance, may provide new therapeutic
modalities for gastric cancer.
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Introduction
Normal stem cells possess two unique characteristics: self-renewal

potency, which supplies an adequate number of cells to maintain the
organ’s function, and pluripotency, which allows mature cells to
comprise a specific organ [1]. It has recently been demonstrated that
cancer originates from a small subpopulation of cells known as cancer
stem cells (CSCs) that possess the abilities of self-renewal and
tumorigenesis [2,3]. CSCs retain the capacity to produce a hierarchy of
phenotypically diverse progeny [4]. This theory was first proposed by
Furth and Kahn [5] in 1937, and CSCs were first identified and
isolated by Bonnet and Dick [6] in 1997. In 2006, the American
Association for Cancer Research workshop created a consensus
definition of CSC as “cells within a tumor that possess the capacity for
self-renewal and that can cause the heterogeneous lineage of cancer
cells that constitute the tumor” [7]. Recent accumulating data support
the hypothesis that CSCs may exist in several solid tumors, including
gastric cancer (GC) [8]. In addition to their self-renewal capacity,
CSCs have the potential to metastasize and recurrence [4,9]. Various
biomarkers and signaling have been utilized to detect and characterize
CSCs, including those in human GC [8,10-12]. CSCs have been
demonstrated to be preferentially spared by traditional cancer
therapies because standard chemotherapy and radiation therapy target
the differentiated tumor cell bulk, which results in cancer recurrence
[12,13]. The identification of the CSC component of a tumor may
open a new therapeutic perspective on the basis of selective targeting
of this small population of cells. In this chapter, the characteristic
properties of gastric cancer stem cells (GCSCs) are reviewed with
regard to surface markers and self-renewal signaling.

Gastric Cancer and Gastric Cancer Stem Cells
Gastric cancer remains one of the most common cancers worldwide

and represents a major global health threat. Traditionally, the clonal
evolution model has been used to explain GC growth: GC cells result

from multiple mutations over time resulting in a population of
continually diversifying cells. In contrast, the CSC theory suggests that
only CSCs can self-renew and promote tumor growth [14]. Because
gastric carcinoma manifests a histological heterogeneity [15],
multipotent CSCs may explain this heterogeneity evident in gastric
tumors [16]. Although investigation of the origin of GCSCs is
ongoing, numerous recent studies suggest that gastric stem or
progenitor cells or bone marrow-derived cells (BMDCs) are
candidates for GCSC [17-19]. Houghton et al. reported that BMDCs
migrate to and repopulate the gastric mucosa during infections, and
over time, contribute to metaplasia, dysplasia, and gastric
carcinogenesis [17]. A recent study by Varon et al. provided
compelling evidence that long-term Helicobacter pylori infection
induces the recruitment and accumulation of BMDCs in the gastric
epithelial mucosa, which then participate in dysplasia and GC
development [20].

Although most patients with advanced stage GC require
chemotherapy, the development of chemoresistance is a major
obstacle in therapy. Because the survival of CSCs is better than that of
proliferating progenitor cells or differentiated tumor cells on the
administration of intensive anticancer therapies [21], it may be
important to understand CSC drug resistance mechanisms in the
development of a promising therapy aimed at reducing
chemoresistance. Several signals are known to be associated with the
stemness of GCSCs and targeting their cellular pathways, which may
play important roles in CSC resistance, may provide new therapeutic
modalities for advanced stage GC [22-26].

GCSC Markers
Several candidate GCSC cell surface markers have been reported

[8,10-12]. CD44 is a class I transmembrane glycoprotein that acts as a
receptor for extracellular matrices such as hyaluronic acid, and it is a
known downstream target of the Wnt/β-catenin pathway [27]. CD44
is associated with cell signaling, migration, and homing and is
expressed in lower glandular cells of the gastric antrum. It has multiple
isoforms, including CD44H that exhibits high affinity for hyaluronate,
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and CD44 splice variants (CD44v) that exhibit metastatic properties.
In recent years, CD44 expression correlating with CSC-like
characteristics has been used to identify CSC populations in several
tumor types, including GC. Chen et al. demonstrated, for the first
time, the existence of CD44+ cells within GC tumors that are endowed
with stem cell properties and also provided a plausible explanation for
the chemoresistance that is frequently observed in patients with GC
[28]. Moreover, Takaishi et al. reported that CD44+ cells have a
sphere-forming ability and serially reproduce morphologically and
phenotypically heterogeneous diseases of the original GC tissues,
thereby demonstrating CD44 to be a potential biomarker of GCSCs
[27]. Furthermore, Nishii et al. reported side population (SP) cells with
CD44 expression exhibiting high potential for peritoneal metastasis
and suggested that CD44 is associated with GCSCs [9]. In addition,
Han et al. proved that as few as 500 FACS-sorted epithelial cell
adhesion molecule (EpCAM)+/CD44+ cells from human GC tissues
are capable of forming xenograft tumors in immunodeficient mice and
proposed EpCAM and CD44 as putative GCSC markers[29]. Chen et
al. reported that GCSCs isolated from human tumor tissues and
peripheral blood carried CD44 and CD54 surface markers [28].
Ishimoto et al. recently reported that GCSC-like cells expressing
CD44v revealed an enhanced capacity for reduced glutathione (GSH)
synthesis and defense against reactive oxygen species (ROS) [30]. On
the other hand, Rocco et al. reported that CD44+ and CD133+ cells
neither expressed stem-like properties nor exhibited tumor-initiating
properties [31].

CD90 is a glycosylphosphatidylinositol glycoprotein anchored in
the plasma membrane and is involved in signal transduction; in
addition, it may mediate adhesion between thymocytes and
thymicstroma. Jiang et al. identified a CSC population in gastric
primary tumors, characterized by their CD90 phenotype, and in a cell
population with the CD90 phenotype enriched in sphere-cultured cells
from human gastric primary tumors, suggesting CD90 as a potential
GCSC marker [32]. Notably, CD90+ cells have self-renewal properties
and the ability to establish a tumor hierarchy from single-cell
implantation; furthermore, CD90 expression closely correlates with
the in vivo tumorigenicity of gastric primary tumor models.

CD24 is a glycoprotein expressed at the surface of most B
lymphocytes and differentiating neuroblasts. Zhang et al. suggested
that the CD44+CD24+ subpopulation of human GC cell lines AGS is
composed of GCSCs [33].

CD71 (transferrin receptor) mediates the uptake of transferrin–iron
complexes and is highly expressed on the surface of the cells of the
erythroid lineage. Ohkuma et al. reported that the CD71− cell fraction
was present in both the G1/G0 cell cycle phase and the invasive fronts
of cancer foci, indicating high tumorigenicity, multipotency, and
invasiveness [34]; they suggested that CD71− is useful in detecting
CSCs in human gastric adenosquamous carcinoma.

CD133, a pentaspan transmembrane glycoprotein, was initially
considered to be a marker of hematopoietic stem cells. Smith et al.
recently demonstrated that a moderate to high percentage of GC
samples have CD133 expression with moderate to strong membranous
and apical expression [35]. Although CD133 is closely associated with
CSCs in various tumors, its significance in GCSCs remains unclear
[31].

ALDH1 (aldehyde dehydrogenase 1) is a ubiquitous aldehyde
dehydrogenase family of enzymes that catalyzes the oxidation of
aromatic aldehydes to carboxyl acids. Katsuno et al. identified ALDH1

as an additional marker of GCSCs [36]; ALDH1+ cells from a human
GC cell line revealed higher tumorigenic potential in vitro and in vivo
compared with that of ALDH1− cells and were capable of self-renewal
and generating heterogeneous cell populations. Moreover,
transforming growth factor-β (TGFβ) therapy reduced the number of
ALDH1+ cells and their tumorigenicity via ALDH1 downregulation
and regeneration of the expression of islet-derived family member 4
(REG4) [36].

Lgr5 (leucine-rich repeat-containing G protein-coupled receptor5)
was identified as a novel stem cell marker of the gastrointestinal tract,
including the gastric gland fundus [37-39]. CD44+, ALDH1+, and
CD133+ cells coexisted with Lgr5+ cells in the stem cell zone of
adjacent normal gastric mucosa and were also detectable in GC [38].
Barker et al. demonstrated that Lgr5+ cells at the base, rather than the
isthmus, of gastric glands in adult transgenic mice continuously gave
rise to all antral unit cells under normal homeostatic conditions [39].
Simon et al. reported that an increase in LGR5+ putative stem cells
during gastric tumorigenesis may play a role in the development and
progression of GC [40].

SP, identified and isolated by the ability to efflux Hoechst 33342
dye, is known as a CSC-rich population [9,41-43]. GC cell lines were
found to contain 0.02%–2.2% SP cells [41,44]. Nishii et al. isolated SP
cells by using GC cell lines OCUM-2M, OCUM-2D, and
OCUM-2MD3 [9]; they confirmed that serially sorted SP subsets from
GC cell lines exhibited higher engrafted tumor formation and
possessed a higher potential for peritoneal metastasis with upregulated
expression levels of the adhesion molecules α2-, α5-, β3-, and β5-
integrins and CD44 compared with those of the non-SP subsets.
Moreover, the mRNA expression of CSC markers ALDH1, CD44,
NANOG, and OCT3/4 was significantly increased in SP cells, which
possess properties similar to those of stem cells [9]. Furthermore,
similar findings were reported by Fukuda et al., who demonstrated
that SP cells from GC cell lines and human GC tissues are more
tumorigenic and chemoresistant compared with unsorted cells [41].
These sorted cells remained in an undifferentiated state and revealed a
distinct hierarchy in malignancy. Further evidence of the link between
GCSCs and the SP phenotype was recently provided in a report by
Ehata et al., who demonstrated that SP cells within human diffuse-type
GC cells display greater tumorigenicity in vivo compared with that in
non-SP cells and produce both SP cells and non-SP cells, indicating
the self-renewal activity and multipotency of stem cell-like
characteristics [45]. Collectively, these observations may offer a novel
tool to identify and isolate GCSCs using SP assay, and provide a new
insight into novel strategies for GC therapy by targeting CSCs in
clinical trials. Schmuck et al. reported that SP cells were smaller and
expressed CD133 and MSI-1, which yielded SP and non-SP cells in
recultivation experiments [43]. In addition, Zhang et al. reported that
SP cells from MKN-45 possess CSC properties and proved that they
were gastric cancer stem-like cells. However, SP cells from BGC-823
did not possess CSC properties, proving that not all SP cells contain
cancer stem-like cells in GC cell lines [46]. Moreover, Burkert et al.
revealed that SP and non-SP cells isolated from four GC cell lines did
not differ with regard to the number of stem cell-like cells [47].
Nevertheless, the utility of SP to identify GCSCs remains controversial
[27].

ABC transporters, including ATP-binding cassette subfamily B
member 1 (ABCB1/MDR1) and ATP-binding cassette subfamily G
member 2 (ABCG2), can confer multidrug resistance to cancer cells.
The expression of these transporters is correlated with the response to
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therapy and survival [48]. SP cells are determined by their differential
potential to efflux the fluorescence dye Hoechst 33342 via ABC
transporters, which are associated with SP chemoresistance properties
[9,43,49]. Jiang et al. demonstrated the expression of the CSC markers
ABCB1/MDR1 and ABCG2 in human GC tissue samples and cell lines
and concluded that the expression of these markers varied in GC with
various degrees of differentiation [32].

These putative markers may be useful to identify CSCs and
determine the therapeutic molecules. However, many of the published
markers are not absolutely specific to stem cells. In addition, different
types of CSCs may coexist within one tumor mass. Cancer cells
determined by these potential markers may contain not only stem cells
but also progenitor cells. Therefore, a single surface marker may not be
sufficient to identify and characterize GCSCs, and thus, a combination
of these markers is required.

Gastric Cancer Stem Cells Signaling
The dysregulation of several major signal transduction pathways

may be involved in gastric tumorigenesis and in the self-renewal of
GCSC as stem cell regulators [50]. Sonic hedgehog (Shh) expression
levels are the highest in the stem cell region of the gastric unit [51].
The Shh signaling pathway is dysregulated in GC [52,53], and aberrant
activation of the Shh pathway positively correlates with poorly
differentiated and aggressive GC [54]. In addition, Shh signaling
promotes the motility and invasiveness of GC cells through TGFβ-
mediated activation of the ALK5-Smad3 pathway, indicating its
potential role in GC metastasis [55]. The Shh signaling pathway is
essential for the maintenance of cancer stem cell-like cells in GC [56].
Evidence supporting the role of Shh signaling as a driving force and
intrinsic regulator of GCSCs has been established from several recent
studies of human GC cell lines and cancerous tissue samples. CD44+/
CD24+ stem-like cells from a GC cell line revealed upregulated mRNA
expression in the Shh signaling molecules, Patched 1 (PTCH1), and
GLI compared with that in the nontumorigenic CD44−/CD24−
subpopulation [33]. The Shh pathway may provide a rational
therapeutic approach to targeting GCSCs for GC therapy [56,57].

Wnts are secreted glycoproteins that bind to cell surface receptors
to initiate signaling cascades that are a key to the development and
maintenance of gastric epithelia. Wnt/β-catenin signaling primarily
involves balancing the ratios of stemness, proliferation, and
differentiation [58]. Aberrant activation of Wnt signaling has been
shown to regulate the self-renewal of stem cells and trigger a variety of
tumors [59,60], including GCSCs [61]. Ishimoto et al. reported that a
subpopulation of rare CD44+ stem cell-like slow-cycling cells was
consistently present in the gastric glands at the squamo–columnar
junction in normal mouse stomach [62]. By the combined activation
of PGE2, Wnt signaling enhances the expansion of these stem cell-like
cells, leading to gastric tumorigenesis [63]. Moreover, soluble Wnt
antagonists play a negative role in GC growth and contribute to the
maintenance of the stem cell pool in deep gastric glands [64]. The
Wnt/β-catenin signaling pathway may play an important role in
maintaining self-renewal and the undifferentiated state of GCSCs
[61,65].

TGFβ has been reported to maintain the stemness in glioblastoma
[66,67] and leukemia [68]. The TGFβ superfamily is essential for gut
morphogenesis, cellular differentiation, and adult homeostasis [65,69].
Ehata et al. recently reported that TGFβ decreased the SP cell numbers
within diffuse-type gastric carcinoma cells [45]. Hasegawa et al.

recently demonstrated that TGFβ signaling significantly increased the
expression levels of CSC markers, ALDH1, CD44, Nanog, and Oct3/4,
in GCSCs [70].

Embryonic stem cell-expressed Ras (ERas) is a recently identified
Ras family oncogene that supports the tumor-like propagation of ES
cells [71]. ERas product is a constitutively active Ras protein in the
absence of mutation [72]. ERas oncogene is expressed in viviparity
phase cells but not in somatic cells because of the epigenetic regulation
of the ERas oncogene in the somatic phase. Yashiro et al. reported that
ERas activation may be associated with tumorigenesis in gastric
carcinoma and may be one of the molecules responsible for cancer
stem cell-like characteristics. Moreover, Kubota et al. suggest that ERas
is activated in a significant population of GC, where it may play a
crucial role in GC cell survival and metastases to the liver via
downregulation of E-cadherin [73]. In addition, they reported that
ERas induces chemoresistance to CPT-11 via activation of the
phosphatidylinositol-3 kinase-protein kinase β mTOR pathway and
NFκB, consequently leading to ABCG2 upregulation [74].

The Notch pathway has been known to developmental biologists for
decades; its role in the control of stem cell proliferation has now been
demonstrated for several stem cell types including hematopoietic,
neural, and mammary [75]. Notch signaling is another key pathway in
the self-renewal of stem cells, cell fate determination, and
differentiation during developmental and adult cell homeostasis as
well as in tumorigenesis [76-79]. Although notch signaling-mediated
stem-like properties in GC have not yet been fully defined, abnormal
activation of Notch signaling was observed in GC. Approximately 75%
of primary GCs expressed the Notch ligand Jag1, with the expression
status correlating with cancer aggressiveness and patient survival rate
[80].

The stemness factors, Sox2, Oct3/4, Klf4, and Nanog, have been
associated with induced pluripotent stem cells [81,82], and few studies
have suggested that these factors may play a role in human malignancy
[83]. Yupeng et al. reported that Sox2 may promote cell proliferation
and tumorigenesis in breast cancer [83]. In addition, Oct3/4
expression has been suggested to be implicated in self-renewal and
tumorigenesis via activation of its downstream genes in cancer stem-
like cells of cancer cells [84,85]. Other studies have reported that Oct4
expression is associated with the early stage of pancreatic
carcinogenesis [86] and is correlated with lymph node metastasis [87].
In GC, Matsuoka et al. reported that Sox2 and Oct3/4 are independent
prognostic factors for patients with GC. Further, Tian et al. reported
that Sox2 plays a pivotal role in sustaining stem cell properties [88].
Liu et al. reported that nonadherent spheroid body-forming cells from
the GC cell line MKN-45, cultured in a stem cell-conditioned medium,
exhibited GCSC characteristics of sustained self-renewal, high
proliferation, chemoresistance, and high expression of CSC markers
such as Oct3/4, Nanog, Sox2, and CD44, compared with those in the
parental cells [89].

GCSC Microenvironment (niche)
Normal stem cells, such as embryonic stem cells and induced

pluripotent stem cells, require niche fibroblasts as feeder cells to
supply the stemness factors. In the stomach, the niche surrounding
stem cells in the isthmus/neck region of mucosa contributes to the
maintenance of these stem cells, the regulation of cell numbers, and
their differentiation [90]. Gastric stem cells are surrounded by a sheet
of subepithelial myofibroblasts that acts as a niche and secretes
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different types of growth and differentiation factors [91,92]. It was
recently reported that niche stromal cells play a critical role in the
characteristics of CSCs [1]. There are several components of the niche
that have been suggested to regulate CSC properties, and these
components are involved in tumor growth, including extracellular
matrix, stromal cells, vascular and endothelial molecules, secreted
modifier proteins, growth factors, bone marrow-derived
myofibroblasts, and hypoxia. Hasegawa T. et al reported that
carcinoma-associated fibroblasts might regulate the stemness of CSCs
in gastric cancer by TGFβ signaling [70]. Bone marrow-derived
myofibroblasts were recently considered as major components of the
niche for gastric carcinogenesis and tumor growth [54,93-95].
Moreover, carcinoma-associated fibroblasts originating from bone
marrow-derived mesenchymal stem cells create a niche to sustain
cancer progression [96,97].

Guo et al. reported that gastric tumor cells activate the stromal
fibroblasts (SFs) and become myofibroblasts [93]; they suggested that
suppressing the fibroblast activation by inhibiting tumor cell-derived
factors would be an effective strategy for chemoprevention in GC.
Moreover, Shibata et al. demonstrated that the overexpression of
stromal-derived factor 1 (SDF1)/CXCL12, a ligand for CXCR4 (C-X-C
chemokine receptor type 4), induces the GC recruitment of BMDCs
and the modulation of the progenitor niche [97]. Hepatocyte growth
factor secreted by cancer-associated fibroblasts increased the self-
renewal of colon CSCs through activation of the Wnt signaling
pathway [98]. Chronic gastritis can recruit bone marrow-derived
mesenchymal stem cells, and these differentiate into cancer-associated
fibroblasts that sustain cancer progression [11,96]. Moreover, several
inflammatory cells, including macrophages, can affect the self-renewal
of CSCs [98,99]. Uehara et al. demonstrated the relationships between
H. pylori colonization, GC, and DNA damage within Lgr5+ epithelial
stem cells in the stomach of patients with GC[100]; they found that
Lgr5+ cells expanded in the presence of H. pylori in the antrum of
patients with GC. In addition, Tsugawa et al. used CD44v9-expressing
GC cell lines to study the potential of intracellular CagA to avoid
autophagy and found a molecular link between H. pylori-derived
CagA and GC stem-like cells [101]. Chronic inflammation caused by
H. pylori infection plays an important role in transforming resident
stem cells into tumor cells.

Hypoxia is another critical aspect of the CSC niche and is involved
in the maintenance of self-renewal and the undifferentiated state of the
CSC population in various solid tumors [102,103]. Hypoxic conditions
may be implicated in the stemness of GCSCs, although the underlying
mechanisms remain unknown [104]. Hypoxia-inducible factor
(HIF)-1α down-regulated CD133 expression in cancer cells [105].
Understanding the origin of CSCs and their interaction with niches
would be helpful in precise targeting of CSCs.

Resistance of GCSCs to Cancer Therapy
In addition to conventional cancer therapies such as surgery,

cytotoxic chemotherapy, and radiation, selective therapies on the basis
of cancer biology have become available [106]. The resistance of CSCs
to these therapies may be explained by various mechanisms, including
characteristic properties of CSCs and their microenvironment, as
described above [107]. Conventional chemotherapy and radiation kill
differentiated tumor cells en masse, resulting in tumor size reduction;
however, tumor relapse occurs because of the presence of residual
quiescent CSCs. There is a need to design drugs that specifically target
CSCs, including stem cell-targeting drugs, stemness inhibitors, and

microenvironment-modulating drugs [108-110]. For targeting GCSCs,
several novel strategies have been suggested, including tumor stem cell
differentiation induction, targeting GCSC cell surface molecules,
targeting the GCSC microenvironment, and inhibiting GCSC self-
renewal pathways.

Chemoresistance of GCSCs
Most patients with GC in the advanced-stage disease require

chemotherapy, and resistance to therapy is a major obstacle in the
management of gastric cancer, One of the critical problems in cancer
therapy is the heterogeneity of cancer cells. Anticancer therapies are
effective against proliferating progenitor cells or differentiated tumor
cells, but quiescent CSCs can survive chemotherapy and produce
progenitor cells or differentiated tumor cells [21,111]. Therefore, the
development of a therapy against CSC is important in reducing
chemoresistance.

CSCs identified as SP cells exhibit chemoresistance related to the
ABC transporter expressed in these cells. Two ABC transporters have
been identified as capable of effluxing Hoechst 33342 dye and
mediating the SP phenotype in both CSCs and normal cells: ABCB1/
MDR1 and ABCG2 [9]. Overexpression of efflux pumps by ABC
transporters may allow cancer cells that exhibit stem-like properties to
escape the cytotoxic effects of anticancer drugs, compromising
chemotherapeutic outcomes [112-114]. Axitinib, a multitargeted
tyrosine kinase inhibitor against vascular endothelial growth factor
receptor 1 (VEGFR-1), VEGFR-2 and VEGFR-3; platelet derived
growth factor receptor (PDGFR); and c-Kit, targeted CSCs to enhance
efficacy of chemotherapeutic drugs via inhibiting the drug transport
function of ABCG2 [115]. Therefore, selective inhibition of ABC
transporters could be beneficial in combination with chemotherapy,
particularly in the eradication of multidrug-resistant cancer cells
[116-118] (Figure 1).

Figure 1: Molecular properties of gastric cancer stem cells.

Tumor cell hierarchy is consistent with a gastric cancer cells
population at the hierarchical apex of cancer stem cells. Gastric cancer
stem cells (GCSCs) have the capacity to self-renew and to differentiate
into various kinds of daughter cells, including progenitor-type cells
and more differentiated tumor cells. GCSCs reveal the characteristic
biomarkers and stemness-maintaining signaling pathways. In
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addition, GCSCs reveal crosstalk networks with stromal cells (such as
myofibroblasts), which may secrete factors that regulate stemness and
cancer cell differentiation in the tumor microenvironment.

CSCs manifest enhanced protection against ROS, rendering them
resistant to chemotherapy or radiotherapy. Ishimoto et al. revealed a
role for CD44v in the protection of CSCs from high levels of ROS in
the tumor microenvironment. CD44v interacts with and stabilizes
xCT, a subunit of a glutamate–cystine transporter, and thereby
promotes cystine uptake for GSH synthesis. CSCs provide a rationale
for CD44v-targeted therapy to impair ROS defenses and sensitize
them to conventional chemotherapy [30]. Tamada M. et al. suggest
that CD44 ablation enhanced the effect of chemotherapeutic drugs in
p53-deficient or hypoxic cancer cells, and that metabolic modulation
by CD44 is a potential therapeutic target for glycolytic cancer cells that
manifest drug resistance [119]. Park et al. discussed a near-infrared-
sensitive molecular imaging probe based on hydrogel complexes that
can target the GCSC marker CD44 [120].

The WNT/β-catenin signaling pathway is required for normal stem
and CSC self-renewal in various cell types [121,122]. In addition, this
pathway can confer chemoresistance to 5-fluorouracil or doxorubicin
in hepatocellular carcinoma [123] and neuroblastoma [124]. Although
the mechanisms by which the Wnt pathway mediates chemoresistance
are not completely clear, one potential mechanism is through the
upregulation of ABC transporter pumps. ABCG2 expression and
chemoresistance to both cisplatin and paclitaxel were reversed by β-
catenin siRNA knockdown [125]. Further, the inhibition of the Shh
pathway has been demonstrated to sensitize CSCs in a variety of
tumors, including GC [56].

Jiang et al. administered trastuzumab (humanized anti-ERBB2
antibody) to gastric tumor cells expressing CD90 and found that this
reduced the CD90+ population in tumor size and growth when
combined with traditional chemotherapy [126]. Zhi et al. reported the
following with regard to the properties of ALDH-high cancer cells
when compared with those of ALDH-low cancer cells: ALDH-high
cancer cells exhibited high CSC properties because they express higher
levels of Sox2, Nanog, and Nestin; they express more floating spheroid
bodies and more colony formation; and they exhibit more resistance to
traditional chemotherapeutic drugs such as 5-fluorouracil and
cisplatin. The Notch signaling pathway has been identified to play an
important role in numerous processes during tumor progression and
metastases and self-renewal of CSCs [127-129]. Recent evidence
suggests that Notch may also contribute to chemoresistance in CSCs
through the maintenance of MDR1-expressing CSCs [130]. Nishikawa
et al. suggested that ALDH generates chemoresistance in GC cells
through Notch1 and Shh signaling [131]. ALDH inhibitors [132]
might be promising for CSC targeted therapy. Liu et al. reported that
inhibition of Notch1 with shRNA could decrease ABCC1 expression,
and improve chemosensitivity in prostate CSCs. Notch1 signaling
could transactivate ABCC1, resulting in higher chemoresistance ability
of prostate CSCs [133]. Akagi et al. reported the role of myeloid cell
leukemia-1 in the apoptosis resistance in CSC-like populations in GC
[134]. Zhan et al. demonstrated that the orphan receptor TR3, a
regulator of cell proliferation and apoptosis, is increased in gastric
tumorsphere cells and suggested that TR3 is essential for CSC
maintenance in human GC cells; therefore, TR3 could be used as a
new therapeutic target for GC [135]. Xi et al reported that Lgr5 is
associated with chemotherapy resistance in GC, and the inhibition of
Lgr5 expression with small interfering RNA increased the sensitivity of
GC cells to chemotherapy [136].

Although the abovementioned strategies would be helpful in
developing anti-CSC drugs to cure GC, not all pathways/markers may
be active in each CSC the in tumor tissues. Therefore, early diagnosis
and multiple-target therapy are crucial in the CSC-based therapy of
GC and other types of cancer.

Radioresistance of GCSCs
The National Comprehensive Cancer Network (NCCN) guideline

on GC therapy includes radiotherapy as a standard therapy for
patients at the advanced stage. Radiobiological research over the past
decades has provided evidence that both content and intrinsic
radiosensitivity of CSCs vary between tumors, thereby affecting their
radiocurability. Moreover, the application of cell surface markers to
discriminate CSCs and nonstem cells is expected to allow more direct
investigations of CSC radioresistance. In glioblastoma, the CD133-
high cell fraction was found to have decreased sensitivity to radiation-
induced apoptosis [137]. Furthermore, the overexpression of the Wnt-
catenin pathway was demonstrated to enhance the radioresistance of
mammary progenitor cells using breast cancer cell lines [138].

Microenvironmental factors may also lead to radioresistance of
cancer cells. A majority of experimental and human tumors contain
hypoxic cells, and hypoxic tumor cells are more radioresistant than
well-oxygenated cells [139], which is supported by experimental and
clinical studies demonstrating that this protection may be reduced by
hypoxic cell sensitizers or oxygen-enriched breathing gases [140].
Hypoxia can affect stem cell generation and maintenance in tumors
through the expression of OCT4 [141] and Myc activity [142] induced
by HIF. In addition, both acute and chronic hypoxia increase the
radioresistance of GC cells by cell cycle arrest, and reoxygenation
decreases the radioresistance of hypoxic cells [139].

New Targets for GCSCs
Targeting the characteristic signaling pathways of CSCs may

represent a promising strategy for GC therapy [12]. Since
chemotherapy is not able to kill quiescent CSCs, it might be useful to
develop a novel drug that can differentiate quiescent CSC into active
cells. Inhibitors of signaling pathways that are most likely employed in
the maintenance of the self-renewal capacity and the perpetual
proliferation of CSCs have emerged as an important novel class of
therapeutic agents.

Gastrointestinal tumors have been linked to Hh expression, and
inhibition of Hh signaling by Hh antagonists such as cyclopamine and
robotnikinin may be effective in the management and prevention of
such cancers [143,144]. Yan et al. indicated that GCSCs play an
important role in tumor angiogenesis and that Notch-1 is one of the
mediators involved in these processes. β-Elemene was effective at
attenuating angiogenesis by targeting GCSCs, and attenuated tumor
angiogenesis by targeting Notch-1 in GCSCs [145,146]. Small
molecules that target both the β-catenin-dependent Wnt signaling
cascade and the anti-Wnt antibodies are awaiting translation into
clinical practice [61,147]. The potency of salinomycin is based on the
suppression of the Wnt/β-catenin signal transduction, which is
associated with the GCSC signaling. Wang et al. reported a novel
Ad5/35-DKK1-based approach to abrogate the Wnt signaling in CSCs
and demonstrated that the GCSC-targeting gene therapy was effective
in preclinical experiments [148]. In addition, Zhi et al. reported that
ALDH-high cancer cells were highly sensitive to salinomycin
compared with ALDH-low cancer cells [149]. Lee et al suggested that
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Wnt/β-catenin signaling maintains self-renewal and tumorigenicity of
cancer stem-like cells by activating Oct3/4, and proposed the
inhibition of Wnt/β-catenin signaling as a novel therapeutic strategy
for targeting cancer stem-like cells [150]. Nephew et al showed a
preclinical epigenome-targeting evidence that DNA methytransferase
inhibitor, SGI-110, reduced the stem-like properties of ALDH+ cancer
cells, including their tumor initiating capacity, resensitized
chemoersistance, and decreased tumor progression [151]. Zieker et al.
suggested that inhibiting the phosphoglycerate kinase 1 (PGK1), a key
metabolic enzyme, stimulate stem cell differentiation of CD44+GC
cells, which may represent a promising avenue of research into
overcoming chemoresistance in GC [152].

Several tyrosine kinase signals are known to be associated with the
stemness of CSCs; therefore, targeting their cellular pathways, which
might have important roles in the resistance of CSCs, may provide
new treatment modalities for GC. I have reported that a c-Met
inhibitor SU11274 increases the chemosensitivity of GCSCs to the
irinotecan by decreasing UGT1A1 which metabolizes irinotecan
[9,43,49]. Repression of c-Kit by p53 is mediated by miR-34 and is
associated with reduced chemoresistance, migration and stemness
markers such as CD44 and Lgr5 [133]. Inhibitors of insulin-like
growth factor-1 receptor and its downstream PI3K/Akt/mTOR
pathway reduced the ALDH+ breast CSCs [153].

It is possible that multiple interactions of the CSC niche contribute
to resistance against conventional therapies. Therapeutic targeting of
CSCs along with their niche appears a promising approach for future
research in combination with conventional anticancer therapy.

Conclusions
Despite recent aggressive studies of GCSCs, few specific GCSC

markers have been identified, and understanding of GCSC signaling
mechanisms is poor. Also, current studies suggest that CSC behavior is
regulated by the complicated tumor microenvironment. However, on
the basis of these observations, the CSC theory offers a novel approach
via therapeutic targeting of CSCs, which are assumed to be responsible
for tumor growth, recurrence, and chemoresistance. CSC-targeted
therapy, such as blockading of CSC signaling pathways, targeting of
specific CSC antigens, and controlling crosstalk between CSCs and
their microenvironment may lead to the development of novel
therapeutic strategies for GC in the future.
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