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Introduction
The NCI and the ACS predict that 1,638,910 men and women 

will be diagnosed with cancers of all sites in the USA in 2012 [1,2]. 
Nearly 577,190 patients will die of cancer this year. Patients undergoing 
current systemic therapies will suffer multiple side effects from nausea 
to infertility. Some cancers have particularly rapid pace of progression 
in the most vital organs, which results in the high rate of mortality, e.g., 
brain neoplasms. In other cancers, asymptomatic progression occurs 
to the advanced stages, which results in high mortality, e.g., ovarian 
or pancreatic cancers. Although deadly, but not immediately life 
threatening, other cancers impair dramatically the quality of various 
aspects of the patients’ lives, e.g., colon, prostate, or breast cancers. 
Cancers, which disseminate by metastases into multiple vital organs 

and remain hidden within them, are beyond the capabilities of the local 
therapy and are extremely difficult to cure even with systemic therapies; 
thus are responsible for nearly 90% of cancer related deaths [1,2]. 

The serious problem for cancer therapy is the fact that patients 
undergoing current systemic therapies will suffer multiple side effects. 
Some of these side effects (e.g., nausea or vomiting) will cause the need 
for reduction of the dose of chemotherapeutics or radiation below 
the most effective levels, or withdrawal from a particular treatment 
altogether. 

One of iatrogenic effects of systemic therapies may be patients’ 
infertility. This prompts taking preventive measures. Potential parents, 
if diagnosed with cancer, may deposit oocytes or sperms prior to 
starting systemic radiation or chemo-therapies for the future genetic 
testing and in vitro fertilization [3]. Otherwise, children of parents, 
treated with systemic therapies, are at high risk of developing genetic 
disorders [4]. 

The ultimate goal of cancer therapy is the complete elimination 
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Abstract
The National Cancer Institute (NCI) and the American Cancer Society (ACS) predict that 1,638,910 men and 

women will be diagnosed with cancer in the USA in 2012. Nearly 577,190 patients will die of cancer of all sites this 
year. Patients undergoing current systemic therapies will suffer multiple side effects from nausea to infertility. Potential 
parents, when diagnosed with cancer, will have to deposit oocytes and sperms prior to starting systemic radiation or 
chemo-therapy for the future genetic testing and in vitro fertilization, while trying to avoid risks of iatrogenic mutations 
in their germ cells. Otherwise, children of parents treated with systemic therapies, will be at high risk of developing 
genetic disorders. According to these predictions, this year will carry another, very poor therapeutic record again.

The ultimate goal of cancer therapy is the complete elimination of all cancer cells, while leaving all healthy cells 
unharmed. One of the most promising therapeutic strategies in this regard is cancer suicide gene therapy (CSGT), 
which is rapidly progressing into new frontiers. 

The therapeutic success, in CSGT, is primarily contingent upon precision in delivery of the therapeutic transgenes 
to the cancer cells only. This is addressed by discovering and targeting unique or / and over-expressed biomarkers 
displayed on the cancer cells and cancer stem cells. Specificity of cancer therapeutic effects is further enhanced 
by designing the DNA constructs, which put the therapeutic genes under the control of the cancer cell specific 
promoters. The delivery of the suicidal genes to the cancer cells involves viral, as well as synthetic vectors, which 
are guided by cancer specific antibodies and ligands. The delivery options also include engineered stem cells with 
tropisms towards cancers. Main mechanisms inducing the cancer cells’ deaths include: transgenic expression of 
thymidine kinases, cytosine deaminases, intracellular antibodies, telomeraseses, caspases, DNases. Precautions 
are undertaken to eliminate the risks associated with transgenesis. 

Progress in genomics and proteomics should help us in identifying the cancer specific biomarkers and metabolic 
pathways for developing new strategies towards clinical trials of targeted and personalized gene therapy of cancer. 

Journal of Genetic Syndromes 
& Gene TherapyJo

ur
na

l o
f G

en
eti

c Syndromes &Gene Therapy

ISSN: 2157-7412



Citation: Malecki M (2012) Frontiers in Suicide Gene Therapy of Cancer. J Genet Syndr Gene Ther 3:119. doi:10.4172/2157-7412.1000119

Page 2 of 9

Volume 3 • Issue 4 • 1000119
J Genet Syndr Gene Ther
ISSN:2157-7412 JGSGT an open access journal 

of all cancer cells. Ideally, such a therapy would be leaving all healthy 
cells unharmed and would have no iatrogenic effects. Although not 
risks-free [5,6], one of the most promising therapeutic strategies in 
this regard is cancer suicide gene therapy (CSGT), which is rapidly 
progressing into new frontiers. 

Cancers Treated with Cell Suicide Inducing Genes
Selective elimination of cancer cells is particularly critical in cases 

in which they are intermingled with the healthy cells. Therefore, the 
surgical resection unavoidably removes the functional, healthy cells 
together with the cancerous ones; thus impairs the patients’ abilities 
to function normally. Radiation therapy affects all the exposed 
cells. While this therapy relies on the higher sensitivity of rapidly 
proliferating cells to the ionizing radiation, some of the healthy cells, 
including reproductive, immune, and hormonal systems’ cells are 
most sensitive. Moreover, cancer initiating stem cells are shown to be 
resistant to radiation. 

Chemotherapeutics penetrate into and affect all the cells. Most of 
them are relying upon the higher intake rate into rapidly proliferating 
cells and blocking mitosis, which lead to activating apoptotic cascades. 
Nevertheless, populations of the healthy cells, including those involved 
in regeneration and immunity, are also seriously affected. Moreover, 
side populations of ABCG2 expressing cancer stem cells are capable of 
expulsion of therapeutics, thereby developing resistance. 

Efficacy of immunotherapy relies upon high specificity and 
sensitivity of the used antibodies, which attract the patient’s immune 
response to the cells pointed with these antibodies. Any lack of 
specificity, or worse - cross reactivity with molecules on the surfaces 
of the healthy cells, directs killing power of immune systems towards 
the healthy cells. This misdirected immunological response may result 
in serious side effects, which the patients will endure, worse than, if 
they would not be treated at all. All these cases qualify for suicide gene 
therapy trials, while the clinical diagnoses determine the choice of 
strategy.

Glioblastoma multiforme (GBM) is the most often and the most 
deadly brain cancer [7-13]. It is incurable. Nearly 13,700 patients, out of 
almost 22,910 newly diagnosed, will die this year in the USA [1,2]. The 
average survival time of patients with GBM, from the time of diagnosis 
to death, is approximately 14.6 months for the patients in the USA. 
However, even during those months, neurosurgical resection, followed 
by radiation and chemotherapy with Temozolomide, leads to serious 
impairment of the quality of life. This prompts attempts of delivery of 
suicidal genes into gliomas. It is often accomplished by targeted delivery 
by viral and non-viral vectors targeting over-expressed (e.g., EGFR) or 
uniquely mutated (e.g., EGFRvIII) receptors [14-31]. A spectrum of the 
targeted biomarkers is expanded with those being displayed on cancer 
initiating cells including CD133 and its variants [11,12]. Moreover, 
genetically engineered stem cells, with tropism toward the tumors, are 
used as the carriers delivering the suicidal genes [29-31]. 

Ovarian cancer is the most deadly neoplasm of the female 
reproductive system. Almost 15,500 women will die, out of nearly 22,280 
newly diagnosed, this year in the USA [1,2]. Asymptomatic progression 
to the advanced stages, leads to the very high mortality rate, while 
more than 63% of women are diagnosed only at these advanced stages. 
Lifetime risk estimates for ovarian cancer among women in the general 
population indicate that 1.4 % (14 out of 1,000) will be diagnosed with 
ovarian cancer compared to up to 40 % of women (400 out of 1,000), 
who have harmful BRCA1 or BRCA2 mutations [32]. Radical therapy 
of the ovarian cancers involves oopherectomy and hysterectomy, 

which leave women infertile. Radical therapy of the advanced breast 
cancer - mastectomy leads to permanent disfiguring women’s bodies. 
Systemic therapy may lead to mutations in the oocytes’ genomes. These 
iatrogenic effects of therapies prompt preventive collecting oocytes 
prior to therapy for the in vitro fertilization [4]. Moreover, SSEA-4, 
TRA-1-60, CD44, CD133 biomarkers defined recently on stem cells 
in embryonal and epithelial carcinomas constitute a novel group of 
specific targets [33-40]. Germ cell tumors in male patients exhibit 
similar molecular profiles [34]. The same mutations are also responsible 
for breast cancers, which will be diagnosed in nearly 229,060 and 
will be cause of deaths of nearly 39,920 women this year in the USA 
[41,42]. Although immunotherapy with Herceptin is very effective, it 
is restricted to women overexpressing Her2/neu. The cancer suicide 
gene therapy, which targets mutated receptors displayed on surfaces of 
ovarian and breast cancer cells e.g., EGFRvIII, offers a fertility saving 
and offspring protecting alternative [43-46].

Although, the number of prostate cancers is declining, still 
nearly 28,170 men will die of the disease this year [1,2]. However, 
nearly 241,740 newly diagnosed and 2 million cancer surviving men 
will suffer daily problems associated with this cancer’s progression. 
Due to the anatomical passage of the urinary and reproductive tracks 
through the prostate, surgery on the prostate cancer in many cases 
leads to iatrogenic complications: erectile dysfunction and urinary 
incontinence. Several biomarkers have been identified for the prostate 
cancer including PSMA, androgen, CXCR4 or EpCAM [47-52]. Those 
serious side effects propel trials of suicide gene therapy of the prostate 
cancers [53-63]. 

Nearly 43,920 Americans will be newly diagnosed with pancreatic 
cancer this year. Almost 37,930 of them will die [1,2]. This translates 
into an average 4% one year survival rate (4 patients surviving a year 
out of 100 diagnosed). Surgery, including pancreatic transplantation, 
is effective in the early stages. However, the anatomical location results 
in asymptomatic progression of the neoplasm to the advanced stages. 
Unbearable pain develops with this cancer’s progression. Often, non-
specific symptoms are associated with impairment of the numerous 
functions of pancreas within the digestive and hormonal systems. 
Those functions result from diversity of specialized cells with variety of 
lineage specific display profiles. Discoveries of new biomarkers make 
pancreatic cancer another good candidate for targeted cancer suicide 
gene therapy [64-67]. 

Cancers of the digestive system include gastric and colon 
cancers. An estimated 103,170 people will be newly diagnosed with 
colon in 2012 [1,2]. Almost 51,960 of the patients will die during the 
year, while suffering from increasing malnutrition. Several unique 
biomarkers are present on the cancer cells including well established 
carcinoembryonic antigen (CEA) [68]. To that, there are added newly 
emerging biomarkers, including those on the colon cancer stem cells 
CD44 and CD133 [68-72]. Not only they facilitate early diagnosis due 
to shedding of these biomarkers into the patients’ blood, but also they 
are targets for diagnostic molecular imaging and targeted therapies. 
The targeted therapies include cancer suicide gene therapies [73-77]. 

Almost 160,340 people will die of the lung cancer this year [1,2]. 
More than 226,180 people will be newly diagnosed. This cancer will 
take more lives than any other cancer. The overall 5 year survival rate is 
15% (15 out of 100 diagnosed patients will survive 5 years). Progression 
of cancer not only is reducing the active area of oxygen supply, but 
also is often associated with pleural effusion, which rapidly fills up large 
volume of pleural cavity and suppresses the lungs’ volumes. Both lead 
to deaths by asphyxia. Contributing factors include clones of cancer 
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stem cells resistant to therapies, which are identified with the recently 
discovered biomarkers [78-81]. They propel targeted cancer suicide 
gene therapy trials [82-85]. 

Receptors Displayed on Living Cells - Targets for 
Therapeutics Transgenes’ Vectors

The most essential element of attaining high therapeutic 
efficacy, while avoiding iatrogenic effects, is the precise delivery 
of the therapeutics to the treated cells only. This is also the case for 
cancer suicide gene therapy. However, only a few unique, qualitative 
biomarkers, which are present exclusively on cancer cells, have been 
identified. They offer an ultimate targeting precision for delivering the 
suicidal genes’ carrying vectors. 

Epidermal growth factor receptors constitute a family of the 
receptors ErbB 1-4. First member of this family - an epidermal growth 
factor receptor (EGFR) or ErbB1 is present on most healthy cells and 
their cancerous derivatives. However, the number of receptors on cells 
may differ. While a normal healthy glial cell displays ~ 3×104 receptors, 
the malignant glioma cell may display ~ 2-3×106 receptors. It is the 
result of increased levels of gene expression or / and multiple copies 
of genes in cancer cells, what is leading to an increased number of the 
gene expression products - cell surface receptors. Supplying the same 
concentrations of vectors to both, glial and glioma cells in patients 
with brain tumors, would result in two orders of magnitude higher 
therapeutics’ saturation of glial cells than normal cells. Nevertheless, 
the apoptosis inducing transgenes would cause harm in healthy cells, if 
no other protective measures would be involved. However, the EGFR 
variant III – the truncated product of deletion mutation of the gene, is 
present uniquely on the cancer cells including brain, lung, ovarian, and 
many others. As such, it is an excellent immunogen for cancer vaccines 
[86]. This receptor is a target for recombinant adenoviral vector [87]. 
The EGFRvIII is the target for genetically engineered variable fragment 
antibodies, which guide delivery of the suicidal genes into ovarian and 
breast cancers [88]. Another member of this receptors family is Her2 or 
ErbB2. Its over-expression in breast and other cancers broadcasts poor 
prognosis. It is a target for immunotherapy. Engineering multivalent 
adapters refine precision of delivery to this receptor by viral vectors in 
gene therapy [89].

A standard version of the cluster of differentiation 44 (CD44s) 
is present on cells from variety of tissues, including those of epithelial 
origin as prostate, ductal epithelium of breast, mucosa, and many others, 
as well as on cells in neoplasms. However, alternative splicing patterns 
(CD44v) are present on various cancers and their metastases including 
cancers of the lungs, bladder, breast. In particular CD44v6, specific for 
epithelial cancers, is an antigen for monoclonal antibodies in immuno- 
and gene therapies [90,91]. These antibodies are manufactured to guide 
suicide gene therapy vectors against ovarian cancers [88]. 

Tumorigenic cancer cells, with stem cell profiles, display cluster 
of differentiation 133 (CD133) / prominin [11-12,92], often in 
association with CXCR4. They are resistant to cisplatin treatment. 
Therefore, CD133 and CXCR4 became the points for delivery of the 
lentivirus driven suicidal genes [92].

Carcino-embryonic antigen (CEA) is present on the luminal 
surfaces of the mucosal cell, but amplified and diffused on all surfaces 
of cancer cells [68]. It has become the cancer biomarker, which after 
coupling antibodies with radionuclides, is detected by diagnostic 
imaging. It is shed by cancerous cells into blood of cancer patients, so 
it is routinely detected in lab tests. It is also the target for the vectors 
delivering therapeutic genes [93,94]. 

Folic acid aka vitamin B9 is imported into the cells with the aid of 
the folate receptor (FR). Folic acid is used in synthesis and repair of 
the genomic DNA. Therefore, highly mitotic cancer cells, which have 
high demands for the folates, are characterized by over-expression of 
the folate receptors on their surfaces. As such, they become guides for 
delivery of therapeutics. Folate linked nanoparticles transfer HSV TK 
into prostate and nasopharyngeal cancer cells [95].

Also transferrin receptor (TfR) aka cluster of differentiation 71 
(CD71) is overexpressed on cancer cells to meet their high demands 
for iron [96]. Iron chelating enzymes, ribonucleotide reductase and 
cytochrome-c reductase, heavily influence cancer cell metabolism. 
Depletion of iron is one of the therapeutic strategies of cancer therapy. 
Radioactive isotopes of iron are used in nuclear medicine. Iron is 
imported into cells by transferrin receptor. The same mechanism is 
used to deliver therapeutic suicidal genes [88,97-99].

Mucins are displayed on cell surfaces as glycosylated proteins. 
Although present on normal cells, their expression onto the cancer 
cells is greatly upregulated. Moreoverer, the carbohydrates present 
on breast, pancreatic, and ovarian cancer cells are fewer and simpler. 
This translates in variation in antibody cross reactivity between MUC1 
labeling normal versus cancer cells. Moreover the MUC-1/Y is often 
replaced by the MUC-1/Z form. These features are exploited for making 
specific antibodies. These antibodies serve as the guides for the vectors 
with the therapeutic cargo to the cancer cells [88,100,101]. 

Cancer stem cells or cancer intiating cells have recently been 
suggested as responsible for propeling growth of tumors. Resistance 
to radiation and chemotherapy has been attributed to the clones of 
cancer stem cells. Therefore, the biomarkers of stem cells become 
potential, novel guides for targeted therapies. Among them, stage 
specific embryonic antigen 4 (SSEA-4) and tumor resistance antigen 
1-60 (TRA-1-60) have been identied on the pluripotent stem cells of 
the embryonal carcinomas of the testes and ovaries [33-34]. It is worth 
noting, that these biomarkers of pluripotency are being expressed only 
on undifferentiated pluripotent stem cells, while ceasing to express 
immediately upon the cells’ differentiation. Therefore, they are unique 
biomarkers for delivery of the therapeutic transgenes to the pluripotent 
stem cells only.

The ligands and antibodies for the aforementioned receptors 
serve as the guides for the delivery of the vectors to these receptors. 
Nevertheless, it is necessary to keep in mind, that therapeutics guided 
by these ligands and antibodies will deliver therapeutic genes to cancer 
cells only, if they are uniquely specific. However, if for a particular 
antibody, there is any cross reactivity between cancer and healthy 
cells’ receptors, then obviously the therapeutic genes will affect healthy 
cells, what will manifest as the side effects, on the same way as with the 
non-specific systemic therapies. Therefore, continued effort towards 
defining the molecular display profiles on the spectra of heterogenous 
populations of clones of single, living cancer cells, should be the 
primary goal for designing targeted, personalized therapy [102,103]. 

Cancer Specific Promoters
For therapy involving expression of genes leading to the cells’ 

deaths, it is essential that these genes are targeted to and expressed in 
all and only targeted cancer cells, but not in healthy cells. Targeting to 
the cancer cells can be accomplished with the aid of ligands or / and 
antibodies specific for the molecules displayed on the surfaces of the 
living cells as discussed above. Expressing in the cancer cells can be 
restricted by selection of promoters of the genes, which are upregulated 
in the investigated cancers as determined by genomics and proteomics, 
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i.e., promoters, which are lineage, oncogene, biomarker, or induction 
specific. The promoters of these genes are engineered into the DNA 
constructs driving effectively expression of the therapeutic cancer 
suicide genes. Therefore, the cancer suicide genes are expressed only in 
cancer cells. It is an important safety measure, so that if a suicidal gene 
is erroneously delivered into the healthy cells, it is not expressed – it 
remains inactive.

Two orders of magnitude higher expression of epidermal growth 
factor receptors (EGFR) in cancer cells over normal cells provides a 
rationale for using their promoters, while engineering the constructs 
driving expression of the cancer suicide inducing transgenes. This 
approach is further enhancement of the strategy, which also involves 
delivering trangenes through the receptors mutated only on cancer 
cells or present on pluripotent cancer stem cells [33]. 

Similarly to EGFR, transferrin receptors (TfR) are more heavily 
displayed on rapidly proliferating cancer cells, than on quiescent, 
normal, healthy cells. Therefore, the TfR promoters are efficiently used 
for expressing suicidal genes [88].

Carcinoembryonic antigen (CEA) is the result of the high CEA 
gene expression in various cancers including gastric and colorectal 
carcinomas. Therefore, the transgenes under control of its promoter 
are expressed only in those cancers. Further improvement of the 
expression occurs, when the transgene, e.g., cytosine deaminase, is set 
under the control of the Cre/LoxP regulation system [104].

Telomerase is an RNA polymerase, which lengthens telomeres. 
Majority of cancers greatly over-express the hTERT subunit, 
while immortalizing the cells. Therefore, it is used as a promoter of 
suicidal genes in cancer cells. An example of such a strategy involves 
transduction of the ovarian cancers with HSV TK under the telomerase 
promoter [105-109]. 

Prostate specific antigen (PSA) and prostate specific membrane 
antigen (PSMA) are uniquely over-expressed by prostate cancer cells. 
Therefore, their promoters are incorporated into the constructs for 
cancer suicide genes, which are expressed into prostate cancers [59,63]. 

Cytokeratins, uniquely present in epithelial cells, are 
histopathological biomarkers of the neoplasms of the epithelial lineage. 
They are also used to determine EM and ME transitions, which occur 
during cancerogenesis and metastasis. For the human embryonic stem 
cells, they are also biomarkers of differentiation into one of three germ 
layers. Cytokeratin 18 and 19 (CK19) are among these biomarkers. 
The promoter for CK19 is used to drive expression of the transgenes 
within epithelial cells [110].

Physiologically, prostaglandin-endoperoxide synthase (PTGS) 
aka cyclooxygenase (Cox) catalyzes formation of prostaglandins, 
prostacyclin and thromboxane. Aspirin is best known inhibitor of Cox 
providing relief from inflammation and pain. The Cox gene has a very 
high transcriptional activity in colorectal cancers. This prompts its’ 
promoter use, after delivering the vectors through the coxsackievirus 
and adenovirus receptors (CAR), for using it in cancer suicide gene 
therapy of gastrointestinal cancers [111].

Vectors of Suicidal Genes
Tropisms of natural or engineered viruses towards specific receptors 

are the foundations for constructing viral vectors for suicide cancer 
gene therapy. The attachment of these vectors to the targeted cells is 
contingent upon recognition of specific receptors on the cells’ surfaces 
by the ligands on the vectors. In other words, only the viruses with 

the very specific ligands on their surfaces will anchor onto the specific 
receptors on the cells and vice versa - targeting the specific cells will 
require engineering viruses displaying ligands matching exactly those 
receptors, which are displayed on the targeted cells. Those interactions, 
between cell receptors and viral ligands are in vivo modulated by the 
immune system involving toll like receptors. Identical principles rule 
designing of the non-viral vectors. Similarly, tropism of the cells, which 
are bioengineered to deliver therapeutic cargo to cancers, is driven by 
selective interactions between the ligands and receptors. The entry of 
vectors, through receptor mediated endocytoses or membrane fusions, 
also requires specific set of domains. These domains promote vectors’ 
escape from endosomal and / or lysosomal pathways. The other 
domains facilitate entries into nuclei. Replication, assembly, and egress 
or latency, all determine dynamics of interactions between the vector 
and the cell. All these elements have decisive effect upon the choice of 
the vectors, as well as engineering therapeutic cargo carrying cells, in 
designing cancer suicide gene therapies.

Herpes simplex virus (HSV) belongs to a family of herpesviridae - 
enveloped DNA viruses. They bind to the receptors through orthologs of 
their three main ligand glycoproteins: gB, gH, and gL, while sometimes 
employing accessory proteins. These ligands play decisive roles in the 
primary routes of viruses’ entries in oral, ocular, and genital forms of 
the disease. The HSVs possess high tropism towards the cell receptors 
of the nervous system [112]. This tropism is utilized for engineering 
recombinant viruses delivering the suicide inducing genes into cancer 
cells [113]. The therapeutic bystander effects are enhanced by inclusion 
of connexin coding sequences into the constructs [114,115]. 

Lentivirus belongs to a family of retroviridae – enveloped, single 
stranded RNA retroviruses. The most known member of this group is 
Human immunodeficiency virus (HIV). It is a lentivirus that causes 
acquired immunodeficiency syndrome (AIDS). The viruses’ ligands 
have affinity towards CD4, which is present on the cells of the human 
immune system such as CD4+ T cells, macrophages, and dendritic cells 
[116]. To exert its activity after the entry into the cell, the viral RNA 
genome has to be reverse transcribed into double-stranded DNA, which 
is imported into the cell nucleus and integrated into the cellular DNA. 
This virus is used to deliver the therapeutic genes to leukemia cells 
[117-121]. The recombinant lentivirus is used to deliver deoxycytidine 
kinase. Recombinant lentivirus is effective in delivering suicide genes 
through the mucin receptor into pancreatic cancer cells, while sparing 
healthy cells. It also demonstrates affinity towards the epithelial ovarian 
carcinoma expressing mucin. The recombinant lentivirus is also used 
to deliver suicidal genes into gliomas.

Adenovirus is a non-enveloped virus consisting of a double-
stranded, linear DNA genome and a capsid. Naturally, it resides in 
adenoids and may be a cause of the upper respiratory tract infections. 
The viruses utilize cells’ coxsackievirus and adenovirus receptor 
(CAR) for the adenoviral fiber protein for entry into nasal, tracheal, 
and pulmonary epithelia [122]. The main problems to overcome are 
low levels of the CARs on the cancer cells and chromatization by 
histone deacetylases. The recombinant virus is capable for delivering 
thymidine kinase and cytosine deaminase achieving therapeutic effects 
[123]. The adenovirus engineered with the H19 enhancer / DMD-H19 
promoter complex induces apoptosis only in the cancer cells with loss 
of imprinting of the insulin-like growth factor 2 gene (IGF2). Artificial 
“death switches” are introduced into cancer cells by adenoviruses to 
initiate apoptosis [124-130]. Replication-competent adenovirus-
mediated suicide gene therapy (ReCAP) is in the clinical trials for 
newly-diagnosed prostate cancer.
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Non-viral vectors are designed and synthesized de novo by 
biotechnologies of biomolecular engineering. They are engineered at 
the various levels of complexity. In general, they primarily provide 
the structural framework for condensation of the DNA. The vectors 
based poly(oligoD)arginine vector are engineered to condense TK 
gene into small nanoparticles or to assemble it into dendrimers. 
These nanoparticles are used to transfect and kill ovarian, breast, and 
prostate cancer cells [95,131-134]. Their targeting selectivity towards 
cancer cells is enhanced by adding ligands or antibodies, as the guides 
towards the cell receptors [88]. Delivery of the therapeutic transgenes 
can be further enhanced by adding superparamagnetic nanoparticles 
or rendering the vectors superparamagnetic and driving the vectors 
into the neoplasms by electromagnetic pulses [88]. The liposomes offer 
an option for encapsulation and enhanced penetration through all cell 
membranes [95]. Selectivity of these vectors towards specific cells is 
enhanced by intercalating the lipid layer with the ligands or antibodies 
to create immnuno-liposomes. Nanobodies against MUC-1 linked 
with polyethylene glycol (PEG) - polyethylenimine (PEI) are the bases 
to induce apoptosis in the MUC-1 over-expressing breast cancer cells. 
The synthetic antibodies anchoring dsDNA constitute the founding 
framework for the complex biotag vectors, which incorporate signaling 
domains for cell entry, lysosomal escape, and nuclear entry of the 
therapeutic transgenes [88]. 

A major problem for gene therapy is low efficacy in delivery and 
expression of therapeutic genes. Bioengineered stem cells are being 
tested for their potential of resolving this problem for two reasons: 
precise targeting and efficient expression. The human stem cells can 
be delivered directly into the tumor. The human embryonic stem 
cells, mesenchymal stem cells, as well as the induced stem cells are 
bioengineered to deliver therapeutics. Some of them they have affinity 
for targeting gliomas, while the others towards breast cancer metastasis 
to the brain; all after intravenous injection [135-148]. This feature makes 
them perfect vectors for carrying therapeutic genes. The recombinant 
version of thymidine kinase shows enhanced over the wild type activity 
after being secreted, while effective in inflicting bystander effects 
[140,141]. Adding the kappa chain leader and endoplasmic reticulum 
export signal improves secretion; thus therapeutic effects [142]. Adding 
valproic acid significantly enhances activity of thymidine kinases [142]. 
The stem cells are being tested for their potential for carrying the 
suicidal genes also into variety of other tumors [135-148].

Mechanisms of Inducing Cancer Cells’ Death
Induction of cancer cells’ suicide can be accomplished on several 

ways. The ultimate goal is to eliminate all cancer cells and their nucleic 
acids carrying genetic information. The goal is also to spare all healthy 
cells including those of the reproductive system.

Thymidine kinase (TK) is an ATP-thymidine 5’-phosphotransferase 
present in all living cells. It is also present in viruses including herpes 
simplex virus (HSV), varicella zoster virus (VZV], and Epstein-Barr 
virus [EBV]. Physiologically, this enzyme converts deoxythymidine 
into deoxythymidine 5’- monophosphate (TMP), which is further 
phosphorylated to deoxythymidine diphosphate and thereafter to 
deoxythymidine triphosphate by thymidylate kinase and nucleoside 
diphosphate kinase respectively. As the triphosphate, it is incorporated 
into the synthesized DNA molecule by DNA polymerases or viral 
reverse transcriptases. Some dNTP analogs have the ability to terminate 
the DNA synthesis upon their incorporation into synthesized DNA. 
Ganciclovir is a synthetic analogue of 2’-deoxy-guanosine with such 
synthesis termination capability. Termination of synthesis triggers the 

apoptotic signaling cascades. This route of cancer suicide gene therapy 
involves two stages. First, HSV-TK gene is delivered and expressed in 
cancer cells. In most cases, it is delivered by viral vectors. Second, the 
suicidal gene delivery is followed by provision of Ganciclovir. HSV-
TK is effectively used in cancer suicide gene therapy by expression in 
targeted cells to exert intracellular effects outlined above [15-19,22-
24]. Alternatively, TK is also secreted into the extracellular fluids by 
genetically engineered cells [135-148]. Thereafter, it is internalized 
by surrounding cancer cells to cause their death. A new recombinant 
version – 007 is shown to be more effective than the wild type [140]. 
Using valproic acid, as an inhibitor of deacetylases, enhances its efficacy 
[141]. 

Cytosine deaminase (CD) leads the hydrolysis reaction of cytosine 
to uracil with release of ammonia. If the modified site is recognized by 
endonucleases, then the phosphodiester bond in the DNA is broken, 
while initiating repair by incorporation of a new cytosine. However, 
upon provision of non-toxic prodrug - 5-fluorocytosine (5-FC), 
cytosine deaminase converts it into 5-fluorouracil (5-FU), which can 
inhibit cancer cell growth. Transgenic expression of CD in cancer cells 
leads to their deaths [31,73,94]. Cytosine deaminase in tandem with 
thymidine kinase under the carcinoembryonic antigen promoter is 
tested on lung cancers. Transfection by the engineered adenovirus and 
expression under the cytomegalovirus promoter, the double suicide 
gene constructs, are tested for inducing suicide of breast cancer cells. 
Alternatively, stem cells are engineered to express and secrete cytosine 
deaminase to kill neighbouring cells. Transduced mesenchymal 
stem cells with lentivirus driven cytosine deaminase are injected into 
gliomas. The engineered cells are injected directly into the cancerous 
tumors or delivered through intravenous injecting to reach cancers 
based upon their tropism [123,148]. 

Reactive oxygen species (ROS) are by-products of cellular 
metabolism, while being primarily generated in mitochondria. 
Moderate levels of ROS may promote the cell divisions and 
differentiation. Increased metabolism, which occurs in cancer cells, 
may lead to significantly accelerated reactions of ROS with the genomic 
DNA causing its damage, with membrane lipids affecting their 
permeability, and with proteins causing reduced enzymatic activity and 
increased proteolysis susceptibility. These reactions lead to apoptosis 
and / or necrosis. In healthy cells, the balance between production and 
neutralization of ROS is retained by the antioxidative enzymes (AOEs). 
However, either increasing levels of ROS, or blocking AOEs, lead to 
shifting this balance towards unquenched ROS, thus to oxidative stress 
and death. The first mechanism is used in various modalities of radiation 
therapy, which cause generation of free radicals. The main problem 
with this approach is iatrogenic effect of ionizing radiation onto the 
healthy cells. This limits the effective therapeutic dose. Alternatively, 
the AOEs are blocked by the intracellular antibodies expressed from 
the DNA constructs delivered via EGFRvIII, CEA, or TfR mediated 
endocytosis [33,88]. The combination of both routes, blocking of the 
AOEs, which makes them more sensitive to ROS, followed by low doses 
of radiation, which increases ROS, are currently in progress. 

Telomerase is a ribonucleoprotein responsible for maintaining 
functions of telomeres. Levels of its both components: RNA (hTR) 
and protein (hTERT) are increased in cancer cells. Putting bacterial 
nitroreductase gene under the telomerase promoter facilitates 
expression of the enzyme, which in turn converts a non-toxic prodrug 
into the cytotoxic alkylating agent [108].

Triggering of apoptotic cascades involves activation of caspases. 
Under two systems regulating transcription, muristerone and TetOn, 
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the human, constitutively active caspases expressed from the viral 
vectors, effectively induce apoptosis of the human embryonic kidney 
and breast cancer cell lines [128]. Transgenic expression of ‘death 
switches’, bax and caspase 9, triggers apoptotic cascades and kills the 
cancer cells [126-129]. The final stage of many different routes leading 
to cancer cells’ suicides is executed by DNases, what is manifested 
by hallmarks of apoptosis: collapse of chromatin and disintegration 
of the genomic DNA. The DNA constructs for the constitutively 
active DNases are first led by the multifunctional biotags to the 
EGFRvIII on the ovarian cancer cells, and after escaping from the 
endosomal / lysosmal pathway into the cell nuclei. Thereafter, targeting 
transgenically expressed DNases, through nuclear pore complexes into 
the nuclei, leads to the destruction of the genomic DNA and cancer 
cells’ deaths [88].

Conclusion
Progress in genomics and proteomics should help us in identifying 

the specific targets for developing new strategies for clinical trials of the 
targeted and personalized gene therapy of cancer.
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