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INTRODUCTION

WHO reported that the most common causes of cancer death in 
2020 were: lung (1.80 million deaths); colon and rectum (935,000 
deaths); liver (830,000 deaths); stomach (769,000 deaths); and 
breast (685,000 deaths). Lung cancer is the third most common 
cancer in the United States. More people in the United States die 
from lung cancer than any other type of cancer (CDC statistics). 
Lung cancer accounted for the most significant loss of wages at $21.3 
billion among all cancers [1]. However, the exact environmental 
and genetic cause of a person’s lung cancer is still unknown, and 
its formation may be described as when mutated cells in the lungs 

escape the immune system and grow out of control, a tumor is 
formed in the lung. Although many lung cancer research results 
have been published, the actual scientific research progress in lung 
cancer studies is still limited. Many unknown factors exist. The 
Lancet Editorial [2] stated: Lung cancer: some progress, but still a 
lot more to do. Finding critical unknown factors can be essential to 
conquer the lung cancer plague. From a genetic level perspective, 
there is an urgent need for identifying critical differentially 
expressed genes (DEGs) with the highest possible sensitivity and 
specificity for lung cancer detection.

Differential expression analysis between tumor and non-tumor 

ABSTRACT

Finding genes biologically directly or indirectly related to lung cancer has been drawing much attention, and many genes 
directly related to lung cancer have been reported. However, it has not been confirmed whether those published 'key' genes are 
truly critical to lung cancer formation, i.e., they may be with very limited useful information. As a result, finding essential genes 
remains a challenging lung cancer research problem. Using a recently developed competing linear factor analysis method in 
differentially expressed gene detection, we advance the study of lung cancer critical genes detection to a uniformly informative 
level. A set of common four genes and their functional effects are detected to be differentially expressed in tumor and non-
tumor samples with 100% sensitivity and 100% specificity in one study of lung adenocarcinoma (LUAD) and one study of 
squamous cell lung cancers (LUSC) (two North American cohorts with 20429 genes, 576 and 552 samples respectively). Two 
additional analyses also gain accuracy of 97.8% sensitivity and 100% specificity in one study of non-small cell lung carcinomas 
(NSCLC, a European cohort with 20356 genes and 156 samples), and an accuracy of 100% sensitivity and 95% specificity (1 
out of 20 non-tumor samples) in one study of ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas (LUAD, 
a Japanese cohort with 20356 genes and 224 samples). There are some common genes, but different functional effects, within 
each set of four genes among two North American cohorts and a European cohort and among North American cohorts and 
the Japanese cohort. These results show the four-gene-based classifiers are robust with different types of lung cancers and 
different race cohorts and accurate. The functional effects of four genes disclose significantly other mechanisms (mysteries) 
between LUAD and LUSC. These sets of four genes and their functional effects are considered to be essential for lung cancer 
studies and practice. These genes' functional effects naturally classify patients into different groups (more than seven subtypes). 
Subtype information is useful for personalized therapies. The new findings can motivate new lung cancer research in more 
focused and targeted directions to save lives, protect people, and reduce enormous economic costs in research and lung cancer 
treatments.
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keys to deciding the characteristics which the trials were designed 
to find. In science, an inferior or wrong methodology/model may 
lead to wrong or suboptimal conclusions. Given that the number 
of human genes is ultra-large and many genes are highly correlated 
with each other, statistical significance in many existing models can 
be false. On the other hand, published results seldom presented 
the highest possible sensitivity and specificity, i.e., close to 100%. 
In addition, many gene-related classifiers and models are not 
interpretable as gene-gene inter-relationships are hardly expressed. 
Most importantly, many existing analysis methods (biological 
and/or statistical) cannot differentiate gene-disease subtype inter-
relationships. As a result, conclusive statements cannot be reached.

Like many other cancer studies, the scientific research progress 
in solving the puzzle of lung cancer formations is still limited. 
Much literature attention has been focused on individual genes 
and their expression levels, i.e., not gene-gene interactions, 
genes-subtypes (of lung cancers) interactions, and functional 
effects. As a result, the fundamental genetic causes of lung cancer 
formations can be masked by those suboptimal focuses, and the 
researches can still be in a primitive state. Many unknown gene-
gene interaction factors exist. The gene-gene interactions can be 
essential to conquer the lung cancer formations with the highest 
possible sensitivity and specificity. This work intends to unfold the 
mysteries and directions of lung cancers by identifying four critical 
genes and their functional effects that lead to the full detecting 
power of lung cancer tumor samples and non-tumor samples in 
four gene expression RNA-seq datasets. Based on our analysis, a set 
of four genes and their functional effects can describe the overall 
features of lung cancers at the genomic level, with the highest 
possible sensitivity of 100% and specificity of 100%. They show 
clear patterns in all four cohorts. There are common genes with 
different functional effects that interact with other genes within 
each main type of lung cancer (LUAD, LUSC, NSCLC, etc.) and 
play a decisive role among different main types of lung cancers. 
Such properties have never been reported in the literature. It is 
clear that they offer the findings’ trustfulness and provide keys to 
tackle the puzzle of lung cancers and lead to precision medicine.

METHODOLOGY
The algorithm

The classifiers, based on logistic regression models, random forests, 
support vector machines, group lasso-based models, deep learning 
methods, etc., have been widely used in lung cancer studies and 
many other studies in almost all application areas. However, 
these methods do not directly deal with competing risks. The 
final established classifiers do not give clear patterns of how genes 
interact with each other and interact with subtypes. This research 
is motivated by recent work on COVID-19 data science discovery 
of five critical genes that 100% accurately classify all COVID-19 
samples and COVID-19 free samples [17]. Those five critical genes 
include an mRNA type gene and an uncharacterized gene, which 
can be informative. This research also hopes to find critical genes 
which can be drivers and messengers of lung cancer formation.

The most recently developed machine learning methods: max-
linear competing factor models [18], max-linear regression models 
[19], and max-linear logistic models [20,17], have proven to be a 
widely applicable class of new models in statistical analysis and 
max-linear machine learning. The difference between the max-
linear competing models and the classical statistical models is 
that the original linear combination of predictors is replaced by 

cells helps lung cancer diagnostic classifications and prognosis 
prediction at different stages. Efforts have been made in identifying 
genes associated with lung cancer symptoms. For lung cancer 
diagnostic classifications [3] used support vector machine learning 
algorithms to perform lung cancer morphology classification 
[4] developed a deep gene selection method to select genes from 
microarray datasets for cancer classification. Their experimental 
results showed that an average sensitivity of 95.22% and an 
average specificity of 77.39% [5] used several machine learning 
algorithms to study lung adenocarcinoma and lung squamous cell 
cancer and identified 13 top genes [6] used least absolute shrinkage 
and selection operator (LASSO) as feature selection method to 
learn cancer type classification based on TCGA data. Chen and 
Dhahbi [7] applied overlapping feature selection methods for 
cancer classification and biomarker identification [8] created an 
open access web resource the Lung Cancer Explorer (LCE), which 
enables researchers and clinicians to explore data and perform 
analyses. The LCE supports comparative analysis, survival analysis, 
meta-analysis, correlation analysis, among others. The data used 
in our study are downloaded from the LCE website and double 
verified with the original data sources. In comprehensive molecular 
profiling of lung adenocarcinoma (LUAD) [9], eighteen genes were 
found statistically significantly mutated, which suggests a driver 
role of LUAD. Earlier, Cancer Genome Atlas Research Network 
[10] reported eighteen genes with statistically recurrent mutations, 
and TP53 was found being mutated in almost all samples, in a 
comprehensive genomic characterization of squamous cell lung 
cancers (SqCC or LUSC). In addition, the authors also identified a 
potential therapeutic target and offered new avenues of investigation 
for lung SqCC treatment. In their study of triple-negative lung 
adenocarcinomas [11] stated that many tumors lack activation of 
any pathway, posing difficulties for prognosis and treatment. For 
ALK-Positive and EGFR/KRAS/ALK-Negative LUAD, the authors 
were able to identify upregulated genes, which can possibly benefit 
patients from adjuvant chemotherapy after surgical resection. 
Using expression signatures of 139 gefitinib-sensitive genes in lung 
cancer, a risk-scoring model was constructed to classify high or low-
risk patients [12,13] found that the clinical therapy of non-small cell 
lung cancer (NSCLC) depends on histopathological classification 
(HPC). On the one hand, the HPC approach poorly predicts 
clinical outcomes for individual patients. On the other hand, gene 
expression profiling holds promise to improve clinical stratification 
and paves the way for individualized therapy [14] used a nomogram 
model to identify six key genes which were combined with various 
clinical features. The nomogram model led to high consistency for 
the prediction of 3 and 5-year survival rate (concordance=0.751) 
and high accuracy as tested by ROC (AUC=0.71; AUC=0.708). 
Using bioinformatics analysis [15] identified four genes (CCNA2, 
AURKA, AURKB, and FEN1) linked to LUSC development, and 
five genes were all detrimental to the prognosis. The AUCs of their 
established prognostic model for predicting patients’ survival at 
1, 3, and 5 years were 0.692, 0.722, and 0.651 in the test data, 
respectively [16] reported fifty genes that may be associated with 
CD44, CCND3, NCALD, and MACF1 and suggested that miR-
296-5p, RAMP2-AS1, CD44, CCND3, NCALD, and MACF1 may 
serve as potential reliable biomarkers for the detection of LUAD.

The published genes from various research trials do not share 
common features, and they vary from trial to trial in lung cancer 
researches and treatments, e.g., survival analysis. Those genes can be 
thought to have direct relations to lung cancer and point out some 
promising directions. But it is still unclear whether or not truly the 
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the maximum of several linear combinations of predictors, called 
competing factors or competing-risk factors. The competing factor 
classifier has an advantage over existing models in many research 
problems, e.g., nonlinear predictions and classifications. The max-
linear competing factor models are different from the popular 
models mentioned earlier. The max-linear competing factor 
models are interpretable and outperform existing methods (e.g., 
random forest and graphical group lasso) in estimation accuracy 
and prediction power under broad data structures [19]. For the 
theoretical foundation of these new models, we refer the readers 
to papers [18-23].

Zhang first introduces a competing classifier for detecting 
COVID-19 critical genes and subtypes [17]. The paper argues 
conceptually the classifier can find the best subset of genes which 
can perfectly classify COVID-19 diseases and disease free. This new 
paper introduces a modified objective function, i.e., new classifier, 
and then theoretically justify the classifier will select the smallest 
number genes which can perfectly classify lung cancer tumors and 
tumor free with the highest accuracy possible and for some cohort 
studies to be the perfect classification (100% sensitivity and 100% 
specificity). For self-contained and completeness, we will follow the 
notations in [17] and expand them to the new classifier next.

Suppose (Yi
, X

i
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being the gene expression values with p=20429 or 20356 genes in 
this study. Using a logit link (or probit link, Gumbel link), we can 
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Where β0 is an intercept, Xi is a 1 × p observed vector, and β is a p 
× 1 coefficient vector which characterizes the contribution of each 
predictor (gene in this study) to the risk.

There are at least three major problems applying the classical 
logistic classifier (1) to disease classifications [17]. The first is that 
the number of genes selected is still not small. As a result, gene-
gene interactions and functional effects can hardly be interpretable, 
and hence the selected genes cannot be directly used in drug 
development and treatment design. The second is that the classical 
logistic classifier cannot provide additional information about 
how genes interact with different disease subtypes. Considering 
COVID-19 as an example, there have been four more variants 
(B.1.1.7, B.1351, P.1 and B.147/429) having been discovered 
and are spreading in many countries. These variants correspond 
to different RNA segments and positions in COVID-19 RNA 
sequences. As a result, each variant's related genes can be in 
different formation (combination) types. The third is that even 
with a relative non-small number of genes in the classical logistic 
classifier, the accuracy is not high enough, often just 80%.

There is one crucial factor, competing (risk) factors, that has 
not been considered in many existing statistical models, i.e., the 
existing classifiers do not distinguish the causes and the subtypes 
of the disease. In scientific studies, competing factors exist in many 
scenarios [21]. The cause/regulation of each subtype of the disease 
can be different, i.e., each subtype of the disease can result from 
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one factor or multiple factors. For example, in a system, e.g., a 
human body, all parts compete for resources to succeed. In terms 
of diseases (rare or non-rare), all subtype diseases also compete for 
resources. The dominant one wins all and will be diagnosed first. 
This study considers competing factors to be linear combinations 
of a set of predictors [17].

Suppose a disease (e.g., a type of lung cancer) may be related to G 
groups of genes

where i is the ith individual in the sample, gj is the number of genes 
in jth group. The competing (risk) factor classifier is defined as

where β0j’s are intercepts, Φij is a 1 × gj observed vector, βj is a gj × 1 
coefficient vector which characterizes the contribution of each 
predictor in the jth group to the risk.

Remark 1. Taking β0j
=−∞, j=2, . . . , G, (3) is reduced to the classical 

logistic regression, i.e., the classical logistic regression is a special 
case of the new classifier. Compared with black box machine 
learning methods (e.g., random forest, deep learning (convolution) 
neural network (DNN, CNN)) and regression tree methods, (3) 
shows clear patterns. Each competing risk factor forms a signature 
with the selected genes. The number of factors corresponds to the 
number of signatures, i.e., G. This model can be regarded as a bridge 
between linear models and more advanced (black box) machine 
learning methods. However, (3) remains the desired properties of 
interpretability, computability, predictability, and stability.

In practice, we have to choose a threshold probability value to 
decide a patient’s class label. Following the general trend in the 
literature, we set the threshold to be 0.5. As such, if pi ≤ 0.5, the 
ith individual is classified as disease free, otherwise the individual is 
classified to have the disease.

With the above established notations, we introduce a new 
machine learning classifier, smallest subset and smallest number 
of signatures (S4), as:
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where I(.) is an indicative function, pi is defined in Equation (3), 
S={1, 2, . . . , 20429} is the index set of all genes, Sj={j

j1, . . . , jj,gj }, 
j=1, . . . , G are index sets corresponding to (2), Su is the union of 
{Sj, j=1, . . . , G}, |Su| is the number of elements in Su, λ

1
 ≥ 0 and

λ2 ≥ 0 are penalty parameters, and S
∧

={jj1, . . . , jj,gj , j=1, . . . ,   G
∧ } 

and G
∧

 are the final gene set selected in the final classifiers and the 
number of final signatures.

Remark 2. The case of λ2
=0 corresponds to the classifier introduced

[17].

Remark 3. A perfect classifier (100% sensitivity and 100% 
specificity) will have 

( ) ( ) ( ) ( )( )1 0.5 1 0.5 0 0n
i i i i iI p I Y I p I Y=Σ ≤ = + > = =  in Equation

(4), which is the case in our study.

The goal is to find clear lung cancer formation patterns, i.e., 
functional effect patterns, by selecting a sparse (single digit) number 
of genes with the highest performance.
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We note that the optimization procedure in Equation (4) is 
different from existing approaches, e.g., likelihood method and 
composite likelihood. ( ) ( ) ( ) ( )( )1 0.5 1 0.5 0n

i i i i iI p I Y I p I Y=Σ ≤ = + > =
Takes integer values 0,1,2,. . . ,n with 0 being the best and n being 
the worst. We have the following proposition which theoretically 
justifies the new S4 classifier leads to the best gene subset selection 
(with the smallest number of genes) and the smallest number G of 
competing factors.

Proposition 2.1. Suppose the smallest number that 
( ) ( ) ( ) ( )( )1 0.5 1 0.5 0n

i i i i iI p I Y I p I Y=Σ ≤ = + > =  can reach is m. Then for
suitable choices of λ

1
 with λ

1
 +|Su|>0 and λ

2
 ≥ 0, the new classifier

S4 will lead to the smallest |Su| and the smallest number of G 
such that ( ) ( ) ( ) ( )( )1 0.5 1 0.5 0n

i i i i iI p I Y I p I Y=Σ ≤ = + > = .
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1 1
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x y
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− + −

=
− , 1, 1, 1x y x y≥ ≥ + > . It can

be shown that f (x, y) is monotone decreasing in both x and y, 
and 0<f (x, y) ≤ 1. For its usage and applications [24]. Denote A=
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11

n
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.

For m=0 and any choice of λ
1
, we have A=1, and then the leading

term of (4) is |Su|, which will force |Su| to reach its smallest 
possible number for any λ

2
>0. Once the |Su| is determined, f

(|Su| + 1, G) will force G to be its smallest number.

For m>0 and λ
1
+|Su|>0, A is the leading term of (4) for suitable

choices of λ
2
. As a result, A will force |Su| to reach its smallest

possible number, and so does G. The proof is then completed.

The optimization problem (4) is a combination of combinatorial 
optimization and continuous variable optimization. As a result, 
its algorithm complexity is extremely high. To completely solve 
the problem will need to bring efforts from computer science, 
mathematical programming, and computational mathematics.

We leave this task as a future project. In this study, we directly work 
on minimizing ( ) ( ) ( ) ( )( )1 0.5 1 0.5 0n

i i i i iI p I Y I p I Y=Σ ≤ = + > =  by taking |Su| 
from 2 to 5 and G from 1 to 4, and identify the best solution which 
satisfies Proposition 2.1. The following algorithm is implemented.

• Randomly draw G sets of genes with each set having |Su|
genes;

• Use any optimization procedures (e.g., Nelder–Mead method,
genetic algorithm, simulated annealing) to solve minimizing

( ) ( ) ( ) ( )( )1 0.5 1 0.5 0n
i i i i iI p I Y I p I Y=Σ ≤ = + > = ;

• Repeat the above two steps until an acceptable solution is
reached.

Remark 4. We have done an extensive Monte Carlo search to 
find our final competing classifier. A MATLAB® demo code for 
solving minimizing ( ) ( ) ( ) ( )( )1 0.5 1 0.5 0n

i i i i iI p I Y I p I Y=Σ ≤ = + > =  is 
available online and submitted as a supplementary file together 
with the paper. However, we have experienced quite a few times 
man-machine interactions to reduce the dimensions from 20429 
to Su. As such, we don’t have a well-documented algorithm for 
solving minimizing ( ) ( ) ( ) ( )( )1 0.5 1 0.5 0n

i i i i iI p I Y I p I Y=Σ ≤ = + > = . It
will be a future project as it is an algorithm problem, i.e., not a 
methodological problem. As the number of genes is big, the first 
step may not be efficient. Dimension reduction can be helpful. 
In our man-machine interactions, to train our program, we first 
allowed the loss function to take a value around 10% of error 
rate. We recorded some sets of genes that performed better than 
other sets of genes, and to form a new set of genes, then repeated 

the above procedure to get the final classifier. We were able to 
find an optimal solution to have a loss function taking the value 
zero. The dimension reduction procedure we used is ad hoc. 
Other dimension reduction procedures may be useful and worthy 
of further investigation. Note this remark is similar to Remark 
6 [17]. Please note the method [17] does not supply theoretical 
justification and does not involve penalizations.

Remark 5. Given that we used Monte Carlo method in this study, 
we have set a seed number (just the day we started the project) 
in our MATLAB programs. The seed number can help, but not 
sure for final results as we had quite a few steps man-machine 
interactions, i.e., the seed number might not have an effect. Note 
this remark is similar to Remark 7 [17].

Remark 6. Given the objective function in Equation (4) is heavily 
flat (taking integer values), non-smooth, and non-convex, there 
may be multiple optimal solutions that exist. Our final solution is a 
global optimal. We have obtained some different sets of estimated 
coefficients, but the conclusions remain the same. Note this remark 
is similar to Remark 8 [17].

DATA DESCRIPTIONS, RESULTS AND 
INTERPRETATIONS
There are four datasets used in this study.

The first dataset cohort is comprehensive molecular profiling of 
lung adenocarcinoma (LUAD) by Nature publication [9]. The 
dataset contains 576 samples (517 tumor samples, 59 normal 
samples). The data are author-processed-renormalized.

The second dataset cohort is a comprehensive genomic 
characterization of squamous cell lung cancers (LUSC) by Nature 
publication [10]. The dataset contains 552 samples (501 tumor 
samples, 51 normal samples). The data are author-processed-
renormalized.

The third dataset is a European cohort on a gene expression-based 
classification of non-small cell lung carcinomas (NSCLC) and 
survival prediction [13]. The dataset contains 156 samples (91 
tumor samples, 65 normal samples). The Platforms are GPL570 
[HG-U133 Plus 2] Affymetrix Human Genome U133 Plus 2.0 
Array. The data is RMA normalized.

The fourth dataset is a Japanese cohort studying the identification 
of genes upregulated in ALK-positive and EGFR/KRAS/ALK-
negative lung adenocarcinomas (LUAD) [11].

The study’s overall design is expression profiles in 226 lung 
adenocarcinomas (127 with EGFR mutation, 20 with KRAS 
mutation, 11 with EML4-ALK fusion, and 68 triple-negative cases). 
The actual dataset contains 224 samples (204 tumor samples and 
20 normal samples). Platforms are GPL570 [HG-U133 plus 2] 
Affymetrix Human Genome U133 plus 2.0 Array. The expression 
values are MAS5-normalized signal intensity.

Using a probability higher than 50% as the threshold, we identify 
four critical DEGs: NLRC4 (NLR Family CARD Domain 
Containing 4), PLEKHN1 (Pleckstrin Homology Domain 
Containing N1), RASIP1(Ras Interacting Protein 1), and SPP1 
(Secreted Phosphoprotein 1), which lead to 100% sensitivity and 
100% specificity of classifying all 576 samples in their respective 
groups in the first dataset, 100% sensitivity and 100% specificity 
of classifying all 552 samples in their respective groups in the 
second dataset; four critical DEGs: SPP1, GPT2 (Glutamic–Pyruvic 
Transaminase 2), FAM220A (Family With Sequence Similarity 220 
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Member A), and SGPL1 (Sphingosine-1-Phosphate Lyase 1), which 
lead to a sensitivity of 97.8% and a specificity of 100% of classifying 
all 156 samples in their respective groups in the third dataset; and 
four critical DEGs: NLRC4, PLEKHN1, PCOLCE2 (Procollagen 
C-Endopeptidase Enhancer 2), and GABPB1-IT1 (RNA Gene, 
GABPB1 Intronic Transcript), which result in a 100% sensitivity 
and a 95% specificity of classifying 224 samples in their respective 
groups in the fourth dataset. As these genes have not been reported 
in the lung cancer literature of their direct relationship to lung 
cancer, we consider them indirectly related to lung cancer. Our 
final S4 classifiers are combined classifiers of three competing 
factor (CFi, i=1,2,3) classifiers expressed as in Table 1.

The risk probabilities (Pmax, the last column in Tables 2-5) are 
calculated using the logistic function of exp(Data-i-CFmax)/(1+ 
exp(Data-i-CFmax)) for the combined classifiers in each dataset, or 
exp(Data-i-CFj)/(1+ exp(Data-i-CFj)) for each individual classifier 
i=1,2,3, j=1,2,3. Tables 2-5 list partial expression values of the 
selected genes for patients, the classifier values (Columns CF1, 
CF2, CF3, CFmax), and the final risk probabilities (Column Pmax). 
Note that the risk probabilities are truncated to two decimal digits. 
As such, 1.00 does not mean an exact value of 1. All original gene 
expression value data used in the final models and computed results 
are available online in a Finaldata.xlsx file as a supplementary file 
(submitted together with the paper). In this excel file, there are 
five sub-tables (sheets): LUAD sheet for the first dataset, LUSC 

sheet for the second dataset, NSCLS-European sheet for the third 
dataset, LUAD-Japan sheet for the fourth dataset, and Summary 
sheet corresponding to Tables 2-5 in the main text.

Figure 1 plots the risks of patients with lung cancers in four cohorts, 
respectively. The four plots clear show that the new classifiers have 
superior performance and clear patterns.

Figure 2 uses Venn diagrams to plot classified subtypes for all four 
cohorts based on the individual classifiers. This study is the first 
time LUAD, LUSC, NSCLC can be further classified into subtypes 
based on critical genes’ functions. This new classification opens a 
new research direction, new drug developments, and new refined 
personalized therapies. Notice that in Figure 2, Subtypes II (1 
tumor sample), III (1 tumor sample), and VI (3 samples) shouldn’t 
be thought as outliers simply because the numbers of samples in 
these subtypes are so small. Using Subtype II as an example, this 
sample means it is detected by CF2 only. Note that Subtypes IV, 
VI and VII are detected by CF2, and they together with Subtype 
II can form a larger subtype of CF2. From a RNA sequence 
point view, compared with Subtype II, Subtype IV not only has 
the characteristics of Subtype II but also has the characteristics of 
Subtype I, i.e., double mutations, and similarly Subtype VII has 
all characteristics of Subtypes I, II, III, i.e., triple mutations. In 
medical practice, Subtypes I, II, III are relatively more curable than 
other subtypes due to much clearer and simpler signatures, and the 
most difficult one is Subtype VII (275 samples).

Table 1: The final S4 classifiers.

For the first dataset (LUAD, North American Cohort)

Data-1-CF2: 1.8889 -4.3417 × NLRC4 +6.7773 × PLEKHN1 +4.8279 × SPP1  

Data-1-CFmax: = Data-1-CF2

For the second dataset (LUSC, North American Cohort)

Data-2-CF1: 1.0848 -3.2488 × NLRC4 +2.4380 × PLEKHN1  +0.8220 × SPP1

Data-2-CF2: -0.9999 -4.7832 × NLRC4 -3.4888 × PLEKHN1 -1.9377 × RASIP1 +1.9672 × SPP1

Data-2-CF3: 0.5651 +0.4889 × PLEKHN1 -4.8959 × RASIP1 +1.9672 × SPP1

Data-2-CFmax: max(Data-2-CF1, Data-2-CF2, Data-2-CF3)

For the third dataset (NSCLC, European Cohort)

Data-3-CF1: -3.0126 +4.8720 × GPT2 +6.7189 × SGPL1  +0.6686 × SPP1

Data-3-CF2: -8.3253 +6.8662 × GPT2 -3.7611 × SGPL1 +6.7842 × FAM220A  

Data-3-CFmax: max(Data-3-CF1, Data-3-CF2)

For the fourth dataset (LUAD, Japanese Cohort)

Data-4-CF1: 0.6973  -1.2969 × PLEKHN1 +0.1731 × PCOLCE2 -2.9965 × GABPB1-IT1 

Data-4-CF2: 2.2291 -7.7037 × NLRC4 +3.7928 × PLEKHN1 -5.9701 × PCOLCE2  

Note: Data-4-CFmax: max(Data-4-CF1, Data-4-CF2)

Table 2: Three Critical Genes (NLRC4, PLEKHN1, SPP1), Competing Classifier Factors, Predicted Probabilities for the first dataset (LUAD, North 
American Cohort).

TCGA ID LC/NLC NLRC4 PLEKHN1 SPP1 CF1 CF2 CF3 CFmax Pmax

05.4244.01A 1 0.06 -0.04 2.12 11.59 11.59 1

05.4249.01A 1 0.02 -0.21 1.94 9.76 9.76 1

S2.AA1A.01A 1 -0.26 -0.28 1.11 6.46 6.46 1

38.4625.11A 2 0.68 -1 0.61 -4.9 -4.9 0.01

91.6847.11A 2 0.43 -0.53 -0.42 -5.6 -5.6 0

91.6849.11A 2 0.25 -1.05 -0.39 -8.23 -8.23 0
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Figure 1: Risk probabilities of four cohorts. The circles are for patients with lung cancers. The asters are for 
tissues without lung cancers.

Table 3: Four critical genes (NLRC4, PLEKHN1, RASIP1, SPP1), competing classifier factors, predicted probabilities for the second dataset (LUSC, North 
American Cohort).

TCGA ID LC/NLC NLRC4 PLEKHN1 RASIP1 SPP1 CF1 CF2 CF3 CFmax Pmax

18.3406.01A 1 -0.18 -0.06 -0.21 1.99 3.15 0.49 5.47 5.47 1

18.3407.01A 1 -0.46 0.18 0.12 1.91 4.59 0.32 3.81 4.59 0.99

XC.AA0X.01A 1 -0.25 0.44 0.3 1.89 4.53 -1.9 3.02 4.53 0.99

22.4593.11A 2 0.55 -0.43 0.78 1.45 -0.57 -3.63 -0.6 -0.57 0.36

90.7767.11A 2 0.55 -0.75 0.84 0.88 -1.82 -2.67 -2.17 -1.82 0.14

92.7340.11A 2 0.45 -1.09 0.84 0.68 -2.5 -0.99 -2.75 -0.99 0.27

Table 4: Four Critical Genes (SPP1, GPT2, FAM220A, SGPL1), Competing Classifier Factors, Predicted Probabilities for the third dataset (NSCLC, 
European Cohort).

ID LC/NLC SPP1 GPT2 FAM220A SGPL1 CF1 CF2 CF3 CFmax Pmax

GSM475656 1 2.6 0.33 1.4 0.67 4.82 0.9 4.82 0.99

GSM475661 1 2.84 1.17 2.12 0.81 10.04 11.09 11.09 1

GSM475706 1 -0.13 -0.88 1.49 0.18 -6.2 -4.93 -4.93 0.01

GSM475780 1 -0.54 -0.66 1.59 0.05 -6.27 -2.27 -2.27 0.09

GSM475810 1 3.29 1.19 1.68 0.38 7.58 9.81 9.81 1

GSM475657 2 0.21 -0.71 1.48 0.26 -4.57 -4.12 -4.12 0.02

GSM475809 2 0.98 -0.72 1.67 0.36 -3.45 -3.28 -3.28 0.04

GSM475811 2 1.23 -0.49 1.78 0.56 -0.84 -1.75 -0.84 0.3

Table 5: Four Critical Genes (NLRC4, PLEKHN1, PCOLCE2, GABPB1-IT1), competing classifier factors, predicted probabilities for the fourth dataset 
(LUAD, Japanese Cohort).

ID LC/NLC NLRC4 PLEKHN1 PCOLCE2 GABPB1-IT1 CF1 CF2 CF3 CFmax Pmax

GSM773541 1 -0.46 0.2 1.63 -0.33 1.72  -3.2 1.72 0.85

GSM773542 1 -0.56 0.26 1.56 -0.25 1.38  -1.83 1.38 0.8

GSM773765 1 -0.71 0.29 -0.06 0.32 -0.63  9.2 9.2 1

GSM773766 2 -0.56 0.16 1.47 0.48 -0.7  -1.63 -0.7 0.33

GSM773783 2 -0.5 0.16 1.94 0.46 -0.54  -4.88 -0.54 0.37

GSM773784 2 -0.78 0.12 0.58 0.44 -0.67  5.24 5.24 0.99

GSM773785 2 -0.44 0.11 1.83 0.38 -0.26  -4.88 -0.26 0.44
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The above classifiers for four cohorts (datasets) clearly point out the 
puzzle and future therapies of lung cancers. In every cohort, three 
or four genes tell all possibilities of all subtypes of lung cancers. 
They surely provide essential information on lung cancers.

Remark 7. Different from all other existing analysis methods which 
interpret the function of each predictor (gene) to the disease mainly 
based on its coefficient value and sign, i.e., an individual effect, 
not any functional effects, the interpretation of each predictor 
(gene) in the S4 model and classifier is based on its interaction to 
other genes in the same component classifier and its interaction to 
subtypes of lung cancers, i.e., the interpretations of S4 classifiers 
are based on functional effects, not the individual effects, which 
distinguishes our new method from existing methods.

Notice that the PLEKHN1 gene appears in all competing factors 
in all LUAD and LUSC analyses. In the literature, PLEKHN1 has 
been recognized to play pro-apoptotic roles during reactive oxygen 
species (ROS)–induced apoptosis in human colon cancer [25]. 
It will be of great importance to explore PLEKHN1’s biological 
function in lung cancer, also other genes found in this study.

Mathematically, Proposition 2.1 proves that the optimization 
objective function (4) will lead to the smallest set of genes, i.e., 
the models won’t cause overfitting, which is due to the objective 
function in (4) as the loss and penalty functions function in a 
hierarchical way. Such a combination of the loss function and 
penalty functions is new in the literature. Therefore, it can be 
expected that many existing high-dimension variable selection 
methods can be revised to adopt this new combination, and many 
new theories and computational algorithms can be developed.

To avoid model overfitting, splitting data has been advocated in 
many applications. This procedure works when the data in each 
group is homogeneous, i.e., the process is sufficient but not 
necessary. However, when data in each group is not homogeneous, 
this procedure can be inefficient, and the selected variables cannot 
be guaranteed as relevant. Note that the lung cancer patients in each 
dataset came from heterogeneous populations. Therefore, unless 
the subgroups are pre-determined, dividing data as training and 
testing datasets to perform cross-validation will lead to inefficient 
and misleading conclusions, which motivated the penalization 
scheme in this paper.

On the other hand, when a model is fitted to the whole dataset and 
leads to 100% accuracy, it will uniformly work for partitioned data 
as long as the partition is balanced to all heterogeneous subgroups. 
This is the case in all four analyses. Furthermore, it is not found 
that published papers used the “standard” procedure to lead to 
accurate prediction.

Note that the proposed model is fitted to four different datasets and 
reached the highest accuracy. Each dataset has its heterogeneous 
patterns (subgroups). Datasets are measured at different scales. 
Using four such datasets naturally serves as cross-validation and 
robust checking in the paper. It turns out the new approach is 
robust. First, the classical logistic regression classifier is a particular 
case of the proposed and fitted model, i.e., it is one of CFi. In 
the first dataset, we can see that the fitted model looks like a 
logistic regression fitted model as only one competing factor has 
been selected. This is a perfect example that the proposed method 
(4) does not overfit the data. In addition, if one directly fits the 
classical logistic regression, the fitted model may be different from 
the one reported in this paper due to different objective functions 
being used. In addition, the logistic regression fitted model may 
not lead to 100% accuracy. Second, from the second dataset 
(LUSC), we can see that the first competing factor (CF1) contains 
the same three genes as in the first dataset (LUAD), which gives a 
clear indication that the models are not overfitted.

For the first cohort (LUAD, North American Cohort), three genes 
lead to 100% sensitivity and 100% specificity. The formula tells this 
cohort contains only one lung cancer main type. Medical therapies 
can further partition this main type into subtypes according to the 
expression levels of NLRC4, PLEKHN1, and SPP1. Notice that 
the coefficient sign of NLRC4 is negative (-4.3417), which means 
an increase of NLRC4 expression level will benefit the patients; 
decreasing PLEKHN1 and SPP1 expression levels will benefit 
the patients. These observations lead to better therapies and 
personalized medicine.

The relationship among three genes and between the genes and the 
risk probability is illustrated in Figure 3. Looking at both Figures 
1 and 3, we can see that three critical genes and their combined 
classifier showed clear relationships and patterns (clustered high 
probabilities and low probabilities) of all patients.

Figure 2: Venn diagrams of lung cancer subtypes. The first cohort is with only one main type. The second 
cohort has more than seven subtypes. The third cohort has more than three subtypes. The fourth cohort has 
more than three subtypes.
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For the second cohort (LUSC, North American Cohort), four 
genes lead to 100% sensitivity and 100% specificity. We can 
immediately notice that LUSC is more complicated than LUAD. 
In this LUSC cohort, we need three individual classifiers to form 
a final max competing classifier to reach 100% accuracy. We 
observe the following features: 1) An increase of NLRC4 level will 
benefit the patients in all subtypes except subtype III in Figure 2; 
2) A decrease of SPP1 level will benefit the patients in all subtypes 
except subtype II; 3) An increase of RASIP1 level will benefit the 
patients in all subtypes except subtype I; 4) PLEKHN1 has different 
functions in different subtypes and the changes of its expression 
level can increase or decrease the risks of the patients depending on 
their subtypes. These observations reveal the puzzle of lung cancer. 
Existing research methods have been focusing on the significance 
of those genes close to cancers, i.e., those published genes may be 
regarded as surface genes. The published genes do not disclose 
deep-level gene-gene interactions. They can hardly be thought of 
as the drivers of lung cancers. The information obtained from 
those genes can be limited and suboptimal. The genes discovered 
from this study have 100% accuracy. These four critical genes 
are the most informative genes, which lead to a new discovery/
definition of seven newly identified subtypes, which can point to 
new therapies of LUSC type cancers. As a result, these four genes 
can be regarded as truly critical genes.

Among the three classifiers, the linear correlation coefficients 
between CF

1
 and CF

2
, CF

1
 and CF

3
, and CF

2
 and CF

3
 are 0.1959, 

0.6167, and 0.4704, respectively. These coefficients show that 
the three hyperplanes formed from four critical genes are neither 
parallel nor orthogonal. Subgroup VII is the intersection of three 
classifiers. It is the largest subgroup that contains 275 patients. In 
a Venn diagram, the more number the intersections, the more 
complex the disease. As such, the cure and the therapies of these 
275 patients are more demanding. Other groups can be interpreted 
similarly. The relationship among four genes and between the 
genes and the risk probability is illustrated in Figure 4. Looking at 
both Figures 1 and 4, we can see that four critical genes and their 
combined classifier showed transparent relationships and patterns 
(clustered high probabilities and low probabilities) of all patients.

The new S4 classifiers for the first two cohorts show that the new 
method is robust for different cohort studies by identifying the 
same set of genes, which is a desired property in practice.

For the third cohort datasets (NSCLC, European Cohort), we 
can immediately see that there are three genes in the individual 

J Clin Trials, Vol.11 Iss. S14 No: 1000001

classifiers different from those four critical genes in the first 
cohort (LUAD) and the second cohort (LUSC). This observation 
clearly reveals that lung cancer treatments have to pay attention 
to subtypes and their linked critical genes. It can be seen that a 
decrease of SPP1 level will benefit the patients like its function 
in the first two cohorts LUAD and LUSC. Decreases in GPT2 
and FAM220A levels will benefit the patients. The coefficients 
associated with SGPL1 reveal that treatments of different NSCLC 
subtypes in Figure 2 classified by these four critical genes should 
be different.

The linear correlation coefficient between CF1 and CF2 is 0.8792, 
which tells that either classifier can identify the majority of the 
patients. However, it also suggests that the cure and therapies of 
most NSCLC patients can be complicated as their lung cancer 
causes can be either way, i.e., without certainty. Using the new 
diagnostic tools presented in this paper, the causes of cancer can 
be more transparent, and better therapies may be implemented. 
Looking at both Figures 1 and 5, we can see that four critical genes 
and their combined classifier showed transparent relationships and 
patterns (clustered high probabilities and low probabilities) of all 
patients.

In this third cohort, two patients are being misclassified from 
NSCLC to normal. The first patient record is GSM475706, and 
the status was Public on May 07, 2010. The patient was a deceased 
male with overall survival of 21.3 months. The second patient 
record is GSM475780, and the status was Public on May 07, 2010. 
The patient was a deceased female with overall survival of 20.53 
months. We can see from Figure 1 these two patients’ tissues had 
very low probabilities of being NSCLC tumors. Commented on the 
samples that one presented with an uncertain histological diagnosis, 
and two were from patients who had developed multiple primary 
tumors [13]. However, we don’t have additional information to 
confirm whether or not these two patients are misclassified.

For the fourth cohort (LUAD, Japanese Cohort), there are two 
common genes, NLRC4 and PLEKHN1, which are also presented 
in the first cohort (LUAD, North American Cohort), but the other 
two genes are different. This observation tells that the causes, 
formations, treatments of lung cancer (LUAD) can be associated 
with patients’ races, lifestyles, tobacco use, and air pollutions 2. 
The function of NLRC4 is the same as its functions in LUAD and 
LUSC, i.e., the smaller the level of NLRC4, the lower the risk. 
The function of PLEKHN1 is the same as its function in LUSC, 
i.e., it can increase and decrease the risks depending on the cancer 
subtypes in Figure 2. The expression levels of PCOLCE2 can 
increase and decrease the risks depending on the cancer subtypes, 
i.e., the same as PLEKHN1. GABPB1-IT1 will benefit patients with 
higher expression levels.

The linear correlation coefficient between CF1 and CF2 is 0.5881. 
We see that from Figure 2, there are 69 patients from Subgroup 
II with whom CF1 is not able to identify their lung cancer status. 
Looking at Figure 6, we see no transparent relationships and patterns 
of all patients and their gene expressions. This phenomenon can 
be explained by two classifiers. The coefficient signs of PLEKHN1 
and PCOLCE2 are reversed from the two classifiers. As such, the 
complexity levels of the patients from the Japanese cohort are 
higher than those from North American cohorts and the cure and 
therapies should be different too.

Figure 3: LUAD-North American Cohort:  Visualization of gene-
gene relationship and gene-risk probabilities.
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Figure 4: LUSC-North American Cohort:  Visualization of gene-gene relationship and gene-risk probabilities.

Figure 5: NSCLC-European Cohort:  Visualization of gene-gene relationship and gene-risk probabilities.

Figure 6: LUAD-Japanese Cohort:  Visualization of gene-gene relationship and gene-risk probabilities.
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In the fourth cohort, one patient was classified from normal status 
to lung cancer. The patient record is GSM773784. The Status was 
Public on Nov 01, 2011. The patient was an ever-smoker 70 years 
old male.

From Figure 1, this patient’s risk of lung cancer was up to 99%. 
We conjecture there might be a lab error or testing inefficacy of 
this patient’s status.

Comparing the first, second, and fourth datasets, we see some 
commonalities of genes NLRC4 and PLEKHN1 and some 
dissimilarities of genes PCOLCE2 and GABPB1-IT1 in the fourth 
dataset. Recall that the Japanese cohort is a study of ALK-positive 
and EGFR/KRAS/ALK-negative lung adenocarcinomas. Gene-
gene relations in our final classifiers fully represent lung cancer 
types (LUAD, LUSC, triple-negative LUAD.) Though NSCLC is a 
type of lung cancer, it is very different from the other three types. 
The classifiers derived from the third dataset again show their 
uniqueness compared with those classifiers derived from the other 
three datasets, and these particular classifiers fully capture the lung 
cancer type NSCLC.

From the above analyses, it is evident that gene-gene interactions 
and their functional effects play decisive roles, i.e., they can be more 
important than those genes which are biologically directly related 
to lung cancers with high expression values. The interactions and 
the signs of coefficients clearly tell the puzzle of the disease and 
point out potential better treatment therapies, i.e., personalized 

medicine. The critical genes can also lead to finding other sets of 
critical genes if they exist and are more important.

Clinic data analysis

In this section, we study the clinic variables, e.g., sex, age, smoking 
status, packs per year, tnm.t, tnm.n, tnm.m, and stage, and their 
associations with the subgroups defined by the competing classifiers 
derived in Section 3. Due to the fact the first dataset (LUAD) has 
only one main type of lung cancer, the clinic variables in the third 
dataset (NSCLC) are just the sex and incomplete, and in the fourth 
dataset (the Japanese cohort), stage only has two levels I and II, we 
use the second dataset (LUSC) to illustrate our analysis. Tables 6-8 
summarize the computed results.

In Table 6, we see the much larger number of male LUSC patients 
(371) than female patients (130). In the first dataset (LUAD), the 
male patients and the female patients are counted to be 240 and 
277 respectively, and in the fourth dataset, they are 95 and 109 
respectively. Relatively, more patients were diagnosed lung cancer 
at their ages between 60 and 80.

In Table 7, there were more patients at smoking status 3. However 
the numbers of smoking packs per year look no difference.

In Table 8, there were more patients at stages TNM.t2, TNM.
n0, TNM.m0, and Stage.I. For TNM.t4, TNM.n3, TNM.m1, and 
Stage.IV patients, they belong to Groups V CF-(1,3) and VII CF-
(1,2,3), i.e., those combined competing classifiers reflect the lung 
cancer complexity and severity.

Table 6: The Second Dataset (LUSC) clinic external data (Age, Sex) analysis and their associations with the classifications.

Sex Age

LUSC Male Female ≤ 50 (50,60] (60,70] (70,80] >80

CF-1 21 12 1 5 11 14 2

CF-2 1 0 0 1 0 0 0

CF-3 1 0 0 0 0 1 0

CF-(1,2) 9 5 0 2 6 6 0

CF-(1,3) 125 49 9 27 70 54 10

CF-(2,3) 1 2 0 2 0 1 0

CF-(1,2,3) 213 62 10 51 108 93 8

Table 7: The Second Dataset (LUSC) clinic external data (smoking status) analysis and their associations with the classifications.

Status Packs per year 

LUSC 2 3 4 ≤ 20 (20,40] (40,60] >60

CF-1 3 28 1 8 6 7 8

CF-2 0 1 0 0 0 0 1

CF-3 1 0 0 0 0 1 0

CF-(1,2) 1 13 0 1 4 7 2

CF-(1,3) 47 112 9 31 48 34 40

CF-(2,3) 2 1 0 0 1 1 1

CF-(1,2,3) 79 183 8 24 75 80 62

Table 8: The Second Dataset (LUSC) clinic external data (TNM.t TNM.n, TNM.m, Stage) analysis and their associations with the classifications. 

 TNM.t    TNM.n    TNM.m  Stage    

LUSC t1 t2 t3 t4 n0 n1 n2 n3 m0 m1 I II III IV

CF-1 9 17 7 0 25 6 2 0 25 0 20 8 5 0

CF-2 0 0 1 0 1 0 0 0 1 0 0 1 0 0
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DISCUSSION
This study is the first time in the medical literature that lung cancer 
diseases can be classified almost 100% correctly using only a few 
(three or four) genes. There have been dozens of genes published 
for various research purposes in the literature, e.g., survival analysis. 
Those published genes were mainly selected based on the large 
changes in their expressed values. They were not selected by gene-
gene interactions and functional effects. The relationships among 
those published genes and their relationships to the diseases were 
hardly interpretable. In addition, the number of published genes is 
not small. As a result, it is difficult to verify which of those genes are 
truly critical. Even with dozens of genes, lung cancer classifications’ 
accuracy is not up to the highest level as possible, not to say the 
difficulty of how they can be applied to medical practice.

The discovery of the three or four critical genes and their functional 
effects: (NLRC4, PLEKHN1, SPP1) for the first cohort, (NLRC4, 
PLEKHN1, SPP1, RASIP1) for the second cohort, (SPP1, GPT2, 
FAM220A, SGPL1) for the third cohort, (NLRC4, PLEKHN1, 
PCOLCE2, GABPB1-IT1) for the fourth cohort, can motivate 
many new research directions and laboratory experiments. These 
genes can be a starting point for conducting gene network analysis, 
testing other reported genes, and finding the causal directions of 
gene expression in various projects. As a result, many other existing 
pieces of research, e.g., prognostic predictions, can be enriched. 
It can also be hoped that new types of diseases can be discovered. 
Eventually, new testing procedures and therapies for lung cancer 
can be designed.

These critical genes enrich the biological literature of their new 
functions related to lung cancer from indirect relationship to direct 
relationship, i.e., to become new biomarkers. In many scenarios, 
indirect effects are more significant than direct effects as direct 
effects can be seen and controlled while indirect effects are hard to 
see and even not to say how to control.

The risk probability of a patient developing a specific type of lung 
cancer in her/his life is low. Among all discovered lung cancer 
types, growing more than one type of lung cancer is rare. These 
lung cancer types compete, and one type will first be diagnosed. As 
a result, the competing risk factor models can be very efficient for 
modeling multiple lung cancer types.

The inference/analysis approach used in this study can shed new 
light on all gene-related research, i.e., not just the lung cancers 
study. Researchers can apply our new machine learning method in 
their studies. Ultimately, our new findings may make researchers’ 
cancer research efforts more effective and meaningful, reduce 
substantial research costs, and save lives and protect people.

Any arbitrary numbers for λ
1
 and λ

2
 in (4) satisfying the specified

condition will work in our real data analyses. For future studies, 
tuning λ

1
 and λ

2
 may be needed. We leave this tuning study as a

future project.

We note that the new S4 classifier in (4) does not involve patients’ 
attributes, e.g., sex, age etc. With a 100% accuracy, it is safe to say 

that the S4 classifier is uniformly efficient and robust over patients’ 
attributes, which is a desired property in model building. With a 
100% accuracy, the discovered genes and their derived signature 
patterns certainly deliver meaningful and useful information to 
lung cancer study and overcome any data batch effects that may 
exist.

In the medical literature, the genes reported in this paper have 
been reported to be associated with other diseases. In particular, 
from Malacards and PubMed Central, we can find that i) NLRC4 
– 281 hits in Malacards showing its involvement in 280 other 
types of diseases or disorders; ii) PLEKHN1 – 10 hits in Malacards 
without any hit for lung cancer; iii) SPP1 – 494 hits are found in 
Malacards with lung cancer having a very high score; iv) RASIP1 –
26 hits in Malacards with similar types of other cancer subtypes as 
for SPP1; v) GPT2 – Only 1 hit in Malacards and no mention of 
lung or other cancer types; vi) FAM220A–5 hits in Malacards with 
mentions of pancreatic, ovarian, and gastric types and without any 
mention of the lung types; vii) SGPL1–With 97 hits in Malacards, 
lung cancer ranks 50th; viii) PCOLCE2–With 30 hits in Malacards, 
connections to lung carcinoma appear several times; ix) GABPB1-
IT1–With a total of 4 hits in Malacards, all being for cancer types, 
lung cancer types appear twice at the top. We note that these 
results are mainly based on their fold-changes in their expression 
values, i.e., not on their interaction effects or functional effects on 
the disease. For example, the effect of PLEKHN1 in our study can 
be positive and negative depending on its interaction with other 
genes and lung cancer subtypes. As a result, individual genes may 
not be appropriate to be considered biomarkers, given they can 
be associated with various types of diseases. On the other hand, a 
functional form of several genes can be used as new biomarkers, as 
suggested in this paper. Of course, these results should be further 
tested using blood test data. Furthermore, the functional effects 
and their forms of the genes found in this paper can be used to test 
other research findings on the cause of lung cancers or the effect 
of the disease as the component classifiers can be used as responses 
in the new analysis given they are now continuous scaled data with 
100% sensitivity and 100% specificity. In addition, in our separate 
research projects on colorectal cancer, breast cancer, liver cancer, 
stomach cancer, and pancreatic cancer, etc., the genes found in this 
paper are not shown in those projects, which may be an indication 
the genes and their functional found in this study is lung cancer 
specific.

In terms of using other methods to identify critical genes, there 
do not exist any other methods that can find such a small number 
of genes and with high accuracy. In our opinion, comparisons 
should follow the following five ordered ways: 1) the accuracy; 2) 
interpretability; 3) if the accuracy is similar, the computational time; 
4) if the accuracy is similar, the applicability of the model; 5) if the 
accuracy is similar, the advanced level of mathematical/statistical 
theory. The new method has 100% accuracy, which certainly has 
an advantage over other competing models with lower accuracy.

Doing data analysis and inference, data quality and their collection 
methods, e.g., relative quantification or absolute quantification, 

CF-3 0 1 0 0 1 0 0 0 0 0 1 0 0 0

CF-(1,2) 5 7 2 0 11 2 1 0 12 0 10 2 2 0

CF-(1,3) 39 101 27 6 105 47 14 2 138 2 86 59 27 2

CF-(2,3) 1 2 0 0 1 2 0 0 3 0 1 2 0 0

CF-(1,2,3) 59 165 34 17 174 74 23 3 231 5 127 92 50 5
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are always an issue. Many models failed when data were collected 
from heterogenous populations. Given our methods have 100% 
accuracy, the risk of the inference issue has been reduced to the 
minimum. The chance of making inference error is close to zero 
given the total sample size is 1508.

Finally, we address an important medical practice issue. In this 
paper, all classifier formulas are explicitly expressed. The results in 
Tables 2-5 are reproducible. Figure 1 shows the risks of all patients. 
Figures 3-6 are particularly meaningful visualization tools for 
clinician to understand the status of lung cancer patients. 

CONCLUSION
Using this paper’s results, medical doctors have a powerful tool 
(testing kit) in their daily work, i.e., diagnosing and analyzing 
patients’ lung cancer risks based on the four critical genes’ 
expression values and the computed risks. Clinical trials can be 
conducted to study the efficiency of existing drugs and therapies 
for lung cancer patients. Medical research can be done to explore 
these genes biological connections to cancerous tissues.
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