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In the recent years, graphene (G)-based nanomaterials (e.g. 
graphene oxide (GO), G hybrid nanocomposites) are increasingly 
explored for real-time imaging of biomolecules or cells [1,2].

Indeed, the remarkable intrinsic and tunable properties of G and 
derivatives (e.g. planar structure, high surface-volume ratio, high 
electrical conductivity, good chemical stability and strong mechanical 
strength) are attracting much attention, especially to manufacture 
reliable and ultra-fast biosensing platforms (e.g. label-free or 
fluorochrome-based nano-optical/biophotonic detection systems such 
as FRET or CRET).

Thereby, a number of emerging studies have reported a combination 
of functional, green, cost-effective and scalable approaches to constantly 
improve the overall properties (e.g. sensitivity, specificity/selectivity, 
stability, rapidity) of the G component for real-time and multiplexed 
imaging of biomolecules (e.g. biomarkers of disease such as BRCA1, 
p53, PSA, AFP, glucose, DNA alterations) or cells (e.g. cancer cells, stem 
cells, bacteria or viruses).

Interestingly, most recent studies have reported functionalized G 
and derivatives- based bio detectors (i.e. G coating with noble metals 
such as gold and/or silver nanoparticles (NPs) [3,4], other chemicals 
such as nitrogen [5,6], poly-L-lysine [7-9] or biologicals such as 

satisfactory results and higher benefits than conventional bio-imaging 
systems. These include high specificity/selectivity, high rapidity (ca. 
2-6 seconds), high stability, high sensitivity and low detection limit 
(usually in the range of nM to aM with signal-to-noise ratio: 3), great 
reproducibility and reliability.

For instance, Gs-field-effect transistors (Gs-FETs) have been 
rapidly developed, and are currently considered as an alternative for 
post-silicon electronics. Indeed, Gs-FETs, as conducting channels, 
represent promising chemical and biological sensors. In particular, 
large-sized chemical vapor deposition (CVD)-grown G films have been 
configured as FETs for real-time biomolecular sensing (e.g. glucose or 
glutamate molecules) [12]. The underlying mechanism relies on the 
fact that the conductance of the Gs-FET changed as the molecules are 
oxidized by the specific redox enzyme (i.e. glucose oxidase or glutamic 
dehydrogenase) functionalized onto the G film. Further, Gs-FETs 
driven by a reference-gate operating in buffer solution exhibited very 
good transport characteristics, allowing biomolecular recognition with 
high precision and sensitivity [13].

Also, graphene-based chemiluminescence resonance energy 
transfer (G-CRETs) has aroused particular attention. Indeed, chemi 
luminescence is being used as an exciting light source to construct 
universal and efficient G or GO-based photo-electrochemical sensing 
platforms [17,18]. In case of molecular detection (e.g. DNA) by GO-
CRET system, the underlying mechanism involves that GO greatly 
inhibits the peroxidatic activity of a horseradish peroxidase (HRP)-
mimicking DNAzyme [18]. Also, the bi-functionality of GO that can 
highly adsorb ssDNA and effectively quench the emission of organic 
dyes-probably due to its structural defects-is reasonably utilized in a 
CRET system, achieving sensitive and selective detection of various 
types of biomolecules [18].

Future directions might include the development of combined 

as a tag and C-F spectroscopy (CFS) [19-21], as well as functionalizations 
of G and derivatives with diamond or diamond- like NPs to enhance the 
electrochemical and catalytic activities of Gs. Eventually, the growing 
demand for compact point-of-care medical devices and portable 
instruments for on-site environmental sampling is stimulating intense 
research on simple, enhanced and flexible Gs-based sensors that can be 
miniaturized and function under considerable physical deformation. 
That is all to say that G is definitively having a bright future in real-time 
molecular imaging dynamics.
References

1. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, et al. (2011) Recent advances in 
graphene-based biosensors. Biosens Bioelectron 26: 4637-4648.

2. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide:
biofunctionalization and applications in biotechnology. Trends Biotechnol 29:
205-212.

3. Gutés A, Carraro C, Maboudian R (2012) Single-layer CVD grown graphene
decorated with metal nanoparticles as a promising biosensing platform.
Biosens Bioelectron 33: 56-59.

4. Giovanni M, Poh HL, Ambrosi A, Zhao G, Sofer Z, et al. (2012) Noble metal (Pd, 
Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Nanoscale 4:
5002-5008.

5. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and
its application in electrochemical biosensing. ACS Nano 4: 1790-1798.

6. Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, et al. (2012) Electrochemical 
sensor based on nitrogen doped graphene: simultaneous determination of
ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34: 125-131.

Meantime, Gs-based fluorescence resonance energy transfer (Gs-
FRET) biosensors were recently developed notably for simultaneous 
multi-molecular detection [14,15]. Indeed, Gs-FRET combine both the 
unique biomolecular adsorption (“wiring”) characteristics due to G, 
and the “nanoquenching” capacity due to FRET. Importantly, in case of 
GO-FRET, fine-tuning of the oxidation is required as it could strongly 
affect its fluorescence quenching ability and binding interactions 
to biomolecules such as single-stranded oligodeoxyribonucleotides 
(ssODNs), leading to a broad range of sensitivity [16].

*Corresponding author: Dr. Farid Menaa, CSO and EVP, Fluorotronics Inc. & Co. 
San Diego, CA, USA, E-mail: dr.fmenaa@gmail.com

Fluorotronics Inc. & Co. San Diego, CA, USA

charged lipid bilayer or biomolecules such as chitosan [10,11], with 

fluorinated Gs-based bioimaging systems using carbon-fluorine (C-F) 
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