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Abstract
It is usually observed that among genes there exist strong statistical interactions associated with diseases of 

public health importance. Gene interactions can potentially contribute to the improvement of disease classification 
accuracy. Especially when gene expression differs across different classes are not great enough, it is more important 
to take use of gene interactions for disease classification analyses. However, most gene selection algorithms in 
classification analyses merely focus on genes whose expression levels show differences across classes, and ignore 
the discriminatory information from gene interactions. In this study, we develop a two-stage algorithm that can take 
gene interaction into account during a gene selection procedure. Its biggest advantage is that it can take advantage of 
discriminatory information from gene interactions as well as gene expression differences, by using “Bayes error” as a 
gene selection criterion. Using simulated and real microarray data sets, we demonstrate the ability of gene interactions 
for classification accuracy improvement, and present that the proposed algorithm can yield small informative sets of 
genes while leading to highly accurate classification results. Thus our study may give a novel sight for future gene 
selection algorithms of human diseases discrimination.

Introduction
Due to a large number of genes measured in a microarray 

experiment, it is essential to choose a small informative set of genes 
for distinguishing various classes of pathology [1-7]. An efficient 
gene selection algorithm can yield a compact gene set without loss 
of classification accuracy, and drastically ease computational burden 
of a classification task [8-13]. Furthermore, gene selection also can 
identify biomarker genes for diagnostic purposes in clinical settings 
[14]. A widely used selection strategy referred to as “univariate gene 
selection”, employs a selection criterion to evaluate the statistical 
separability of each gene individually [8,15-19]. Though univariate 
algorithms are simple to implement, they ignore separation 
information among gene combinations. It has been recognized that 
genes that best discriminate the different disease classes individually 
are not necessarily the ones that work best together [13]. In contrast 
to univariate algorithms, multivariate selection algorithms can 
incorporate the informativeness of possible gene combinations and 
search for an optimal gene subset [20-23]. 

It is noteworthy that there have been growing interests in gene 
interaction analysis for gene expression data in recent years [24-27], 
as strong gene interactions are usually observed [28,29] in genetic 
analyses of complex diseases. Statistically, it is feasible to use gene 
interactions for improving disease classification accuracy. Especially 
when gene expression differences across classes are not great enough, it 
will be important to use gene interactions to improve the classification 
accuracy. To our best knowledge, very few studies have examined 
the possibility of using the discrimination information from gene 
interactions for disease classification. 

For gene expression data, two-gene statistical interactions partly 
represent covariance differences of gene expressions across different 
classes [30,31]. Thus, there are at least two types of discriminatory 
information for disease classification: gene expression differences 
and gene covariance differences across classes [31]. For classification 
analysis, most algorithms merely focused on gene expression 
differences among classes, and none of them took advantage of 

discriminatory information present in the difference of the gene 
covariance matrices.

In this paper, we propose a two-stage algorithm, Bayes error-based 
(BEB) gene selection method. One major advantage of our method 
is that it provides a feasible way to simultaneously take advantage of 
discriminatory information from gene interactions and that from 
gene expression differences for classification analysis. It is well known 
that Bayes error can provide the lowest achievable error rate for a 
given classification problem [32], and depends only on the gene space, 
not classifiers [33]. From this point of view, it is optimal to use Bayes 
error as a selection criterion [34,35] for searching an optimal or near-
optimal gene set in classification analyses. In this study, results based 
on simulation and real data analysis showed that discrimination 
information from gene interactions, which is ignored by other gene 
selection methods in classification analysis, can significantly improve 
the accuracy of disease classification.

Materials and Methods
For convenience, we focus on a two-class microarray experiment, 

e.g. presence and absence of a disease, or two subtypes of a disease.
Suppose that a set G of n genes (G={g1, g2,…, gn}) are measured. The
gene expression data can be represented by a n×m matrix X= (xiq)
(i=1,…, n; q=1,…, m), where xiq is the gene expression level for the
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i-th gene of the q-th sample. Let Y (yq = 0 or 1 denoting the biological 
condition, q=1,…,m) be a vector of the phenotypes for m samples. 
We assume that the expression data matrix X is preprocessed and 
normalized. 
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Since Bayes error for a gene set cannot be easily expressed in an 
analytical form, we use an upper bound of Bayes error as a selection 
criterion based on the Bhattacharyya distance. In addition, in 
expression data, an exhaustive search for an optimal gene combination 
is computationally intensive. Thus, our algorithm is divided into two 
steps: 1) Building a candidate gene pool: select genes which show 
differences presenting in gene covariance matrices as well as gene 
expression levels; 2) Search for an optimal or near-optimal gene 
combination from the candidate gene pool. Details of the proposed 
algorithm are outlined as following:

Building a candidate gene pool 

This step aims to reduce the dimensionality of data by identifying 
a pool of candidate genes. Let G ( G G⊂  ) denote as a candidate 
gene pool. Staring from an empty set G ϕ= , candidate genes are 
separately chosen and input to the set G based on their strengths for 
the phenotype discrimination, which are evaluated by two statistics. 
The two statistics are defined as following:

(1) One is a two sample t-test which evaluates the discriminative 
power for each gene. The most informative genes are those with the 
smallest p-values. 

(2) Another one is to identify gene pairs with covariance differences 
between classes. Since the correlation coefficient difference of one 
gene pair between two classes reflects the covariance difference, we 
adopt a metric developed by Fisher [36]:
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In Equation (1) nk is the number of samples in class k. In Equation 
(2) ρk is a correlation coefficient of a given gene pair in class k; zk is a 
z-transformed correlation coefficient in class k [36]. In Equation (1) 
the D-value represents the correlation coefficient difference of one 
gene pair between two classes, and can be examined using a critical 
value of the standard normal distribution [37]. 

Search for the optimal gene set
We search for the gene set which has the minimum Bayes error 

upper bound based on the Bhattacharyya distance. For a given gene 
set, the Bhattacharyya distance is defined as: 
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Mk and ∑k are the gene mean vector and covariance matrix of class 
k respectively. As shown, the Bhattacharyya distance consists of two 
components: the first term gives the class separability due to the gene 
expression differences, and the second term gives the class separability 
due to the gene covariance differences. The corresponding Bayes error 
εB between the two classes is bounded by an upper bound εB*:

*
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Where Pk is prior probability of class k. Due to matrix singularity 
of ∑, it might be difficult to directly calculate the Bhattacharyya 
distance. In this case, we use the principle component analysis to get 
∑= Pdiag{λ1,…, λr}PT , where λ1≥λ2≥……≥λr are eigenvalues of ∑ and 
P is an orthogonal matrix. We select S principle components which 
can account for a cumulative percentage of total variation of ∑, e.g. 90 
percent. We use the following matrix

1 S

1 1diag( ,..., ,0,...,0 ) TP P
λ λ 

As the approximate estimate of ∑-1, and the product of these S 
Eigen values are approximate estimate of Σ . 

In this algorithm, a sequential backward search is applied to find 
the optimal (or near optimal) gene set [10,38-41]. The search process 
starts from a full set of candidate genes yielded from step1, and then 
removes sequentially the most irrelevant ones according to εB*. To 
find the most irrelevant gene of the current gene subset, one of the 
genes (e.g. the i-th gene) is removed, then the corresponding εB* for 
remaining genes is calculated (this is denoted as εB* (i)). After that, the 
i-th gene is returned to the subset and the (i+1)th gene is removed. This 
procedure works until the genes are over. Finally, the most irrelevant 
gene, whose removal produces the lowest εB* value, can be found. The 
procedure is repeated until all of the genes are removed.

Results
Simulation study

We conduct simulations in two different scenarios to evaluate the 
effect of gene covariance differences on classification accuracy. For 
conciseness, only two classes are considered in simulations. Suppose 
that each class includes 30 samples, and in each class, genes are 
separated into L non-overlapping blocks containing 2 genes each. To 
simulate these genes in each class, a multivariate normal distribution 
is applied to generate the expression profiles for the two classes. The 
genes are generated from a multivariate normal distribution with 
mean 0 and standard deviation 1. The following is the covariance 
matrix for class 1:
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Where ∑0 is a 2×2 symmetric matrix with “1” on the diagonal and 
“ρ” off-diagonal (ρ is the correlation coefficient between two genes 
since the variance of each gene is set as 1). In simulation settings, the 
gene correlation coefficients of each block appear difference across the 
two classes. For example, in class 1, the correlation coefficients of two 
genes of block L are set to ρ, while in class 2 the corresponding ones 
are equal to -ρ. 
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In scenario 1, let L=1 and vary ρ as five levels (ρ  {0.90, 0.80, 0.70, 
0.60, 0.50}); in the scenario 2, we set ρ=0.70 and vary the number of 
block L as five levels ( L  {1, 2, 3, 4, 5}). In each simulation, 50 testing 
samples are generated for estimating classification error rates, and 
1,000 replications are carried out. In our simulations, adopt two 
classifiers, K Nearest Neighbor (KNN) and linear Support vector 
machine (SVM) for the classification analyses.

The results for two scenarios are depicted in Figure 1. As shown 
in Figure 1A, the classification error rate decreases as ρ increases. The 
greater the correlation coefficient difference of gene pairs between two 
classes is, the lower the classification error rate is. For example, when 
ρ is 0.90, for KNN method one gene pair can achieve a classification 
error rate as low as 17.17%. It indicates that gene covariance differences 
between two classes can be used to improve the classification accuracy, 
even though there is no difference of gene expression across classes. 
It is noted that KNN method can more effectively take advantage 
of information from covariance difference of gene pairs than SVM 
method, and gain higher classification accuracy. 

In Figure 1B, it shows that when more gene pairs with covariance 
differences are involved in classification analyses, KNN method 
can achieve great improvement of classification accuracy. For KNN 
method, the classification error rate decreases from 29.93% to 
17.66%, when the number of gene pairs varies from 1 to 5. For SVM 

method, when the number of gene pairs increases, SVM leads to poor 
performance of classification. The results of SVM method suggest that 
more gene pairs with covariance difference cannot effectively improve 
classification accuracy for SVM method.

Real microarray data

In this section we demonstrate our algorithm on two publicly 
available gene expression microarray datasets: DLBCL (Distinct types 
of diffuse large B-cell lymphoma) dataset and Leukemia dataset. We 
compare our method with other two gene selection strategies: The 
first is based on a univariate method, t-test (TTB), which evaluates the 
statistical separability of each gene individually; the second is based on 
a multivariate method, Mahalanobis distance (MDB), which utilizes 
expression differences from multiple genes between classes. In our 
study KNN and SVM are used to demonstrate the performance of the 
three methods. We assess these methods on the basis of classification 
error rate from “Leave-One-Out Cross Validation” (LOOCV) [42]. The 
LOOCV method proceeds as follows: hold out one sample for testing 
while the remaining samples are used to make the gene selection and 
train the classifier. Note that to avoid selection bias; gene selection 
is performed using the training set. The genes are selected by three 
methods using the training samples and then are used to classify the 
testing sample. The overall test error rate is calculated based on the 
incorrectness of the classification of each testing sample.

DLBCL dataset

DLBCL dataset was taken from the study of Alizadeh et al. [43]. 
DLBCL is the most common subtype of non-Hodgkin’s lymphoma. 
The DLBCL dataset involves 47 samples, among which 24 samples 
are from “germinal centre B-like” group and 23 samples are from 
“activated B-like” group. After the expression intensity quality filter 
as in the original publication, each sample contains 4,026 genes [43]. 
The complete microarray dataset is available at http://llmpp.nih.gov/
lymphoma/data.shtml.

In LOOCV procedure, for TTB method, 50 top ranked genes are 
selected for classification; for MDB method, gene selection is carried 
out based on those 50 genes selected from t-test; for our method, 
the gene selection is based on a candidate gene pool, which consists 
of 50 genes selected from t-test and a number of gene pairs with 
FDR<0.04 [44] selected by Fisher’s test. The classification results by 
three methods respectively are summed up in plots shown in Figure 2, 
with the number of genes along the x-axis and the classification error 
rate along the y-axis. Among three methods, BEB method generally 
achieves the lowest classification error, 0.00% with fewer genes over the 
KNN and SVM methods as shown in Figure 2A and 2B respectively. 
When using the KNN classifier, BEB method yields classification 
error rate as low as 0.00% with 30 genes, while the lowest classification 
error rate is 2.13% for MDB and TTB methods. Compared with MDB 
method, the only difference is that BEB method take advantage of the 
covariance differences among genes between two classes. It indicates 
that the usage of the covariance difference among genes can improve 
the classification accuracy for KNN classifier. Compared with TTB 
method, BEB method not only involves the information from gene 
covariance differences, but also removes those redundant genes due 
to high correlations among genes. For the SVM classifier, BEB method 
is slightly superior to the MDB method. According to our simulation 
results above, although the covariance differences among genes can 
aid to decrease classification error rate for SVM classifier, the effect of 
gene covariance differences is so limited, as shown in the Figure 2B. 
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Figure 1: Classification error rates for two simulation scenarios.
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Figure 2: Performance comparison of three methods on DLBCL dataset. A: is 
for KNN method; B: is for SVM method.
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Figure 3: Performance comparison of three methods on Leukemia dataset. A: is 
for KNN method; B: is for SVM method.
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the loss of information for classification. Second, an alternative 
way of directly using the Bayes error as gene selection criterion is 
applied by minimizing an upper bound of Bayes error based on the 
Bhattacharyya distance [32]. This makes it feasible to take the Bayes 
error as a gene selection criterion. Third, a sequential backward search 
is employed to avoid intensive computations and derive an optimal or 
near optimal gene set. 

In summary, the novelty of our method is that we provide an 
efficient way to take use of more information hidden in the dataset, 
especially information contained in the gene interactions that is 
usually ignored by most gene selection methods. According to our 
results, information contained in the gene interactions can play 
an important role in improving classification accuracy in high 
dimensional data. The proposed method can effectively perform gene 
selection with reasonably low classification error rates and a small 
number of selected genes. 
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Discussion
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