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Guaranteeing food security in an era of rising world population, 
global climate change, and pressure to use land situated in harsh 
environments for agriculture, is an increasing challenge. In the drive 
for improved crop performance, efforts have focused on identifying 
genes controlling many traits including greater tolerance to biotic 
and abiotic stresses. However, several problems in identifying new 
candidate genes can be distinguished. Classic forward and reverse 
genetic screens of plant mutants require the screening of up to hundreds 
of thousands of plants, yet the return is very low – typically <1%–3% 
of the mutant population display a desired phenotype [1-8]. Although 
computational methods have shown potential in identifying sets of 
candidate genes, very few studies have actually tested their predictions 
on mutant populations. Moreover, most of those studies that have 
screened mutants defective in candidate genes, have only screened a 
few mutants, making it difficult to robustly assess gene discovery rate 
[9-13]. 

We have been employing both systems biology approaches and 
classic molecular biology techniques, to identify and then characterize 
useful candidate genes for improving plant stress tolerance. In a 
recent report, we developed a systems biology-based screen for novel 
Arabidopsis thaliana abiotic stress regulatory genes that combines 
gene expression ranking and RNA co-expression analysis, followed 
by rigorous screening of over 120 T-DNA insertion lines [14,15]. We 
obtained a remarkable gene discovery rate of 62%, a 48-fold increase 
over classic genetic screens, and better than any other currently reported 
computational method. Our co-expression network of Arabidopsis 
regulatory genes can be inspected at http://netbio.bgu.ac.il/arnet. 

Mutants of two genes that were identified in our screen exhibited 
greater tolerance to multiple abiotic stresses as well as enhanced 
expression of stress-responsive genes, suggesting that the two genes 
encode negative regulators of Arabidopsis abiotic stress responses [16].
We therefore designated the genes, STRESS RESPONSE SUPPRESSOR 
(STRS) 1 and STRS 2. Both genes encode members of the DEAD-box 
RNA helicase family that possess RNA duplex unwinding activity, and 
can promote duplex formation as well as displacement of proteins 
from RNA [17]. DEAD-box RNA helicases are involved in virtually 
all aspects of RNA metabolism, and are often part of supramolecular 
complexes where they function in remodeling RNA and in assembly 
of ribonucleoprotein structures. In a recent study, we demonstrated 
that the STRS proteins are localized to the nucleolus, nucleoplasm and 
chromocenters (regions of heterochromatic, transcriptionally inactive 
DNA), and exhibit relocalization in response to abscisic acid (ABA) 
treatment and various abiotic stresses [18,19]. We also presented strong 
evidence suggesting that the STRSs are involved in RNA-directed DNA 
methylation-mediated epigenetic silencing of gene expression to bring 
about suppression of the Arabidopsis stress response. 

Although Arabidopsis thaliana  has provided a wealth of 
information on physiological and molecular mechanisms of stress 
tolerance, this species is actually sensitive to stress and is unlikely to 
possess stress tolerance mechanisms that are functional in naturally 
stress-tolerant plants  after Therefore, we have also used both systems 
biology and molecular approaches to undertake comparative analyses 
of Arabidopsis and its naturally stress-tolerant relative, Eutrema 
(Thellungiella) salsugineum. E. salsugineum exhibits greater tolerance 

than Arabidopsis to salt stress, low nitrogen stress, high boron levels, 
and heat stress [20-24]. We have shown that differential regulation 
of a basic set of stress tolerance genes might be a crucial component 
of E. salsugineum salt tolerance. For instance, we demonstrated that 
constitutive down-regulated expression of E. salsugineum PDH, 
encoding the proline catabolic enzyme, proline dehydrogenase, is 
correlated with increased levels of the osmoprotectant, proline, under 
control and salt-stress conditions in E. salsugineum shoots compared 
to Arabidopsis [21]. At the level of global primary metabolism, specific 
features of the E. salsugineum salt metabolome can be observed 
such as constitutively higher levels of TCA cycle intermediates, 
malate and citrate but constitutively lower levels of fumerate and the 
osmoprotectants, raffinose and galactinol, compared to Arabidopsis 
[25]. Interestingly, many metabolites are repressed in E. salsugineum 
when plants are grown in vitro on nutrient agar plates compared to 
soil-grown plants, yet the plants retain their salt tolerance under both 
growth conditions. This finding suggests that metabolic adaptive 
plasticity might allow the flexibility required for an extremophile 
lifestyle.

In conclusion, our combination of holistic systems biology and 
reductionist molecular biology approaches to investigate abiotic stress 
tolerance mechanisms in both temperate and extremophile plant model 
species, has facilitated: (i) the identification of novel genes regulating 
Arabidopsis responses to multiple abiotic stresses; (ii) the identification 
and characterization of DEAD-box RNA helicases that control 
epigenetic silencing of abiotic stress-responsive gene expression; 
(iii) differential expression of stress-tolerance genes and differential 
metabolic programming, in extremophile relatives of Arabidopsis.
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