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Abstract
Rheumatoid arthritis (RA) is a complex and common systemic autoimmune disease characterized by synovial 

inflammation and hyperplasia. Multiple proteins, cells, and pathways have been identified to contribute to the 
pathogenesis of RA. Galectins are a group of lectins that bind to β-galactoside carbohydrates on the cell surface and 
in the extracellular matrix. They are expressed in a wide variety of tissues and organs with the highest expression in 
the immune system. Galectins are potent immune regulators and modulate a range of pathological processes, such 
as inflammation, autoimmunity, and cancer. Accumulated evidence shows that several family members of galectins 
play positive or negative roles in the disease development of RA, through their effects on T and B lymphocytes, 
myeloid lineage cells, and fibroblast-like synoviocytes. In this review, we will summarize the function of different 
galectins in immune modulation and their distinct roles in RA pathogenesis.
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Introduction
Rheumatoid arthritis (RA) is a complex and common systemic 

autoimmune disease, characterized by synovial inflammation and 
hyperplasia, cartilage and bone destruction, and extra-synovial 
symptoms [1]. The prevalence of RA in the adult population is estimated 
at 1% worldwide and is three times higher in women than in men [2]. 
RA principally attacks flexible joints symmetrically, progressing from 
distal joints to proximal joints [3]. RA inflammation can also diffuse into 
extra-synovial tissues and organs, leading to a higher risk of developing 
cardiovascular diseases, lymphoma, and lung cancer [2,4,5]. The 
diagnosis of clinical RA is based on several criteria, including physical 
symptoms, joint radiographs, and serological tests [6]. Treatment 
strategies for RA patients include non-steroidal anti-inflammatory 
drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), 
and biological agents, such as blocking antibodies for tumor necrosis 
factor alpha (TNFα) and interleukin-6 (IL-6) [2]. Although these drugs 
can relieve symptoms and delay disease progression, none of them 
provide a cure for RA nor have consistent efficacy in all patients. 

The etiology of RA involves a complex interplay of multiple 
proteins, cells, and pathways. Among those, galectins have recently 
emerged as an important group of proteins which modulate immune 
activation and inflammation [7]. Galectins are the lectin family 
members that bind to β-galactoside carbohydrates. They are widely 
expressed in different tissues and organs with the highest expression 
patterns in the immune system [8]. Through binding to their receptors, 
galectins mediate fundamental intra- and inter-cellular signaling as 
well as cell-extracellular matrix (ECM) interactions [8]. As potent 
immune regulators, galectins play an important role in a number of 
pathological processes including inflammation, autoimmunity, fibrosis, 
and cancer [7].

In this review, we will summarize the current understanding of the 
role of different galectins in RA, based on a comprehensive literature 
review of published empirical research. The electronic databases of 
Pubmed/Medline, Embase, EBSCO, SCOPUS, and Cochrane Library 
were searched using key words “arthritis” and “galectin” in all fields 
to the cut-off date of September 16, 2013. Over 100 manuscripts in 
English language were identified in the search. Among those, thirty 
research manuscripts and one conference abstract provide direct 

evidence regarding the pathogenic role and therapeutic potential of 
galectins in RA (Table 1). Herein, we will briefly review the pathogenic 
mechanisms of RA and discuss in detail the role of different galectins in 
RA pathogenesis and therapeutics.

Pathogenesis of RA 
Although RA was first described more than 200 years ago, its etiology 

has not been completely characterized. Both genetic and environmental 
factors contribute to the development of RA. To date, more than 30 
gene loci have been found to contribute to RA susceptibility and disease 
severity [9-11]. Many of those gene loci are related to immune cell 
activation, such as MHC class I allele HLA-DRB1 and gene variants 
of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and protein-
tyrosine-phosphatase nonreceptor type 22 (PTPN22). Environmental 
risk factors include bacterial and viral infections, smoking, and 
alcohol consumption [11,12]. Gene-environment interactions can also 
synergistically increase the risk of developing RA in certain subgroups 
of people. For example, a combination of smoking and the HLA-DRB1 
allele increases the risk for RA by 21-fold in the anti-cyclic citrullinated 
peptide antibody (ACPA) positive population [13].

A major characteristic of RA is the infiltration of multiple leukocytes 
into the joints, including B cells, T cells, macrophages, dendritic cells, 
and neutrophils. Infiltrated leukocytes form ectopic germinal centers 
and drive adaptive immune responses in the RA joints. B cells can 
locally produce autoantibodies, including ACPA [14,15]. T cells play a 
central role in mediating joint damage by driving the activation of other 
effector cells [16,17]. Although CD4+ T cells are the dominant T cell 
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types in the synovium, Th17, a subset of T helper cells secreting IL-17, 
and regulatory T cells (Treg) also play a critical role in RA pathogenesis 
[18,19]. Neutrophils are the most abundant leukocytes in RA synovial 
fluid (SF) [20]. In RA patients, SF neutrophils remain active for an 
overly extended length of time [21,22]. Activated neutrophils release 
proteolytic enzymes, reactive oxygen species (ROS), and neutrophil 
extracellular trap (NET), which can damage local tissues as in other 
autoimmune diseases [23]. Neutrophils also secrete pro-inflammatory 
cytokines such as TNFα, IL-1 and IL-6, as well as chemokines to 
further amplify joint inflammation [24]. Macrophages, derived from 
circulating monocytes or local macrophage-like synoviocytes, provide 
another main source of pro-inflammatory cytokines [25]. In addition, 
synovial macrophages in RA strongly express MHC class II and are 
potent for antigen presenting and T cell activation [16].

Another characteristic of RA is the activation of local fibroblast-like 
synoviocytes (FLS) [26]. In RA joints, resident FLS show a transformed 
phenotype with over-expressed proto-oncogenes and defective cell 
death pathways. FLS in RA secret a wide range of pro-inflammatory 
cytokines and chemotactic proteins and also express surface ligands 
for interacting with immune cells [27]. In addition, RA FLS release 
proteolytic enzymes such as matrix metalloproteinases (MMP), 
cathepsins, and plasmins. Thus, it has been suggested that FLS are the 
main cells responsible for the invasion and destruction of cartilage and 

bones, promotion of angiogenesis, and facilitation of osteoclastogenesis 
[27].

Besides the cells mentioned above, numerous proteins have been 
shown to play a role in RA pathogenesis. Some of them have been 
successfully adapted in clinical diagnosis and therapies for RA, such 
as ACPA, TNFα, IL-1, and IL-6 [2]. The family of galectins is involved 
in a wide range of biological processes. Their immune modulating role 
has drawn an increasing attention in the field of arthritis research. Our 
discussion will now turn to the function of galectins and their potential 
role in RA pathogenesis and therapies.

The Family of Galectins 
Galectins are a group of lectins that specifically bind to β-galectoside 

carbohydrates and share significant sequence similarity in their 
carbohydrate-recognition domains (CRDs) [8]. The galectin genes 
are evolutionarily conserved and can be found in many organisms, 
including viruses, sponges, fungi, plants, nematodes, insects, and 
vertebrates [8]. Currently there are at least 15 mammalian galectins, all 
of which contain one or two CRDs of about 130 amino acids each. Based 
on the CRD organization, galectins are divided into three subfamilies 
(Figure 1, panel A). Galectin-1, -2, -5, -7, -10, -11, -13, and -14 contain 
only one CRD and are classified as the “proto type”. In contrast, the 

Galectin Animal studies Human studies Therapeutic potential
Galectin-1 Administration of galectin-1 suppressed CIA by 

enhancing T cell apoptosis and inhibiting IL-2 
secretion [55]. 

Galectin-1 limited neutrophil recruitment to 
inflammatory tissue by in vitro experiment and 
galectin-1-deficient mice [69]. 

Galectin-1 deficient mice were more susceptible 
to CIA [70]. 

Down-regulated expression of galectin-1 in the 
synovial fluid from RA/JIA patients [71,73,74].

Administration of galectin-1 or its derivates 
ameliorated CIA [55,75,78,79]. 

Galectin-1 induced chondrogenic differentiation 
of MSCs from RA bone marrow [80]. 

Galectin-3 Over-expression of galectin-3 was detected in 
CIA [93].

Galectin-3 deficient mice displayed reduced 
disease severity of antigen-induced arthritis [94].

Increased expression of galectin-3 in sera and 
synovial fluid in RA/JIA patients [71,72,91,95-97]. 

A galectin-3 gene allele (LGALS3 +292C) is more 
prevalent in RA patients [99]. 

RA patients had a higher number of galectin-3-
expressing FLS [100]. 

Galectin-3 induced FLS to secret a set of pro-
inflammatory cytokines and chemokines [101]. 

Intra-articular lentivirus-mediated delivery of 
galectin-3 shRNA ameliorated CIA in rats [75]. 

Downregulation of galectin-3 inhibited IL-6 
secretion in FLSs from RA synovium [102]. 

Galectin-9 Galectin-9 deficiency promoted Th1 and Th17; 
and inhibited Treg differentiation, rendering 
susceptibility to CIA [103]. 

Galectin-9 induced apoptosis of FLS and down-
regulated pro-inflammatory cytokine production 
[104]. 

Galectin-9 ameliorated immune-complex-induced 
arthritis by regulating the expression profile of 
macrophage Fc receptors [118] 

Galectin-9 induced apoptosis of FLS from RA 
patients in cell culture [104]. 

Decreased expression of galectin-9 was detected 
in RA patients with high disease activities [119]. 

Down-regulated expression of Tim-3 led to 
defective galectin-9-induced apoptosis of CD4+ T 
cells [120]. 

Administration of galectin-9 ameliorated CIA or 
immune complex-induced arthritis [104,118].

Galectin-2 Galectin-2 3279C/T gene polymorphism is 
correlated with diastolic blood pressure in patients 
with RA [123].

Galectin-8 CD44vRA, a CD44 variant prevalent in RA 
patients, can neutralize the galectin-8 induced 
apoptosis of synoviocytes [125]. 

Autoantibodies against galectin-8 were detected 
in the sera of about 20% of RA patients [126,127]. 

A galectin-8 gene variant is prevalent in RA 
patients and associates with the early onset of 
RA [128]

Table 1: Pathogenic role and therapeutic potential of galectins in RA.
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“tandem-repeat type” (galectin-4, -6, -8, -9, and -12) have two separate 
CRDs connected by non-conserved amino acid sequences. Galectin-3 
is the only member of the “chimeric type” and contains one CRD and a 
non-lectin region of about 120 residues at the N-terminal of CRD [8]. 
Some galectins can self-dimerize or oligomerize, forming bivalent or 
multivalent complexes for stronger signaling [28,29] (Figure 1, panel A).

Galectins have been detected in numerous tissues and organs. Their 
distributions can be ubiquitous (e.g. galectin-1, -3, -8 and -9) or limited 
to specific tissue types (e.g. galectin-2 and -4) [30]. Due to the absence 
of the classical signal sequence for insertion into the endoplasmic 
reticulum (ER), galectins primarily localize intracellularly [31]. 
However, some types of galectins can be found on the cell surface (e.g. 
galectin-9) or secreted through a non-classical ER/Golgi-independent 
pathway to the extracellular compartment (e.g. galectin-1 and -3) 
[32,33].

Function of Galectins
The sugar-binding specificity and affinity vary among different 

members of the galectin family, implicating their specialized and 
diversified functions [34]. Each galectin recognizes a set of glycoproteins 
with a particular oligosaccharide sequence. The variety of binding 
partners and wide distribution of galectins allow them to function in 
multiple biological reactions, including mRNA splicing (e.g. galectin-1 
and -3) [35,36], cell apoptosis (e.g. galectin-3, 7,-9,-12) [37-39], cell 
cycle regulation (e.g. galectin-3 and -12) [40,41], cell activation (e.g. 
galectin-3) [42,43], cell adhesion and migration (e.g. galectin-1, -2, 
-3, -4, -8 and -9) [44], and cell differentiation (e.g. galectin-3, -9, -10) 
[45]. Pathologically, galectins have been linked to a number of diseases 
including cancer, cardiovascular disease, liver fibrogenesis, asthma, and 
RA [7].

The role of galectins in RA varies among different members of 
the galectin family as different galectins can positively or negatively 
regulate immune responses and inflammatory reactions. To date, 
multiple studies have identified a regulatory role of galectin-1, -3, and 

-9 in RA while only a few studies suggested a role of galectin-2 and -8 
in RA. We will now discuss each of the five types of galectins regarding 
to their potential function in RA.

Galectin-1 in RA 
Overview of galectin-1 

Galectin-1 is a “proto type” galectin and can form homodimers by 
cross-linking [46,47]. It is highly expressed by immune-related cells 
such as lymphoid stromal cells, macrophages [48], T cells [49], and 
endothelial cells [50]. In most studies, galectin-1 has been shown to 
be immunosuppressive and anti-inflammatory. The main receptors of 
galectin-1 on the T cell surface are CD43 and CD45 [51,52]. Through 
surface receptor binding, galectin-1 regulates negative selection of T 
cells in the thymus [51,53], induces Th1 and Th17 cell apoptosis [54], 
and promotes the shift from Th1 to Th2 polarized immune responses 
[55]. Treatment of T cells with galectin-1 changes the cytokine profile, 
with decreased pro-inflammatory cytokines such as TNFα, IL-1β, IL-2, 
and IFNγ [56,57] and increased anti-inflammatory cytokines such as 
IL-10 [58]. For B cells, galectin-1 negatively regulates cell proliferation 
and BCR-mediated signal transduction [59]. Galectin-1 also regulates 
innate immune cell activation. Treatment of galectin-1 dramatically 
reduced neutrophil infiltration, mast cell degranulation [60], and 
inducible nitric oxide synthase (iNOS) expression in macrophages [61]. 
The anti-inflammatory activity of galectin-1 has also been suggested 
in various experimental models of inflammatory or autoimmune 
diseases including experimental autoimmune uveitis [62], myasthenia 
gravis [63], graft-versus-host disease [64], experimental autoimmune 
encephalomyelitis [65], experimental colitis [66], diabetes [67], 
concanavalin A-induced hepatitis [68], and collagen-induced arthritis 
[55].

Galectin-1 in arthritis animal models 

The link between galectin-1 and RA was first reported by Rabinovich 
et al. in 1999 using collagen-induced arthritis (CIA) mouse model [55]. 
A single injection of fibroblasts engineered to secrete mouse galectin-1 

 
Figure 1: The structure and function of the galectin family members. (A) The galectin family members are divided into three types: the prototype with one 
carbohydrate recognition domain (CRD), the tandem-repeat type with two CRDs connected by a non-conserved linker, and the chimeric type with one CRD 
and a non-lectin N-terminal domain (ND). Some galectins can self-associate into dimers or oligomers. (B) Biological functions of extracellular galectins. Bivalent 
or multivalent galectins crosslink their receptors on the same cell for intracellular signal transduction, two different cells for cell-cell interaction, or cell and 
extracellular matrix (ECM) for cell-ECM interaction.
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or daily administration of 100 µg of recombinant human galectin-1 
in DBA/1 mice was sufficient to suppress the overall clinical and 
histopathological manifestations of CIA [55]. Galectin-1 treatment also 
reduced the anti-collagen antibody levels and skewed the cytokine profile 
toward a type-2 polarized immune reaction [55]. Further investigation 
into the mechanism revealed that galectin-1 treatment enhanced the 
susceptibility of T cells to antigen-induced apoptosis, increased T cell 
adhesion to extracellular matrix, and also inhibited IL-2 secretion from 
collagen-specific T cell hybridomas [54,56,57]. In addition, galectin-1 
functions to limit neutrophil recruitment to TNF-treated endothelium; 
and leukocyte adhesion and emigration were significantly increased in 
galectin-1-deficient mice inflamed with IL-1β [69]. In a more recent 
study, galectin-1-deficient mice exhibited increased susceptibility to 
CIA, with earlier onset of arthritis and more severe manifestations 
than the wild type mice [70]. These studies further demonstrated the 
inhibitory function of galectin-1 in the development of arthritis and the 
disease severity in animal models.

Galectin-1 in RA patients 
In human patients, in situ immunohistochemistry showed 

remarkably reduced expression of galectin-1 in synovial tissue from 
patients with long duration of juvenile idiopathic arthritis (JIA) [71]. 
Reduced expression of galectin-1 may lead to defective mononuclear 
cell apoptosis in JIA patients [71]. Furthermore, expression of galectin-1 
has never been found at the sites of cartilage invasion in RA [72,73]. 
Although the plasma levels of galectin-1 are comparable between RA 
patients and healthy controls, concentration of galectin-1 in synovial 
fluid (SF) is significantly decreased [74]. The reduced SF galectin-1 
levels correlate to the increased levels of anti-galectin-1 autoantibodies 
and anti-cyclic citrullinated peptide (CCP) antibodies in RA patients 
[74]. These clinical studies confirmed the potential involvement of 
galectin-1 in RA pathogenesis, and provided a rational for using 
synovial galectin-1 as a biomarker for RA prognosis.

Therapeutic potential of galectin-1 
Based on the immunomodulatory effects of galectin-1 in RA, there 

has been much interest in designing galectin-1 derivatives as anti-RA 
drugs. In one study, intra-articular lentiviral vectors encoding galectin-1 
were injected into rats with CIA [75]. This treatment significantly 
ameliorated CIA, measured by articular index, radiographic, and 
histological scores; T-cell infiltrates; and microvessel density in the 
ankle joints [75]. High frequencies of antigen-induced T cell apoptosis 
were also noticed in the lymph nodes of treated rats [75]. However, the 
anti-RA activities of galectin-1 require concentrations higher than 7 
µM to allow formation of galectin-1 homodimers [76,77]. To overcome 
this limitation, galectin-1 was conjugated onto gold nanoparticles (Au-
Gal1) to form a multivalent structure [78]. Au-Gal1 provided enhanced 
stability and biological activity, and showed better therapeutic effects 
than free galectin-1 in vitro and in vivo. In another study, a chimeric 
protein was genetically engineered by fusing galectin-1 to the Fc region 
of human IgG1 (Gal-1hFc) [79]. Gal-1hFc is stable and always dimeric, 
thus the molecule is biologically functional at low concentrations. 
Investigation of Gal-1hFc’s effects on leukocytic infiltrates in RA synovial 
fluids showed that 94% of leukocytes expressed galectin-1 receptor 
and were susceptible to Gal-1hFc–mediated cell death, revealing the 
potency of this chimeric protein for RA treatment. Furthermore, a 
recent study showed that low concentrations of galectin-1 can induce 
chondrogenic differentiation of mesenchymal stem cells (MSCs) from 
RA bone marrow [80], suggesting a potential application of galectin-1 
in cartilage transplantation treatment for RA.

In summary, galectin-1 plays an inhibitory role in the development 
of experimental arthritis mainly through the induction of T cell 
apoptosis and skewed type-2 cytokine response. In human patients, 

the expression levels of galectin-1 were significantly down-regulated 
in the synovium of RA and JIA patients and the downregulation of 
galectin-1 was correlated with the increased anti-CCP titers. In pre-
clinical animal studies, administration of galectin-1 or its derivatives 
ameliorated the antigen-induced arthritis, providing a strong rational 
for using galectin-1 as anti-RA drugs in the future.

Galectin-3 in RA 
Overview of galectin-3 

While galectin-1 is a negative regulator of autoimmunity in 
RA, galectin-3 promotes inflammation in RA. Galectin-3 is the only 
chimeric type of galectin. It has a long N-terminal domain with proline- 
and glycine-rich repeats connected to one CRD [81]. The N-terminal 
domain, which is 34% homologous to the collagen-1 chain, is responsible 
for self-oligomerization, and thus is essential for its biological activity 
[81]. Galectin-3 exists as monomer in solution, and self-assembles into 
higher order oligomers in the presence of multivalent carbohydrate 
ligands [82].

Functionally, galectin-3 is also known as epsilon BP for its IgE-
binding activity and as Mac-2, a macrophage surface antigen [81]. By 
cross-linking cell surface receptors, galectin-3 activates several types 
of lymphoid and myeloid cells. It increases IL-2 production in T cells 
[83] and promotes IgE production in B cells [84]. For myeloid-linage 
cells, galectin-3 stimulates superoxide release from neutrophils and 
monocytes [43], potentiates IL-1 production by monocytes [85], and 
induces 5-hydroxytryptamine (5-HT) release from mast cells [86] and 
basophils [86,87]. In addition, galectin-3 can bridge cells and the ECM 
to promote chemo-attraction and retention of macrophages [88] and 
neutrophils [89]. In line with its in vitro pro-inflammatory function, it 
has been shown that the levels of galectin-3 are elevated in the serum or 
nidi of patients with inflammatory diseases including RA [72], systemic 
lupus erythematosus (SLE) [90], Behçet’s disease [91], and systemic 
sclerosis [92].

Galectin-3 in arthritis animal models 
Studies with CIA rats found increased galectin-3 secretion into 

the plasma over time, which correlated with the disease progression, 
implicating that galectin-3 promotes the development of experimental 
arthritis [93]. Recent studies with galectin-3-deficient mice further 
confirmed the stimulating role of galectin-3 in arthritis [94]. The joint 
inflammation and bone erosion of antigen-induced arthritis were 
markedly suppressed in galectin-3-deficient mice as compared with 
the wild type mice [94]. The reduced arthritis in galectin-3-deficient 
mice was accompanied by decreased levels of antigen-specific IgG 
and proinflammatory cytokines including TNFα, IL-6, and IL-17 [94]. 
Furthermore, an exogenous supply of recombinant galectin-3 restored 
the reduced arthritis and cytokine production in galectin-3-deficient 
mice [94]. This study provided the direct evidence that galectin-3 plays 
a crucial role in the development of arthritis in animal models.

Galectin-3 in RA patients 
In human patients, galectin-3 was detected in the synovial tissue 

of RA and JIA patients, with clear accumulation at the sites of cartilage 
invasion [71,72,95-97]. The serum levels of galectin-3 were elevated 
in patients with RA, JIA, Behçet’s disease, or systemic sclerosis 
[72,91,92,98]. Although the increased galectin-3 is not specific for RA, 
the serum levels of galectin-3 were significantly associated with the 
C-reactive protein (CRP) levels and the disease activity scores in patients 
with JIA, suggesting that galectin-3 may be utilized as a biomarker for 
the disease progression of JIA [98]. In addition, the galectin-3 gene 
allele (LGALS3 +292C) is more prevalent in RA patients than in healthy 
controls, indicating that genetic polymorphisms of galectin-3 may 
influence the susceptibility to RA [99].
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In addition to immune cells, FLS in the synovium of RA patients 
also express galectin-3 at high levels [72,73,95]. While floating FLS 
only express low levels of galectin-3 [95], adhesion of FLS to cartilage 
components through CD51/CD61 induces galectin-3 expression [100]. 
In RA patients, about 39% of FLS are cartilage-adhering cells, which 
is four times more than in osteoarthritis (OA) patients. The increased 
numbers of adhering FLS contribute to the elevated galectin-3 levels in 
the RA synovium [100]. Moreover, galectin-3 can induce rheumatoid 
FLS to secret a set of pro-inflammatory cytokines and chemokines 
including IL-6, granulocyte-macrophage colony-stimulating factor 
(GMCSF), TNF, CXCL8, CCL2, CCL3, and CCL5 [101]. The induction 
of cytokines and chemokines by galectin-3 appears to involve different 
signaling pathways. The MAPK-ERK pathway was necessary for 
cyotokine IL-6 production, while phosphatidylinositol 3-kinase (PI3K) 
was required for chemokine CCL5 induction [101]. These studies using 
human materials further suggest a promotional role of galectin-3 in the 
pathogenesis of RA.

Therapeutic potential of galectin-3 
In concordance with the human and animal studies discussed above, 

silencing of galectin-3 expression by intra-articular injections of shRNA 
into rat ankle joints ameliorated the manifestation of CIA, suggesting 
that downregulation of galectin-3 may be a therapeutic strategy for RA 
[75]. In addition, using FLS derived from the synovium of RA patients, 
it has been reported that downregulation of galectin-3 expression by 
galectin-3 siRNA inhibited spontaneous and LPS-induced secretion 
of inflammatory cytokine IL-6, further suggesting the potential of 
targeting galectin-3 in the suppression of joint inflammation [102].

Overall, galectin-3 acts as a positive regulator for inflammation 
by stimulating proinflammatory cytokine/chemokine production and 
potentiating myeloid linage cell activation. In animal models, galectin-3 
aggravates antigen-induced arthritis. In patients with RA and JIA, the 
levels of galectin-3 are increased in both serum and synovium. Thus, 
galectin-3 blockade may provide a novel strategy for the treatment of RA.

Galectin-9 in RA 
Overview of galetin-9 

Like galectin-1, galectin-9 is anti-inflammatory, as suggested by 
studies in several disease animal models including CIA [103,104], 
asthma [105], nephrotoxic serum nephritis [106], diabetic nephropathy 
[107], and autoimmune encephalitis [108]. Galectin-9 contains two 
distinct CRDs connected by a linker peptide [109]. Three isoforms of 
galectin-9 have been reported which differ in the length of the linker 
peptide: short type (311 AAs), medium type (323 AAs), and long 
type (355 AAs). Galectin-9 can also form stable dimers or multimers 
to induce stronger signals [110]. Galectin-9 is expressed by T cells, 
macrophages, endothelial cells, and fibroblasts and plays an important 
role in regulating inflammation and immune responses [111-113].

Galectin-9 negatively regulates pro-inflammatory T cell 
responses. An important cell surface receptor for galectin-9 is T cell 
immunoglobulin and mucin-domain-containing-molecule-3 (Tim-
3). Tim-3 is specifically expressed on CD4+ Th1 cells, CD8+ cytotoxic 
T cells, and CD11b+ dendritic cells (DC), but not on Th2 cells or 
macrophages [114-116]. The galectin-9-Tim-3 pathway induces 
apoptosis of CD4+ Th1 and CD8+ cytotoxic T cells. Blockade of this 
interaction in vivo results in exacerbated autoimmunity and abrogation 
of self-tolerance in animal models [117]. Galectin-9 also regulates T cell 
subset differentiation in vitro and in vivo. In cell culture, treatment with 
galectin-9 induced the differentiation of naïve T cells to regulatory T 
cells (Treg) and suppressed the differentiation of Th17 cells [103].

Galectin-9 in arthritis animal models 
In mouse models, galectin-9 deficiency led to increased numbers 

of Th1 and Th17 cells and decreased numbers of Treg cells in the joint, 
rendering susceptibility to CIA [103]. Conversely, subcutaneous and 
intraperitoneal delivery of the human stable galectin-9 recombinant 
proteins decreased the production of proinflammatory cytokine and 
suppressed the disease symptoms in the CIA mice [103]. Another 
study by the same group demonstrated that treatment with human 
stable galectin-9 induced apoptosis of cells in the joints of CIA mice 
and SCID mice implanted with RA patient synovial tissues [103,104]. 
Furthermore, galectin-9 was shown to negatively regulate macrophage 
activation by increasing the expression of immunoinhibitory FcRIIb 
and decreasing the expression of immunoactivating FcRIII, leading to 
the suppression of arthritis in an immune complex-induced arthritis 
mouse model [118].

Galectin-9 in RA patients 
Using a cell culture system, stable galectin-9 protein preferentially 

induced apoptosis and suppressed the proliferation of RA patient-
derived FLS [103,104]. In RA patients, decreased galectin-9-Tim-3 
signaling has been observed. The levels of Tim-3 expression on CD4+ 
T cells from RA patients were lower compared to those from healthy 
controls, leading to blunted galectin-9-mediated apoptosis of CD4+ 
T cells [119,120]. Another study showed that galectin-9 mRNA 
expression levels in peripheral blood mononuclear cells (PBMCs) 
were significantly lower in RA patients with moderate to high disease 
activity than those with low disease activity [104,119], implicating that 
galectin-9 may prevent the disease progression of RA.

Therapeutic potential of galectin-9 
As discussed in the section of galectin-9 in arthritis animal models, 

administration of human stable recombinant galectin-9 ameliorated 
arthritis in CIA and an immune complex-induced arthritis mouse 
model, assessed by pannus formation, inflammatory cell infiltration, 
and bone/cartilage destruction [103,104]. These studies warrant the 
development of galectin-9 derivatives with enhanced in vivo stability 
and efficacy for the treatment of RA.

Taken together, galectin-9 is a negative regulator of arthritis as 
suggested by both animal and human studies. Galectin-9 plays a key 
role in T cell differentiation through the galectin-9-Tim-3 pathway. 
Galectin-9 induces the differentiation of naïve T cells to Treg cells 
and suppresses the differentiation of proinflammatory Th17 cells. 
In addition, galectin-9 induces apoptosis of FLS which may prevent 
synoviocyte hyperproliferation in RA joints. Therefore, up-regulation 
of galectin-9 and galectin-9-Tim-3 pathway is a promising strategy for 
the treatment of RA.

While galectin-1, 3, and 9 has been extensively studied regarding 
their modulating role in inflammation and arthritis, galectin-2 and -8 
have been less studied in these aspects. Only a few reports revealed the 
linkage of galectin -2 and -8 with RA. In the following, we will briefly 
summarize these findings.

Galectin-2 in RA 
Galectin-2 is structurally similar to galectin-1, but has a distinct 

expression profile which is primarily confined to the gastrointestinal 
tract [121]. Like galectin-1, galectin-2 induces T cell apoptosis 
and suppressed colitis in a mouse model [122]. A human genetic 
study showed that galectin-2 3279C/T gene polymorphism may be 
independently associated with diastolic blood pressure in patients with RA 
[123]. These studies indicate that galectin-2 may play a suppressive role in 
RA, but more confirmative evidence is needed to support this notion.
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