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Introduction
Biofuel and bioproduct production from microalgae have several 

advantages when compared to the 1st and 2nd biofuel generation: high 
areal productivity, minimal competition with conventional agriculture, 
environmental benefits by recycling nutrients (N and P) from waste 
waters and mitigating carbon dioxide from air emissions. In addition, 
all components of microalgae can be separated and transformed into 
different valuable products. The high metabolic versatility of microalgae 
and cyanobacteria metabolisms, offer interesting applications in several 
fields such as nutrition (human and animal), nutraceuticals, therapeutic 
products, fertilizers, plastics, isoprene, biofuels and environment (such 
as water stream bioremediation and carbon dioxide mitigation). 

The high content of antioxidants and pigments (carotenoids 
such as fucoxanthin, lutein, betacarotene and/or astaxanthin and 
phycobilliproteins) and the presence of long-chain Polyunsaturated 
Fatty Acids (PUFAs) and proteins (essential amino acids methionine, 
threonine and tryptophan), makes microalgae an excellent source 
of nutritional compounds. Coextraction of high-value products 
(PUFAs, such as Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid 
(DHA), and Arachidonic Acid (AA)) will also be evaluated since these 
compounds may enhance the nutritional or nutraceutical value of the 
microalgal oil. 

Microalgae have also been screened for new pharmaceutical 
compounds with biological activity, such as antibiotics, antiviral, 
anticancer, enzyme inhibitory agents and other therapeutic 
applications. They have been reported to potentially prevent or reduce 
the impact of several lifestyle-related diseases [1-3] with antimicrobial 
(antibacterial, antifungal, antiprotozoal) and antiviral (including 
anti-HIV) functions and they also have cytotoxic, antibiotic, and 
anti-tumour properties as well as having biomodulatory effects such 
as immunosuppressive and anti-inflammatory roles [4,5]. Chlorella 
has also been used against infant malnutrition and neurosis [6], as 
well as being a food additive. Furthermore, algae are believed to have 
a positive effect on the reduction of cardio-circulatory and coronary 
diseases, atherosclerosis, gastric ulcers, wounds, constipation, anaemia, 
hypertension, and diabetes [6,7].

The microalgae compounds, such as carotenoids have also been 
associated and claimed to reduce the risk of: (1) certain cancers [8-
11], (2) cardiovascular diseases [12,13], (3) macular degeneration 
and cataract formation [14,15] and possibly may have an effect on the 

immune system and may influence chronic diseases [16,17].

Besides nutritional, nutraceutical and therapeutic compounds, 
microalgae can also synthesize polysaccharides that can be used as 
an emulsion stabilizer or as biofloculants and polyhydroxyalkanoate, 
which are linear polyesters used in the production of bioplastics. 
Microalgae biomass has been demonstrated to improve the physical 
and thermal properties of plastic by replacing up to 25% of polymers, 
which increases the biodegradability of the final bioplastic. Microalgae 
can also produce isoprene, which is a key intermediate compound 
for the production of synthetic rubber and adhesives, including car 
and truck tires. It is also an important polymer building block for the 
chemical industry, such as for a wide variety of elastomers used in 
surgical gloves, rubber bands, golf balls, and shoes [18]. 

Furthermore, the aminoacids produced by microalgae can be 
used as biofertilizers and therefore assist higher plant growth. Amino-
acid based fertilization supplies plants with the necessary elements 
to develop their structures by adding nutrients through the natural 
processes of nitrogen fixation, solubilizing phosphorus, and stimulating 
plant growth through the synthesis of growth-promoting substances 
[19-21]. Bio-fertilizers provide eco-friendly organic agroinput and are 
more cost-effective than chemical fertilizers. 

Finally, regarding biofuels, they can be obtained from the microalgae 
biomass leftovers after the extraction of added-value compounds. 
According to the composition of the “waste” biomass, it can be used for 
the production of liquid biofuels (bioethanol, biodiesel, biobutano and 
bio-oil) [22,23] or gaseous biofuels (biomethane, biohydrogen, syngas 
etc.) [24-26]. The technology used to produce biofuels efficiently is not 
yet established, thus different biological and thermochemical processes 
still need to be studied and improved. 

Abstract
Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to 

the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly 
used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge 
source of compounds and products, giving a good example of a real biorefinery approach.

This work shows and presents examples of experimental microalgae-based biorefineries grown in an autotrophic 
mode at a laboratory scale.
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Unfortunately, the economic viability of algae-based biofuels is 
still unfeasible. However, the high metabolic versatility of microalgae 
and cyanobacteria metabolisms allows the production of the several 
mentioned non-fuel products, which have a very high value and 
could play a major role in turning economic and energy balances 
more favorable. This versatility and huge potential of tiny microalgae 
could support a microalgae-based biorefinery and microalgae-based 
bioeconomy opening up vast opportunities in the global algae business. 

The microalgae could play an important response to the worldwide 
biofuel demand, together with the production of high value-added 
products and assisting some other environmental issues such as water 
stream bioremediation and carbon dioxide mitigation. 

Only the co-production of high added value products and 
environmental benefits could eventually off-set the high production 
costs of mass microalgae cultivation and support a microalgae-based 
bioeconomy. In fact, a microalgae-based biorefinery should integrate 
several processes and related industries, such as food, feed, energy, 
pharmaceutical, cosmetic, and chemical. Such an approach, in addition 
to the biomass, will take advantage of the various products synthesized 
by the microalgae. This adds value to the whole process which has a 
minimal environmental impact by recycling the nutrients and water, 
and by mitigating the CO2 from the flue gases (Figure 1). 

This review highlights the potential of the tiny autotrophic 
microalgae for the production of several products in an experimental 
(lab scale) Biorefinery. The production contains biofuel(s) and other 
high value-added compounds which could be used for different 
applications and markets.

From (Tiny) Microalgae to (Huge) Biorefineries
The main bottleneck of the biorefinery approach is to separate 

the different fractions without damaging one or more of the product 
fractions. There is a need for mild, inexpensive and low energy 
consumption separation techniques to overcome these bottlenecks 
[27,28]. They should also be applicable for a variety of end products 
which have a sufficient quality but are also available in large quantities 
[29,30].

Some of the biorefinery techniques appropriate for metabolite 
separation and extraction are ionic liquids or surfactants [28,31]. 
These techniques are relatively new and should therefore be studied 
thoroughly before commercial use will be possible.

Nannochloropsis sp. biorefinery

Nobre et al. [31] used Nannochloropsis sp. microalga and developed 
a Biorefinery with the extraction of carotenoids and fatty acids (mainly 
EPA) for food and the feed industry as well as lipids for biodiesel 
production. The biomass composition is present in Table 1.

The fractionated recovery of the different compounds was done by 
Supercritical Extraction using CO2 and ethanol as an entrainer. From 
the biomass leftovers and using Enterobacter aerogeneses through dark 
fermentation, bioH2 was also produced (Figure 2), yielding a maximum 
of 60.6 mL H2/g alga [31].

The energy consumption and CO2 emissions emitted during the 
whole process (microalgae cultivation, harvesting, dewatering, milling, 
extraction and leftover biomass fermentation), as well as the economic 
factors were evaluated [25]. The authors showed five pathways and two 
biorefineries which were analysed (Figure 3): 

Path # 1) Oil extraction by soxhlet (oil SE);

Path #2) Oil and pigment extraction and fractionation through 
Supercritical Fluid Extraction (oil and pigment SFE);

Path #3) Hydrogen production through dark fermentation of the 
leftover biomass after soxhlet extraction (bioH2 via SE);

Path #4) Hydrogen production by dark fermentation from the 
leftover biomass after Supercritical Fluid extraction (bioH2 via SFE);

Path #5) Hydrogen production from the whole biomass through 
dark fermentation (bioH2 using the whole biomass).
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Figure 1: Example of a microalgae based biorefinery and how it integrates 
several related industries (adapted from Subhadra [46]).
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Figure 2: Nannochloropsis sp. biorefinery.

Table 1: Nannochloropsis sp. composition.

Composition (%)
Crude fat 41

Total sugars 17
Total minerals 13

Others 29



Citation: Gouveia L (2014) From Tiny Microalgae to Huge Biorefineries. Oceanography 2: 120. doi:10.4172/2332-2632.1000120

Page 3 of 8

Volume 2 • Issue 1 • 1000120
Oceanography, an open access journal
ISSN: 2332-2632 

Seaweeds, Micro- and Macro-algae

Where path #1 and path #3 are the Biorefinery 1, path #2 and path 
#4 are the Biorefinery 2 and path #5 is the direct bioH2 production.

The analysis of pathways #1, #2 and #5 considers a system boundary 
from the Nannochloropsis sp. microalgal culture to the final product 
output (oil, pigments, or bioH2, respectively). For pathways #3 and 
#4, the bioH2 production from the leftover biomass from SE and SFE 
respectively was evaluated.

The authors concluded that the oil production pathway by SE 
shows the lowest energy consumption, 176-244 MJ/MJprod, and CO2 
emissions, 13-15 kg CO2/MJprod. 

However, economically the most favourable biorefinery was the 
one producing oil, pigments and H2 via Supercritical Fluid Extraction 
(SFE).

From the net energy balance and the CO2 emission analysis, 
Biorefinery 1 (biodiesel SE + bioH2) presented the better results. 
Biorefinery 2 (biodiesel SFE + bioH2) showed results in the same range 
of those in Biorefinery 1. However, the use of SFE produced high-value 
pigments in addition to the fact that it is a clean technology which does 
not use toxic organic solvents.

Therefore, Biorefinery 2 was the best in terms of energy/CO2/ and it 
being the most economically advantageous solution.

Anabaena sp. biorefinery

The experimental biohydrogen production by photoautrotophic 
cyanobacterium Anabaena sp. was studied by Marques et al. [24]. 
Hydrogen production from the Anabaena biomass leftovers was also 
achieved by fermentation through the Enterobacter aerogenes bacteria 
and was reported by Ferreira et al. [32] (Figure 4).

Different culture conditions and gas atmospheres were tested 
in order to maximize the autotrophic bioH2 yield versus the energy 
consumption and CO2 emissions. The authors stated that the best 
conditions included an Ar+CO2+20% N2 gas atmosphere and medium 
light intensity (384 W) [32]. The yielded H2 could be increased using 
the biomass leftovers through a fermentative process; however this 
would mean higher energy consumption as well as an increase in CO2 
emissions.

Chlorella vulgaris biorefineries

Quite a few reported works describe biorefineries from Chlorella 
vulgaris and these are stated below:

Cv1 – An integrating process for lipid recovery from the biomass 
of Chlorella vulgaris and methane production from the remaining 
biomass (after lipid extraction) was worked on by Collet et al. [33]. The 
authors demonstrated that, in terms of Life Cycle Assessment (LCA), 
the methane from algae (algal methane) is the worst case, compared 
to algal biodiesel and diesel, in terms of abiotic depletion, ionizing 
radiation, human toxicity, and possible global warming. These negative 
results are mainly due to a strong demand for electricity. For the land 
use category, algal biodiesel also had a lesser impact compared to algal 
methane. However, algal methane is a much better option in terms of 
acidification and eutrophication. 

Cv2 - Another work concerning the simultaneous production of 
biodiesel and methane in a biorefinery concept was done by Ehimen et 
al. [34]. The authors obtained biodiesel from a direct transesterification 
on the Chlorella microalgal biomass, and from the biomass residues they 
obtained methane through anaerobic digestion. For a temperature of 
40°C and a C/N mass ratio of 8.53, a maximum methane concentration 
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Figure 3: Nannochloropsis sp. biorefinery (including all steps, material and energy, and different pathw ays) to the production of oil, pigments and bioHydrogen) 
(adapted from Ferreira et al. [25]).
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of 69% (v/v) with a specific yield of 0.308 m3 CH4/kg VS was obtained. 
However, in this work the biodiesel yield was not reported. 

Cv3 - In another work, the Chlorella vulgaris biorefinery approach 
was studied by Gouveia, et al. [35] and it included a Photosynthetic 
Algal Microbial Fuel Cell (PAMFC), where the microalga Chlorella 
vulgaris are present in the cathode compartment (Figure 5). The 
study demonstrated the simultaneous production of bioelectricity 
and added-value pigments, with possible wastewater treatment. The 
authors proved that the light intensity increases the PAMFC power and 
augments the carotenogenesis process in the cathode compartment. 
The maximum power produced was 62.7 mW/m2 with a light intensity 
of 96 μE/(m2.s).

Cv4 - A bioethanol-biodiesel-microbial fuel cell was reported 
by Powel and Hill [36] and basically consisted in an integration of 
photosynthetic Chlorella vulgaris (in the cathode) that captured 
CO2 emitted by yeast (in the anode) fermenters, creating a microbial 
fuel cell. The study demonstrated the possibility of electrical power 
generation and oil for biodiesel, in a bioethanol production facility. 
The remaining biomass after oil extraction could also be used in animal 
feed supplement [36].

Chlorella protothecoids biorefinery

The biorefinery stated by Campenni et al. [37] used Chlorella 
protothecoides as a source of lipids and carotenoids, and the microalga 
was grown autotrophically and with nitrogen deprivation and the 
addition of a 20 g/l NaCl solution (Figure 6).

The total carotenoid content was 0.8% (w/w) (canthaxanthin 
(23.3%), echinenone (14.7%), free astaxanthin (7.1%) and lutein/
zeaxanthin (4.1%)) which can be used for food applications. 
Furthermore, the total lipid content reached 43.4% (w/w), with a fatty 
acid composition of C18:1 (33.6%), C16:0 (23.3%), C18:2 (11.5%), and 
C18:3 (less than 12%), which is needed to fulfil the biodiesel EN 14214 
quality specifications [38] and can be used for the biofuel (biodiesel) 
industry.

The leftover biomass is still available for hydrogen or bioethanol 
production in a biorefinery approach, as the residue still contains sugar 
taking advantage of all the C. protothecoids gross composition.

Chlorella reinhardtii biorefinery

The production of biohydrogen and the consequent biogas 
(methane) production by anaerobic fermentation of the residue of 
Chlorella reinhardtii biomass were achieved by Mussgnug et al. [39].

The authors reported that using the biomass, after the hydrogen 
production cycle instead of using the fresh biomass, would increase the 
biogas production by 123%. The authors attributed these results to the 
storage compounds, such as starch and lipids with a high fermentative 
potential which is the key in the microalgae-based integrated process 
and could be used for more value-added applications.

Dunaliella salina biorefinery

Sialve et al. [40] attested the production of methane from the 
leftover biomass of Dunaliella salina after the oil extraction to make 
biodiesel. The authors found a much higher yield (around 50%) 
for a shorter hydraulic retention time (HRT, 18 days), than the 
corresponding values reported by Collet et al. [33] using the Chlorella 
vulgaris biomass.

Dunaliella tertiolecta biorefinery

The chemoenzymatic saccharification and bioethanol fermentation 
of the residual biomass of Dunaliella tertiolecta after lipid extraction 
(for biodiesel production purposes) were investigated by Kim et al. 
[41]. The bioethanol was produced from the enzymatic hydrolysates 
without pretreatment by S. cerevisiae, resulting in yields of 0.14 g 
ethanol/g residual biomass and 0.44 g ethanol/g glucose produced from 
the residual biomass. 

According to these authors, the residual biomass generated 
during microalgal biodiesel production, could be used for bioethanol 
production in order to improve the economic feasibility of a microalgae-
based integrated process.

Arthrospira (Spirulina) biorefinery

Olguin [42] highlighted that the biorefinery strategy offers new 
opportunities for a cost-effective and competitive production of 
biofuels along with nonfuel compounds. The author studied an 
integrated system where the production of biogas, biodiesel, hydrogen 
and other valuable products (e.g. PUFAs, phycocyanin, and fish feed) 
could be possible.
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Spirogyra sp. biorefinery

Pacheco et al. [43] pointed a biorefinery from Spirogyra sp., 
a sugar-rich microalga, for bioH2 production as well as pigments 
(Figure 7). The economic and life cycle analysis of the whole process, 
allowed the authors to conclude that it is crucial to increase the sugar 
content of the microalgae to increase the bioH2 yield. Furthermore, 
it is important to reduce the centrifugation needs and use alternative 
methods for pigment extraction other than using acetone solvents. 
The electrocoagulation and solar drying were used for harvesting and 
dewatering, respectively, and were able to reduce energy requirements 
by 90%. Overall, centrifugation of the microalgal biomass and heating 
of the fermentation vessel are still major energy consumers and CO2 
contributors to this process. Pigment production is necessary to 
improve the economic benefits of the biorefinery, but it is mandatory 
to reduce its extraction energy requirements that are demanding 62% 
of the overall energy.

Mostafa et al. [44] evaluated the growth and lipid, glycerol, 
and carotenoid content of nine microalgae species (green and blue 
green microalgae) grown in domestic wastewater obtained from 
the Zenein Wastewater Treatment Plant in the Giza governorate in 
Egypt (Figure 8). The authors cultivated the different species under 
different conditions, such as without treatment after sterilization, with 
nutrients and sterilization, and with nutrients without sterilization, 
at 25 ± 1°C, under continuous shaking (150 rpm) and illumination 
(2,000 lx), for 15 days. The highest biodiesel production from algal 
biomass cultivated in wastewater was obtained by Nostoc humifusum 

(11.80%) when cultivated in wastewater without treatment and the 
lowest (3.8%) was recorded by Oscillatoria sp. when cultivated on the 
sterilized domestic wastewater. The authors concluded that cultivating 
microalgae on domestic wastewater, combines nutrient removal and 
algal lipid production which has a high potential in terms of biodiesel 
feedstock. This methodology is suitable and non-expensive compared 
to the conventional cultivation methods for sustainable biodiesel and 
glycerol.

According to Subhadra and Edwards [45] (Figure 9), an integrated 
Renewable Energy Park (IREP) approach can be envisaged by 
combining different renewable energy industries, in resource-specific 
regions, for synergetic electricity and liquid biofuel production, 
with zero net carbon emissions. Choosing the appropriate location, 
an IREP design, combining a wind power plant with solar panels 
and algal growth facilities to harness additional solar energy, could 
greatly optimize land. Biorefineries configured within these IREPs can 
produce about 50 million gallons of biofuel per year, providing many 
other value-added co-products and having almost no environmental 
impact [46] (Figure 9).

Clarens et al. [47] suggested that the results from algae-to-energy 
systems can be either net energy positive or negative depending on 
the specific combination of cultivation and conversion processes 
used addressed the shortcoming “well-to-wheel”, including the 
conversion of each biomass into transportation energy sources. The 
algal conversion pathway resulted in a combination of biodiesel and 
bioelectricity production for transportation, evaluated by Vehicle 
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Kilometers Traveled (VKT) per hectare. In this study, it was assumed 
that bioelectricity and biodiesel are used in commercially available 
Battery Electric Vehicles (BEVs) and Internal Combustion Vehicles 
(ICVs), respectively. The authors depicted four pathways:

A. Methane-derived bioelectricity from the bulk algae biomass by 
anaerobic digestion

B. Biodiesel from the algae lipids and methane-derived bioelectricity 
from the residual biomass by anaerobic digestion

C. Biodiesel from the algae lipids and bioelectricity from the 
residual biomass by direct combustion

D. Bioelectricity from the bulk algae biomass by direct combustion
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The four pathways follow various nutrient sources (e.g., virgin 
commercial CO2, CO2 from a coal-fired power plant, compressed CO2 
from flue gas, commercial fertilizers, and wastewater supplementation).

The authors found that algae-to-energy systems depend on the 
combination of cultivation and conversion processes used. They 
concluded that the conversion pathways involving direct combustion 
for the production of bioelectricity generally outperformed systems 
involving anaerobic digestion and biodiesel production. They 
ranked the four pathways as D>A>C>B in terms of energy return on 
investment.

The authors found an algae bioelectricity (D) generation of 
1,402,689 MJ/km and algae biodiesel + bioelectricity (C) generation of 
1,110 MJ/km. These algae-to-energy systems generate 4 and 15 times as 
VKT per hectare as switch grass or canola, respectively [47].

Subhadra and Edwards [48] analyzed the water footprint of two 
simulated algal biorefineries for the production of biodiesel, algal meal, 
and omega-3 fatty acids. The authors highlighted the advantages of 
multiproducts to attain a high operational profit with a clear return on 
investment. The energy return of algal biodiesel for different scenarios 
ranged between 0.016-0.042 MJ.

Park, et al. [49,50] also studied algae which are grown as a by-
product of High-Rate Algal Ponds (HRAPs) operated for wastewater 
treatment. In addition to significantly better economics, algal biofuel 
production from wastewater treatment HRAPs has a much smaller 
environmental footprint compared to commercial algal production 
HRAPs which consume freshwater and fertilizers.

Conclusions
Biomass, as a renewable source, is attracting worldwide attention 

to satisfy the so called bioeconomy demand. Microalgae could be the 
appropriate feedstock as they did not compete with food and feed 
production, in terms of either land or water. Furthermore, microalgae 
remove/recycle nutrients from wastewater and flue-gases providing 
additional environmental benefits.

Due to their efficient sunlight utilization, microalgae are projected 
as living-cell factories with simple growth requirements. Their potential 
for energy and value-added products production is widely recognized.

Nevertheless, to be economically sustainable the tiny microalgae 
should supply a huge biorefinery. Technical advances combined with 
the several advantages such as CO2 capture, wastewater bioremediation 
and the extraction of value added-products will greatly increase algal 
bioproduct profitability.

The versatility and the huge potential of the tiny microalgae could 
support a microalgae biorefinery and microalgae-based bioeconomy, 
opening up a huge increase of opportunities in the global algae business.
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