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Abstract

Living organisms use energy to maintain their life through metabolism, and there is a balance between energy
and substrates in living organisms. Adipose, liver, muscle cells and pancreatic cells are the major tissues which
involved in this process. Collagens are produced in most of these cells in response to complicated physiological
changes. Defining the cellular sources of collagens in the normal and diseased states of the above metabolic tissues
is thus critical to understanding metabolic disease. Under certain pathological conditions, the excess accumulation
or collapse of collagens may disrupt normal cell-cell interactions, and cause the loss of tissue compliance or
elasticity. Finally, these disruptions of collagens result in tissue dysfunction such as atherosclerosis of the blood
vessels, pulmonary fibrosis, liver cirrhosis and fibrosis in other organs. This review will focus on the role of collagens
in metabolic tissues, and attempt to summarize the function of collagens in energy metabolism.
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Introduction
The main components of the interstitial matrix and the basement

membrane in the extracellular region of animal tissue are referred to as
the extracellular matrix (ECM). The ECM plays important roles in
providing support and anchorage for cells, regulating intercellular
communication, and storing a wide range of cellular growth factors
[1]. Thus, the rapid and local growth factor-mediated activation of
cellular functions are triggered by changes in physiological conditions,
without de novo synthesis.

The ECM is tissue specific in quality and quantity. Components of
the ECM are secreted from the intracellular region of resident cells via
exocytosis. The main components of ECM are the interlocking mesh
of fibrous proteins and glycosaminoglycans (GAGs). Furthermore, the
main fibrous proteins are collagens, of which 29 types have been
reported [1,2]. The functions of these proteins include protection and
support, and forming connective tissue, tendons, bone matrices, and
muscle fiber.

Collagen proteins are large and complex, with multiple distinct
domains, and are highly conserved among different species. Almost all
collagen proteins are glycoproteins, protein cores made in the rough
endoplasmic reticulum, and posttranslationally modified by
glycosyltransferases in the Golgi apparatus. After being secreted into
the ECM as precursors via exocytosis, they need a complex processes
such as the cleavage of N- and/or C-propeptides which occurs via
highly specific proteinases and then become mature collagens [3].

Liver
As the largest gland in the body, liver performs many important

tasks and impacts all body systems. In light of this face, hepatic
dysfunction could result in widespread effects on virtually all other
organ systems. Therefore, hepatocytes are considered the most
important organ in metabolism in the body. They play key roles in

synthesizing molecules, converting them into one another, and being
transferred elsewhere to support homeostasis and regulate energy
balances. The major metabolic functions of the liver were shown to be
involved in the metabolism of major nutrients such as carbohydrates,
fat and protein [4]. For all animals, the concentration of glucose in the
blood has to be maintained within a narrow, normal range, and the
liver is the main organ that controls it. Many different metabolic
pathways and dozens of enzymes in hepatocytes elaborately regulate
the blood levels of glucose. Actually, three important processes in
carbohydrate metabolism, glycogenesis, glycogenolysis and
gluconeogenesis all happen in the liver. Although fat metabolism also
occurs in other tissues, it is carried out predominantly in the liver [5].
Additionally, excess carbohydrates and proteins are converted into
fatty acids and triglycerides in the liver, which are then exported and
stored in adipose tissue. Cholesterol, phospholipids and lipoproteins
are also synthesized in liver [6].

The liver collagens work as a foundation for the cells and occupy
less than 3% of the liver area. Normal liver cells are separated
physically by different matrix compositions such as collagens I, III, IV
and V. The interstitium and a basement membrane–like ECM
contains Type I, III, IV, V, VI, XIV, XVIII collagens, and some others
proteoglycans [7,8]. In normal liver, Collagens plays a
disproportionately important role in liver function in health and
disease, although it only takes up a small percentage of the volume.
Collagens provide architectural elements for the liver with basement
membrane or other duct architecture. Also, collagens have mechanical
roles like providing tensile strength and resilience, modulating
diffusion and vascular flow, and regulating cell movement.
Importantly, collagens can also regulate signaling molecules such as
growth factors, serving as ligands, storage depots and receptors, via
multiple complex interactions between matrix proteins with other
signal molecules or among different matrix components [9].

There is no doubt that liver fibrosis and the subsequent cirrhosis is
the most widespread and well-known disease related to the collagens
in the liver. Liver fibrosis may be the result of viral activity, metabolic
disorders, chemicals, or other liver infections. An imbalance between
secretion and degradation in the collagens may result in liver fibrosis.
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Although significant improvement has been made in understanding
the process of fibrosis through the use of multiple complementary
experimental model systems in the past years, especially within the
past 5-10 years, the treatment options are still limited [10]. Liver
fibrogenesis is a complex process and begins with an increase in
cellular isoforms of fibronectin in the space of Disse, followed by an
accumulation of fibrillar collagens (predominantly type I and III
collagens). At the same time, other events including inflammatory cell
infiltration, apoptosis of hepatocytes and proliferation of the major
matrix-producing mesenchymal cells are occurring [11]. As fibrosis
progresses, portal to central gradients are lost, and the new matrix
becomes continuous. Finally, the quantity of collagens in the fibrotic
liver is a nearly 10-fold increase compared to normal liver [9]. When
fibrosis advances to cirrhosis, the architecture of normal liver is lost
and fibrous septae containing fibronectin, collagens I, III, VI and V are
formed. The matrix becomes increasingly stabilized and protease
resistant. It results in liver dysfunction and portal hypertension and
increasing risk of liver cancer [12]. At the same time, liver fibrosis is
commonly associated with many metabolic syndromes such as type II
diabetes, hypertension, obesity and dyslipidemia, but can also be due
to any one of many causes via steatosis [13].

Adipose
Obesity is becoming an increasingly global risk for humans, even

among younger people. Obesity, along with some diseases like type II
diabetes and cardiovascular disorder, has intensified the attention on
the metabolic and physiologic roles of adipose tissue. As the key

regulator of systemic energy homeostasis, adipose tissue has many
important functions, such as being the site of redundant energy
storage, production of adipokines for energy metabolism, thermal
maintenance for the body, and a shock cushion for the organs. In
adipose tissue, the collagens play crucial roles in maintaining the
structural integrity of adipocytes and are pivotal for adipogenesis and
whole tissue formation. In 1963, Napolitano et al. first reported
observations of ECM structure in adipose tissue via electron
microscopy [14]. Following that, Cinti et al. reported collagen fibrils
surrounding adipose cells and capillaries during the development of
fat organs in young rats in 1984 [15]. 1n 1998, other ECM proteins
such as collagen IV, fibronectin and heparin sulphate proteoglycan,
were found surrounding human adipocytes by immunohistochemistry
[16]. Also, preadipocyte cell lines secrete type I-VI collagens during
differentiation [17]. A number of reports show that there is highly
expression of type VI in adipose tissue which affects the differentiation
of preadipocytes [18-20]. Recent studies also show that type V collagen
is highly expressed in adipose tissue (Figure 1). The knockdown
Col5a3 gene is also found to inhibit greatly the differentiation of
mouse preadipocytes cell line 3T3-L1. Surprisingly, there were no
significant differences in adipose and weight between the Col5a3
knockout and WT mice. However, there was a significant reduction in
dorsal skin of 10-day-old mice and the weights of mice when fed with
high-fat diet. This finding indicates that there may be some
compensation mechanism for the function of the α3V chain during
the differentiation of preadipocytes in vivo, but loss of function in cell
line or high-fat diet mice [21].

Figure 1: The expression of α3V in mouse tissues (Modified from [22])

Thus, collagens defects have been shown capable of having
profound effects on adipocyte biology. Ablation of the cell surface
matrix metalloproteinase MT1-MMP (MMP-14) has been shown to
result in adipocytes unable to correctly remodel surrounding
collagenous ECM, which in turn impairs adipocytic differentiation,
yielding “mini-adipocytes” with diminished functional capacity and
mice with a lipodystrophic phenotype [22]. Additionally, during
obesity, ECM components are modified and associated with collagen
deposition [23]. Similarly to liver, prolonged excess energy intake
induces fibrous depots in adipose, and this fibrosis is the consequence

of both the amount and composition of collagens. Thus, the
accumulation of collagens in the fibrous areas of adipose tissue was
used as a marker for adipose fibrosis [24,25]. Finally, ablation of
collagen VI was found, which like the α3(V) collagen chain is
expressed at highest levels in adipose tissue [26], has been shown to
result in increased adipocyte cell size that correlates with enhanced
adipocyte function and concomitant improvement in metabolic profile
on an ob/ob background [20].
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Pancreas and Islet
As an important glandular organ in the digestive and endocrine

systems in vertebrates, the pancreas produces several important
hormones including insulin, glucagon and somatostatin which
circulate in the blood to regulate glucose homeostasis. In fact, all of
above hormones are secreted by the “micro-organs” islets in pancreas.
Mouse islets are composed of insulin-secreting β-cells (around
60-80%), glucagon-secreting α-cells (15-20%), somatostatin-producing
δ-cells (<10%) and other cells (<1%) [27]. The ECM has been shown to
affect strongly many aspects of β-cell function, including motility [28],
survival [29], proliferation and differentiation [30]. Several other
reports showed that matrix interactions can also influence insulin
function [31,32]. And other current other reports have demonstrated
that islets survival and function were much better when cultured on
ECM-derived substrates containing collagens [33-35]. In collagen type
I hydrogels, the addition of collagen type IV and laminin increased
islet insulin secretion [36]. Another study demonstrated that human
islet adhesion, survival, and functionality, such as structural integrity,
insulin expression and release, and glucose metabolism are all affected
by the various ECM components including collagens I and IV [37].
Consistent with all of these findings, α3 (V) chains play an important
role in islet development, proliferation and function. And which
suggests that α1(V)α2(V)pNα3(V) heterotrimers may enhance the
survival and function of primary β-cells during culturing and upon
encapsulation in gel environments for transplantation [21].

The pancreas can also show fibrosis pathology that is characterized
by stromal expansion and deposition of collagens. Pancreatic fibrosis
underlies many endocrine diseases including pancreatic cancer,
chronic pancreatitis, and type 2 diabetes mellitus. Although the
detailed mechanisms are not understood clearly, these facts indicate
that collagens-dependent EGFR signaling may be involved in
regulation of pancreatic fibrogenesis in vivo [38]. Many studies
demonstrated that diabetic nephropathy is characterized by abnormal
collagens deposition in renal pathology, with the molecular
mechanism being the MMP-mediated breakdown and turnover of
ECM in mesangium and glomerulus cells [39]. Interestingly, other
studies demonstrated that high glucose can induce collagens synthesis,
and accelerate metabolic tissues like pancreas and liver fibrosis [40,41].
Compared with islets in WT mice, the relative β cell area was
significantly reduced in Col5a3–/– mice, mostly due to reduced islet
numbers. Furthermore, the overall weights of Col5a3–/– pancreases
were also less than those of wild-type pancreases, contributing to
reduced Col5a3–/– β cell mass, and resulting in the defects of insulin
secretion in Col5a3–/– mice [21]. These observations may be helpful
in developing an appropriate therapeutic strategy in diabetic
conditions.

Muscle

Skeleton muscle and tendon
The ECM in skeletal muscle is organized in different levels, and

collagens are the most abundant structural components of skeletal
muscle ECM. 1% to 2% of muscle tissue and 6% of the weight of
muscles are collagens [42]. In addition to the collagens, the ECM in
skeleton muscle includes a variety of other non-collagen glycol
proteins such as laminins, nidogens and perlecan.

The treatment of diabetes, obesity and heart disease benefit from
exercise, and it is a normal and healthy way of energy expenditure in

humans. Collagens play critical roles in force transmission and tissue
structure maintenance in tendons, bone and muscle. It is well known
that the contractile filaments in skeletal muscle are important to force
development, and the tendon tissue transform this developed force
from the muscle to the bone [43,44]. In addition, collagens also play a
role in the skeleton muscle development. It is clear that muscle
development requires collagen proteins to ensure myroblast
migration, proliferation, and differentiation [45]. Recently, researches
administrated that muscle collagen synthesis increased almost 4-fold
in response to bouts of heavy resistance exercise [45,46]. In
conclusion, the ECM of both tendon and skeletal muscle tissue reacts
dynamically to mechanical loading and this increases collagen
synthesis, and the high expression of collagen synthesis result in the
increased load from tendons and muscle.

Smooth muscle cells and cardiac muscle cells
Vascular smooth muscle cells (VSMCs) normally reside in the

media of the artery, lined with endothelial cells, and are surrounded by
a specialized thin sheet-like structure of extracellular matrix
components, including collagen types I, III, IV and V et al. [47,48]. A
major function of the vascular SMCs is to synthesize and organize the
unique ECM proteins responsible for the mechanical properties of the
large vessels during angiogenesis. Hence, the ability to produce ECM
can be considered a defining phenotype for the differentiation of
SMCs and the form of angiogenesis [49]. Production of a functional
matrix in SMCs requires the coordinated expression, modification,
process of the ECM proteins, and some others signals such as PDGFβ,
EDG1 and TGF-β that are involved in the processing and assembly of
most ECM networks, including basement membranes, elastic fibers,
and large proteoglycan matrices.

Additionally, the roles of collagens in heart, especially in the heart
remodeling, have attracted enormous attention recently. The
components of cardiac ECM are composed of fibrous proteins and
glycosaminoglycans (GAGs). Fibrous proteins such as collagen and
elastin serve as reinforcements for the myocardium. GAGs such as
glycoproteins and proteoglycans function as the space-filling concrete
in the heart. The mechanical support for pumping blood in the heart is
also provided by Collagens [50]. The concept that ECM turnover
occurs during cardiac remodeling is a well-accepted paradigm. The
increases of collagens were synthesized and deposited during the
cardiac remodeling [51]. A number of muscle and related pathologies
involve changes in matrix properties. Beyond the myocardial
infarctions mentioned above, the abnormality ECM proteins also
result in the vascular diseases such as type V and IV collagens, laminin
and perlecan-related atherosclerosis [47,48] Type II collagen-induced
Rheumatoid arthritis [52], fibrillin-1-induced Marfan syndrome, type
I collagen-Osteogenesis and elastin-supravalvular aortic stenosis [53].
In tendons, the tendonosis occurs when the fibrous material collagens
in a tendon begins to degenerate. This may occur as the result of
injury. The tendon becomes tangled, weak and jelly-like when collagen
degenerates. Additionally, muscular dystrophies are also associated
with changes in matrix [54]. The summary of collagens-related
metabolic disease in above metabolic tissues was shown in Table 1.

Cell signal pathway
The diverse array of collagens not only provide the physical

structure of the cell, but also various biological functions largely
through them to bind many other interacting partners such as growth
factors, other ECM proteins, signal receptors, and adhesion molecules
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like integtrins. The collagens perform profound effects on cell fate and
behaviors via interacting with the surface receptors and growth factors
and then transduce to cytoplasmic signal pathways [55].

Collagens Distribution Function Metabolic disease (s)

Type I Most common of the collagens,
distributed in all tissues, even cartilage.

Structural components for body,
essential for the tensile strength of
bone.

Atherosclerosis [69]; fibrotic diseases in many tissues
including liver [11] and adipose [25] etc.; Increased in diabetic
nephropathy [70] but decreased in T1DM [71].

Type III Dominant collagen type of granulation,
muscle and artery wall.

Crucial for collagen I fibrillogenesis
and for normal cardiovascular
development.

Vascular Ehlers-Danlos syndrome [72]; Atherosclerosis [69];
fibrotic diseases in many tissues including liver [11] and
adipose [25]; Increased in T2DM [73] and T1DM [71]

Type IV Structural component of basement
membrane

Associated with angiogenesis. Increased in diabetic nephropathy [74,75]; Rtinopathy [76];
Liver fibrosis [77].

Type V Structural component of basement.
High expression in muscle, adipose
and islet.

Interact with type I collagen, inhibits
endothelial cell adhesion and
proliferation.

Atherosclerosis [48,69]; Glucose homeostasis and diabetes
[21]; Liver fibrosis [9].

Type VI Dominant structural component of
connective tissues like vessels, liver,
adipose and muscle.

Major structural component of
microfibrils.

Atherosclerosis [69]; Metabolic dysregulation and adipose
fibrosis [20]; Liver fibrosis [78] and myosclerosis myopathy
[79].

Type VIII Stuctural component of ECM like sclera
and vasculature.

Stabilization of membranes,
angiogenesis and interacts with
ECMs

Atherosclerosis [80].

Type XII Structural component of connective
tissue e.g. skin.

Interacts with other matrix
components.

Diabetic retinopathy [81].

Type XIV Structural component of connective
tissue like blood vessels.

Interacts with other matrix
components.

Diabetic retinopathy [81]. Liver fibrosis [8]

Type XVIII Structural component of basement
membrane.

Inhibition angiogenesis and tumor
growth.

Liver fibrosis [82].

Table 1: The roles of main ECM molecules in metabolic tissues

The collagens can collaborate with their receptor integrins, growth
factor receptors and intracellular signals to regulate gene expression
associated with metabolic cell growth, differentiation, survival and
glucose uptake. Integrins can recognize and binds to the Arg-Gly-Asp
(RGD) motif in ECM proteins like fibronectin, and some collagens
[56]. This binding results in integrins conformation and outside-in
integrin activation, the outside-in activation propagates signals to the
cytoplasm [57]. A large body of evidence now indicates that collagens/
integrin pathways can activate a non-receptor tyrosine kinase focal
adhesion kinase (FAK) and the Ras-MAPK-ERKs pathway [58,59].
FAK activation leads to the recruitment of PI3 kinase to focal
adhesion, and results in activation of Akt, then activate the GLUT4
translocate to plasma membrane and regulate the glucose uptake and
metabolism. In addition, ECM/integrin can also regulate islet cell
survival and function via PI3K/Akt signaling pathways [60]. Our data
also showed that decrease of phospho-Akt and less GLUT4
translocated into the plasma membrane in adipose and muscle tissues
of Col5a3-/- mice compared to WT mice [21]. Downregulation of Akt
and phospho-Akt was also found, along with a decrease in islet mass in
the islets of col5a3-/- mice. This indicates that type V collagen is
involved in the activation of integrin-mediated FAK-PI3K-Akt
pathway. Furthermore, collagens/integrins pathway can also
reorganize the plasma membrane into highly ordered specific
structure-caveolae, which effectively concentrates the multi-protein
signaling complex like GLUT4, IGFR, EGFR and FAK. Any changes in
caveolae can effectively turn off the entire signaling pathway [61]. In
fact, dystructure of caveolae like Caveolin-1 and 3 knockout mice,

showed insulin resistance [62,63]. The Ras-MAPK-ERKs pathway play
crucial roles in most of cell growth and proliferation include metabolic
tissue cells. Our recent unpublished data also show that type V
collagens can interact with Glypican-1 and regulate breast tumor
growth via the Ras-MAPK-ERKs pathway.

Aside from integrins, discoidin domain receptors (DDR1 and
DDR2) are another types of receptors for ECM collagens. DDR1 and
DDR2 are unique members of the family of receptor tyrosine kinase
(RTK) in that they bind to and are activated by native triple-helical
collagen [64,65]. Unlike most other RTKs, DDR1 and DDR2 are
activated by various types of collagens but not by growth factors.
DDR1 is activated by most collagens like type I to type IV, and type
VIII, while DDR2 is activated by fibrillar collagens, including type I, II
and X [66,67]. Interaction of the DDRs with collagens leads to receptor
autophosphorylation, and then to the activation the downstream
signal molecular pathways, including PI3K, NFκB, ShcA and P38 etc.
pathways, to regulate cell differentiation, migration, and metabolism.
A number of human diseases, including fibrotic diseases of the liver
and atherosclerosis are associated with DDRs [66]. Additionally,
DDR2 is downregulated during the early phase of adipogenesis, and its
overexpression leads to insulin resistance in 3T3-L1 adipocytes [68].

Conclusions
Metabolic diseases continue to be a major health challenge of

pandemic proportion in the world. They can be caused by lifestyle or
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genetic variants, leading to the dysfunction of energy balance through
a complex pathophysiological process. The ECM remodeling and
tissue destruction are required during these complex process. Lots of
component increases, decreases or modifications are involved in ECM
remodeling, especially collagens remodeling. With the current level of
research and increasing understanding of the function of collagens,
there is hope that better medications will emerge to control complex
metabolic diseases.

It is well-known that extracelluar signals including growth factors
and cytokines bind to specific receptors on the surface of their target
cells. Recently, more and more findings were reported that collagen
not only builds the main structural components among the cells, but
also covalently anchors to the plasma membrane of the cells to
enhance the efficient binding between the cytokines and their specific
receptors, thereby modulating their mitogenic and angiogenic effects
on different types of cells. Obviously, the ECM components, especially
the collagens, will be recognized as the key regulators in cell
physiological activities in future. Another way to regulate the effects of
growth factors and cytokines will provide an alternative therapeutic
target to regulate the cellular growth, proliferation, and cellular
differentiation. Additionally, it is well-known that most of collagens
are high-modified proteins, and these modifications of collagens are
required for their function. And some of our unpublished data showed
that some new modifications occurred in an extracelluar region
specific for the ECM components. This indicates that ECM may have a
new protein modification system different from what is known so far
about the cellular Golgi and endoplasmic reticulum systems.
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