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INTRODUCTION

Cancer order is sometimes unstable and, therefore, constantly 
acquires changes at each the ester sequence additionally as 
chromosomal levels [1-3]. in progress genomic changes, that confer 
new characteristics to the recipient cells, underlie their progression 
to advanced sickness states as well as acquisition of drug resistance 
and treatment failure. Information from our laboratory have shown 
that accrued number of mutations correlates with poor survival 
of metastatic tumor patients [2]. One in all the implications of 
genomic instability and increased modification burden can even be 
the formation of a lot of neoantigens which facilitate recognition 
of cancer cells as non-self by immune system. However, continuing 
acquisition of genomic changes can even give new characteristics 
to cancer cells which can facilitate them escape immune police 
work [4]. In step with unstable order, cancer cells show variety 
of genomic aberrations as well as accrued levels of spontaneous 
deoxyribonucleic acid breaks. mistreatment muscle system 
carcinoma and myeloma as model systems, we've got shown that 
homologous recombination, the foremost precise deoxyribonucleic 
acid repair mechanism, is dysregulated (or ad lib elevated) in cancer 
cells and contributes to in progress genomic evolution [3,5], drug 
resistance [3] and growth of cancer cells in connective tissue growth 
model [6]. We have recently conjointly shown that apurinic/
apyrimidinic nucleases (APEX1 and APEX2) contribute to accrued 
deoxyribonucleic acid breaks and homologous recombination 
activity in metastatic tumor cells [7]. Cancer medication that area 
unit genotoxic or induce deoxyribonucleic acid harm or breaks, 
either directly or indirectly, kill cancer cells by increasing the 
harm to their deoxyribonucleic acid. However, following such 
treatments the subsets of cancer cells that survive (and not killed 
by) additionally as traditional cells of the patient currently have 
accrued levels of deoxyribonucleic acid harm and breaks. This 
side of chemotherapy poses a risk of development of resistance to 
treatment in cancer cells and transformation of traditional cells. 
in step with this view, we've got shown that cancer drug, a therapy 
agent, induces homologous recombination activity and genomic 
instability in myeloma cells in vitro [7]. Similarly, sure therapy 
agents have been coupled to development of secondary cancers 
[8,9]. There are also reports that counsel that therapy has higher 
probability of contributing to development of cancer of the blood 
as compared to radiation. It is, therefore, necessary to develop 
medication that target mechanisms underlying accrued genomic 
harm and instability in cancer cells. Such medication has potential 

to inhibit/delay progression by reducing genomic instability and 
evolution. There is also evidence that such drugs may have ability to 
increase cytotoxicity while minimizing/ reducing genomic toxicity 
caused by chemotherapeutic agents [7].
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