
Volume 6 • Issue 1 • 1000139
J Def Manag
ISSN: 2167-0374 JDFM, an open access journal

Research Article Open Access

Ernest and Cohen, J Def Manag 2015, 6:1 
DOI: 10.4172/2167-0374.1000139

Commentary Open Access

Journal of Defense ManagementJo
ur

na
l o

f D
efense Managem

ent

ISSN: 2167-0374

Introduction
Great strides have been made in remote-operated Unmanned 

Combat Aerial Vehicles (UCAVS), mostly in terms of ground strike 
capabilities. However when only millisecond timeframes are allowed 
for critical decisions to be made, any delay in communications and 
control severely weakens the combat capability of the system. While 
some proponents of autonomy focus on the ability to design aircraft that 
can perform maneuvers no human pilot would maintain consciousness 
through, or the simple fact those pilots’ lives would no longer be at 
risk, these are not the only benefits these systems can provide. With 
an average human visual reaction time of 0.15 to 0.30 seconds, and 
an even longer time to compute optimal plans and coordinate them 
with squad mates; this offers a huge window of improvement that an 
Intelligent Agent (IA) can capitalize upon. 

Even if the IAs were limited to keeping track of the same limited 
number of inputs and outputs that even expert pilots are capable of 
tracking, the ability to react and coordinate hundreds of times faster 
is a great advantage in terms of Course of Action (CoA) development. 
Certain methodologies however are not limited in terms of the number 
of dimensions that can be processed simultaneously during CoA 
development or refinement. During missions these systems can track, 
maintain time histories, and pull out useful knowledge of the opposing 
force from data such as hostile position, velocity, acceleration, angles 
and angular rates, maximum-g maneuvers, firing patterns, evasion 
maneuvers, formations and formation settling times, sensor utilization, 
estimated roles and tactics, and many others. As any entity learns 
additional information concerning a tactical advantage or disadvantage, 
this information can be immediately distributed and utilized. 

This paints a picture of an extremely effective force, even if the 
capabilities of our platforms themselves did not improve. However 
there are many obstacles to this type of system. The main difficulties 
in the development of IAs for this type of problem are the vast number 
of inputs and outputs to be considered, as well as the uncertainty and 
randomness inherit in the problem and sensor noise and failure. There 
are a number of systems that can process tens to hundreds of inputs 
and outputs in faster than real-time; a requirement for training via a 
learning system. However, within the framework of UCAV control, 
none have been as resilient, adaptable, and robust as fuzzy logic 
based methodologies. The main difficulty in implementation of these 
technologies is the ability to verify and validate the IA, another unique 
strength of any fuzzy logic based IA which can be verified and validated 
utilizing formal methods. Safety specifications and operating doctrines 
can be guaranteed to be followed by the IA. Of course computing 
systems can crash and sensors can fail, though this is just as true for 
manned aircraft, and redundancies can be put in place.

The ability to lay out architecture for these types of problems 
is extremely simple for fuzzy logic based controllers compared to 
alternative methods. While we rely on a learning system to determine 
the ideal membership functions and if-then rules, the allocation and 
granularity of inputs and outputs, obviously optimal if-then rules, and 

any strategies gleaned from expert knowledge can still be hard-coded. 
Many research problems in the domain of UCAV autonomous control 
include next-gen technologies that have no established and well-vetted 
doctrine. However, many doctrines of air combat in general will still 
apply, and can be easily incorporated into fuzzy logic controllers. 

One fuzzy methodology in particular, the Genetic Fuzzy Tree (GFT) 
got its start in a UCAV research problem funded by the Dayton Area 
Graduate Studies Institute [1]. The first GFT, LETHA or the Learning 
Enhanced Tactical Handling Algorithm, was tasked with the control of 
a squadron or squadrons of UCAVs equipped with next-gen defensive 
systems which had to determine optimal routes through highly-
contested spaces, cope with communication losses, and in a time and 
safety optimal fashion, complete Suppression of Enemy Air Defences 
(SEAD) missions [2]. Utilizing this type of fuzzy control, LETHA was 
able to take in a significant number of inputs concerning the observed 
mission state and make high-performance real-time decisions that 
allowed even incredibly difficult missions to be completed safely.

Background
The UCAVs LETHA controls have a Laser Weapon System (LWS) 

and Self-Defense Missiles (SDMs) onboard. The SDMs are fire and 
forget missiles that can destroy enemy incoming missiles, whereas the 
LWS can burn through incoming ordinances over some duration, but 
has a maximum charge capacity and must recharge throughout the 
mission. The incoming missile’s azimuth, distance, and guidance type 
determine the duration of the lase necessary to destroy it. Additionally, 
these defensive systems have a 90% probability of kill, meaning a flat 
10% chance of failing to destroy their target is present.

A low-fidelity combat simulator was developed for this task. 
Enemies within include Surface to Air Missile sites (SAM sites), which 
fire groups of missiles nearly simultaneously at their target(s). Enemy 
air interceptors patrol within a given zone, and engage LETHA when 
approached. Lastly, Electronic WARfare (EWAR) stations block out all 
communications within a volumetric radius, and are usually located 
near enemy defenses and unarmed critical ground targets. The exact 
number and position of enemy aircraft is not known to LETHA in 
advance, but missile firings are detected immediately. An example 
mission layout is displayed below in Figure 1.
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The GFT methodlogy utilizes a series of Fuzzy Inference Systems 
(FISs) with varying degrees of connection between them. By breaking 
up the problem into many sub-decisions in a dynamic programming 
fashion, the solution space is significantly reduced. Unlike in Fuzzy 
Decision Trees or Fuzzy Networks, the nodes of a GFT are not 
individual components of FISs, but rather are unique FISs themselves 
[3-5].

Any coupling between inputs and outputs must be captured as best 
as possible. Thus, branches of the tree are utilized to capture inputs that 
are related, and connections between branches to certain FISs allow 
inputs to be considered in other FISs not directly within their same 
branch. As the number of if-then rules required for a fuzzy controller 
is exponential, based upon the number of membership functions of 
the inputs, this type of approach keeps the number of parameters as 
low as possible and allow a learning system to train the system. Figure 
2 depicts a visualization of LETHA’s GFT, with different branches 
governing routing, weapons, and communications.

Of note in Figure 2 is the ease in which other methods and algorithms 
can be incorporated into the system in different levels. A Cooperative 
Task Assignment Algorithm, Fuzzy Clustering Route Solver, and No 
Communications Fire Control System are directly incorporated [6-8]. 
This system requires a strong learning system, as the solution space is 
quite large. The entirety of the GFT needs to be trained simultaneously, 
to incorporate for coupling issues, and have performance converge. 
Initially, a heavily optimized Genetic Algorithm (GA) was utilized. 

The patent-pending EVE Learning System, developed by Psibernetix 
Inc., was also applied to LETHA and its performance compared. EVE 
is itself a GFT whose objective is to create and optimize other GFTs [9]. 
Through recursive self-application, EVE has been trained to learn how 
to better train other GFTs.

Results
LETHA learned over 6 training missions and 12 live missions in 

which post-trained, deterministic controllers were tested. The training 
portfolio focused on covering a wide variety of possible enemy layouts 
and capabilities, as well as testing LETHA in various states, such as 
having only the LWS and no SDMs. The live missions were developed 
such that a 90% survival rate was guaranteed possible if none of 
LETHA’s countermeasures miss. Shown in table 1 are the success rates 
of trained LETHA’s from both the initial optimized GA and EVE in the 
12 live missions. Here mission success meant all enemy units destroyed 
and LETHA suffered no losses. EVE not only performed better, but 
also was over 10 times faster, able to train the system in under 2 hours 
on a laptop.

Multi-squad capabilities are highlighted in Figures 3 and 4. Figure 4 
in particular displays the scalability of this approach, however this was 
not the largest case ran. LETHA has successfully completed difficult 
problems with 250,000 friendly aircraft. The main difficulty here is that 
the simulation is real-time and does not stop or slow down as LETHA 
processes CoAs. While this is a simplified, low-fidelity simulation 
environment, this was still accomplished on one laptop, displaying the 
extreme scalability and efficiency of this type of system [10].

 

Figure 1: Example mission layout.

 

Figure 2: Visualization of LETHA’s GFT.

 

Figure 3: LETHA solution for 8-squadron problem.

Live Mission Non-EVE GA 
Training

EVE-Optimized 
Training

1 93% 100%
2 98% 100%
3 96% 100%
4 99% 100%
5 100% 99%
6 91% 98%
7 100% 100%
8 92% 100%
9 94% 100%
10 100% 100%
11 97% 100%
12 94% 99%

Table 1:  LETHA results in live missions.
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Conclusion
Since the development of LETHA and EVE, these technologies 

have been applied to other UCAV problems. Psibernetix Inc. has “been 
tasked with the creation of an artificial intelligence for the research 
and development of increased autonomous capabilities to allow mixed 
combat teams of manned and unmanned air fighters to operate in 
highly contested environments” [11]. 

The capability ceiling and number of benefits that a GFT-based 
IA can bring to a problem such as this are quite high. If intel of 
the opposing force was imprecise or incorrect, adjustments to the 
knowledge of the hostiles’ capabilities would be updated real-time as 
missions continued. This information could be broadcasted to other 
squadrons in the area, informing them that enemy tactics or platform 
capabilities are different than what was assumed. The IAs can keep 
better track of friendly assets, even in hectic and extremely stressful 
encounters, which aid in the ability to reduce the odds of a friendly fire, 
a significant concern especially in aerial combat. 

They can be made impossible to be hacked or taken over, or if 
human in the loop is desired these risks can be severely mitigated. 
Our fighter pilots are extremely brave and well-trained individuals, 
however they are still human. If a near worst-case scenario occurs and 
the optimal plan includes a tactic with a very low survivability rate 
for a particular UCAV, the UCAV with the least resources remaining 
will happily choose to serve that role, without any anxiety, doubt, or 
adrenaline that may inhibit ideal decision-making. Upon taking even 
significant damage, the IA can calculate how to adjust control to either 
maintain flight, or perform the best possible landing maneuver. The 
IAs can be made to value the lives of civilians of an enemy territory 
more than their own or those of their squad mates. They do not require 
millions of tax-payers’ dollars to train, hold no grudge, cannot suffer 
from PTSD, and are incapable of blinding hatred.

Outside the defense industry, the GFT methodology has found 
preliminary success in the financial and bioinformatics domain as well. 
The largest solution space EVE has trained a GFT over thus far has been 

2.97*10^(961). For this problem, a standard genetic fuzzy system would 
have a solution space of 10^(3.464 × 10^(106)), or many times larger 
than a googolplex. Realistically, any type of big-data problem could 
benefit from the GFT, which provides the unique strengths of being 
a fuzzy-logic based intelligent system that is applicable to enormously 
complex problems. 

Problems containing opposing forces, such as many of those in the 
defense domain, serve as excelling application areas for these types of 
systems. System noise and uncertainty are present, as well as a dynamic 
and often unpredictable enemy. These issues can be incredibly difficult 
for some methods of intelligent systems to cope with, as the enemy 
could actively try to act differently than the training set the system 
practiced over. Fuzzy logic has been shown to be extremely effective 
in the defense domain and will continue to push the boundaries of 
autonomous capabilities beyond their current state. 

References

1. http://www.dagsi.org/

2. Ernest N, Cohen K, Kivelevitch E, Schumacher C, Casbeer D (2015) “Genetic
Fuzzy Trees and their Application Towards Autonomous Training and Control
of a Squadron of Unmanned Combat Aerial Vehicles”. Unmanned Systems.

3. Hanebeck U, Schmidt G (1996) “Genetic Optimization of Fuzzy Networks”.
Fuzzy Sets and Systems 79: 59-68.

4. Gegov, Alexander (2010) “Fuzzy networks for complex systems: a modular rule 
base approach”. Springer, Berlin.

5. Liu X, Feng X, Pedrycz W (2013) “Extraction of fuzzy rules from fuzzy
decision trees: An axiomatic fuzzy sets (AFS) approach”. Data and Knowledge 
Engineering 84: 1-25.

6. Ernest N, Cohen K, Garcia E, Schumacher C, Casbeer D (2015) “Multi-agent
Cooperative Decision Making using Genetic Cascading Fuzzy Systems”. AIAA 
SciTech Conference, Kissimmee, FL.

7. Ernest N, Cohen K, Schumacher C (2013) “UAV Swarm Routing Through
Genetic Fuzzy Learning Methods”. AIAA Infotech@Aerospace Conference,
Boston, MA.

8. Ernest N, Cohen K, Schumacher C, Casbeer D (2014) “Learning of intelligent
controllers for autonomous unmanned combat aerial vehicles by genetic
cascading fuzzy methods”. SAE Aerospace Systems Technology Conference,
Cincinnati, OH.

9. http://www.psibernetix.com/services/

10.	Ernest N (2015) “Genetic Fuzzy Trees for Intelligent Control of Unmanned
Combat Aerial Vehicles”. Dissertation, University of Cincinnati, OH.

11. Distribution A: Approved for public release; distribution unlimited. 88ABW
Cleared 08/17/2015; 88ABW-2015-4034.

Figure 4: LETHA solution for 50-squadron problem.

http://www.worldscientific.com/doi/abs/10.1142/S2301385015500120
http://www.worldscientific.com/doi/abs/10.1142/S2301385015500120
http://www.worldscientific.com/doi/abs/10.1142/S2301385015500120
https://isas.uka.de/Publikationen/FSS96_Hanebeck.pdf
https://isas.uka.de/Publikationen/FSS96_Hanebeck.pdf
http://www.sciencedirect.com/science/article/pii/S0169023X12001012
http://www.sciencedirect.com/science/article/pii/S0169023X12001012
http://www.sciencedirect.com/science/article/pii/S0169023X12001012
http://arc.aiaa.org/doi/abs/10.2514/6.2015-0888
http://arc.aiaa.org/doi/abs/10.2514/6.2015-0888
http://arc.aiaa.org/doi/abs/10.2514/6.2015-0888
http://arc.aiaa.org/doi/abs/10.2514/6.2013-4730
http://arc.aiaa.org/doi/abs/10.2514/6.2013-4730
http://arc.aiaa.org/doi/abs/10.2514/6.2013-4730
http://papers.sae.org/2014-01-2174/
http://papers.sae.org/2014-01-2174/
http://papers.sae.org/2014-01-2174/
http://papers.sae.org/2014-01-2174/
http://www.psibernetix.com/services/
http://search.proquest.com/docview/1729502831
http://search.proquest.com/docview/1729502831

	Title
	Corresponding author
	Introduction 
	Background
	Results 
	Conclusion 
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	References 

