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Abstract
Immunological activation in response to an invading organism is essential in order to support an effective host 

response to an invading pathogen. Paradoxically, it also provides an optimal immunological environment for the 
viral replication in HIV-positive individuals. Indeed, the life cycle of HIV is closely related to the activation state of its 
host cells since it depends on host cell surface receptor expression for entry, and also on many cellular pathways 
and transcription machinery for viral gene expression. In this review, we focused on the overall impact of immune 
activations generated by co-infection in the viral life cycle at host level leading to increases in HIV replication. 
Moreover, we discussed the epidemiological implications of this increment on the HIV viral load generated by co-
infection. Here, we described how the intimate relationship between HIV and the activation state of the host immune 
system supporting viral replication results in a synergistic interaction between HIV and concurrent infections such 
as herpes simplex virus type 2 and malaria. A common denominator of these co-infections is the systemic immune 
activation resulting in an enhancement of the HIV viral load that ultimately might facilitate the transmission of the 
virus. There is a need, however, for more population-based studies of concurrent infections, and microbe-microbe 
interaction at the host level to better understand the impact of co-infections on the natural history of HIV.
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Introduction
Acquired immunodeficiency syndrome (AIDS) was first described 

in 1981 in homosexual men in North America [1] followed by the first 
report in patients from Central Africa in 1983 [2]. Three years later it 
was evident that HIV had spread into populations around the globe 
and had become an enormous public health problem, particularly in 
sub-Saharan Africa [3]. Of the estimated 40 million HIV-seropositive 
patients in 2001, 70% were from sub-Saharan Africa, residence of less 
than 10% of the human population [4,5].

Notable progress towards understanding the pathogenesis and 
control of HIV infection has been made since the first case was reported. 
Epidemiological and statistical models have been developed to estimate 
the probability of HIV transmission from an infected person to an 
HIV-negative sex partner during a single episode of sexual intercourse 
[6-10]. This event is ultimately a biological episode, which depends on 
the infectiousness of the HIV-infected person and the susceptibility of 
the uninfected partner [11].

During the first years of the epidemic, most of the studies focused 
on estimating the risk of HIV transmission assuming a constant per 
contact probability of transmission and ignoring possible temporal and 
individual variations. In the past years, however, increased attention 
has focused on subjects with early (acute) HIV infections, which has 
allowed a better understanding of the transmission [7,9,12-14]. The 
most relevant finding from these studies is that infectiousness can 
be directly correlated with the concentration of HIV-RNA in blood, 
which indicates shedding of the virus into genital track secretions.

In a pioneer study attempting to correlate the viral load and the 
transmission of the virus, Quinn and coworkers [15] measured the HIV-
RNA load in the blood of more than 15,000 subjects. They found that 
the virus was rarely transmitted by infected subjects with less than 1500 
copies of HIV-RNA/mL, whereas individuals with more than 50,000 

copies infected their sexual partners at a rate of 23 per 100 person-years 
over 30 months. A similar study conducted with discordant couples for 
HIV status in Uganda also showed the existence of a strong correlation 
between HIV plasma viral load and HIV transmission rates [16]. The 
Uganda study indicated that a ten-fold increment in viral load could 
increase the risk of HIV transmission per sexual contact in 2.45-fold 
(95% confidence interval (CI) 1.85-3.26). 

The acute stage of the infection, lasting only about 2-3 months 
[17], is followed by a significant decline in the number of viruses to 
a low level called the set point, which is presumed to be maintained 
during the chronic stage of the infection [12]. Accordingly, it is 
believed that infected persons in the chronic stage may be less likely 
to transmit the virus to their sex partners than persons in the acute 
stage of the infection [7]. Despite the possible primary role played by 
the early stage of the HIV infection in the viral load, and therefore in 
the risk of transmission, growing evidence has suggested the existence 
of additional biological factors, such as those arising from immune 
activations, that cause variations in the viral load during the chronic 
stage of the infection. 

The relationship between immune activations generated by 
concurrent infections and viral load was first documented in the nineties 
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[18-20]. Many prospective and cross-sectional studies conducted 
to elucidate the biological and behavioral factors influencing the 
transmission of HIV in sub-Saharan Africa have consistently found that 
the presence of other infections such as sexually transmitted infections 
(STIs) increase the risk of HIV transmission during the chronic stage 
of the infection [21-25]. These studies evidenced that the viral set point 
is actually not constant and may be disturbed by reactivations of the 
immune system such as those resulting from the invasion of other 
pathogens [26]. Changes in the host immune response may account 
for variations in the viral load that could make the host more infectious 
and increase the risk of HIV transmission during the chronic stage of 
the infection (Figure 1). 

To explore the effect of co-infection on the replication of the virus 
in more detail, and the consequently increment in transmission risk, 
it becomes essential to study this potentially synergistic relationship 
at host level. Individual and temporal variations in HIV transmission 
generated by biological factors such as concurrent infections might 
explain the heterogeneity and severity of the HIV epidemic, especially 
in sub-Saharan Africa. This review summarizes current concepts 
and knowledge about the epidemiological and immunological 
interrelationship between HIV and concurrent infections that are useful 
to achieve an understanding of its natural history and pathogenesis. We 
primarily focus on two infectious diseases, herpes simplex virus type 2 
(HSV-2) and malaria, infections that have been proposed as key drivers 
of the HIV epidemic, particularly in sub-Saharan Africa [27-30].

The Immunology of HIV Infection
Virus biology

HIV is a member of the lentivirus subfamily of retroviruses that 
produces chronic infections in the host and gradually degenerates 
the host’s immune system [31,32]. The virus structure is composed of 
a double layer of lipids derived from the host cell that contains two 
key viral glycoproteins, gp120 and gp41 [33]. These proteins mediate 
viral entry by the recognition of the cell surface CD4 molecule and a 

chemokine receptor (either CXCR4 or CCR5) [34,35]. CXCR4 and 
CCR5 chemokine receptors characterized the tropism of the HIV strains 
divided into two categories: macrophage tropic (M-tropic) strains and 
T-cell tropic (T-tropic) strains. M-tropic strains (also referred as R5 
viruses), use the CCR5 β-chemokine as a coreceptor [36], which is 
critical in the initial establishment of the infection. Conversely, disease 
progression is usually associated with the emergence of T-tropic strains 
(also referred to as X4 viruses), which use the CXCR4 α-chemokine 
coreceptor mostly expressed in CD4+ T cells [37,38]. 

Two strands of RNA consisting of about 92,000 nucleotide bases, 
an integrase, a protease, a reverse transcriptase, and two other proteins, 
p6 and p7, fit inside the viral core [39]. The core of the virus is also 
composed by three structural proteins: p24, which forms the capsid 
that encloses two genomic RNA strands and the viral enzymes; p16, 
anchored to the internal face of the envelope; and p9, a nucleocapsid 
protein not covalently attached to the viral RNA [40]. 

Retroviruses such as HIV use a reverse transcriptase enzyme to 
produce DNA from the virus’s RNA template [31]. The cycle begins 
with the binding of the viral surface glycoprotein gp120 to the cellular 
CD4 receptor, which triggers a conformational change in gp120. This 
conformational change allows the interaction between gp120 and the 
chemokine receptors CCR5 or CXR4. Later, a subsequent formation of 
a six-helix bundle between the two helical regions of the trimeric gp41 
complex mediates the fusion of the virus followed by the release of the 
viral RNA genome and proteins into the cytoplasm. Subsequently, the 
viral enzyme reverse transcriptase reverse-transcribes the viral RNA 
into complementary DNA (cDNA) [41], which is later transported to 
the nucleus with the activity of the HIV proteins Vpr and Vif. 

The virus replicates preferentially in CD4RO+ memory T cells 
rather than immature CD5RA+ naive lymphocytes [42]. The viral 
cDNA integrates randomly into the host cell genome by the viral 
enzyme integrase. After the integration, spliced mRNA transcripts are 
produced to encode the regulatory proteins Tat, Rev, and Nef. Tat plays 
an important role on transcription by binding the 5’ end of the viral 
DNA sequence to increase the viral transcription up to 1000-fold [43]. 
Rev mediates the nuclear export of incompletely spliced transcripts 
encoding structural proteins, and full-length mRNA virus genome [44]. 
Nef has multiple functions such as enhancement of virion infectivity, 
modulation of signal transduction, and facilitating HIV entry into 
target cells [45]. This proviral transcription is strongly influenced by 
the state of host cell activation, and is also regulated by sequences in 
the 5’ long terminal repeat (LTR) of the viral genome. LTR is composed 
by three functional regions: the transactivation response, the core 
promoter, and the modulatory enhanced region [46].

After the proviral HIV makes complementary copies of RNA 
strands, some of these strands are cut into segments suitable for protein 
synthesis required for the production of more viruses. In the second 
phase, unspliced RNA segments become new viral strands and migrate 
into the cytoplasm. Two size classes of RNA are produced in this phase: 
a long unspliced strand that comprises the RNA genome, and a medium 
length transcript that encodes the coat and the enzymatic proteins. This 
material is enclosed within the viral core protein to become new viruses 
and then migrate out of the cell [39].

The host immune system

There are three major types of T cells present in the human immune 
system: cytotoxic T cells, suppressor T cells and helper T cells (Th). 

Figure 1: Schematic representation of the impact of concurrent infections on 
the natural history of HIV.
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The presence of specialized receptors on the surface of T cells allows 
the identification of one of many millions of possible antigens that 
may invade the body [47]. Each T cell expresses a receptor that binds 
with the complementary antigen on the foreign particle to neutralize 
or destroy it. Cytotoxic and suppressor T cells carry the CD8 receptor 
and are also referred to as cytotoxic cell lymphocytes (CTL), whereas 
the helper T cells carry the CD4 receptor. HIV mainly targets CD4+ 
T lymphocytes and cells of monocyte lineage that express the CD4+ 
receptor [48]. A healthy human adult has about 1000 CD4+ T cells per 
µL of blood, but in an HIV infected patient the abundance of CD4+ 
T cells declines to a very low number. A sustained count of CD4+ T 
cells less than 200/mL in HIV-infected individuals is used as the clinical 
definition of AIDS [49].

Most activities of Th cells are mediated by the production of 
proteins called cytokines. The type of Th they become (Th0, Th1, Th2 
or Th3) will depend on the type of cytokines these cells will produce 
[50,51] and will be largely dependent on the nature of the infectious 
agent. Differentiation of Th1 cells from naïve Th cells is promoted by 
gamma interferon (IFN-γ). These cells are able to produce interleukin-2 
(IL-2), IFN-γ, and tumor necrosis factor alpha and beta (TNF-α and 
-β) which are not produced by Th2 cells. Conversely, Th2 cells are able 
to synthesize IL-4, IL-5, IL-6 and IL-10 [50,51]. 

Intracellular organisms such as virus, bacteria and protozoa 
typically induce a dominant Th1 immune response that reflects their 
ability to stimulate IFN-α/β and IL-12 production by macrophages 
[51], and the induction of IFN-γ production by natural killer (NK) 
cells and T cells. In contrast, Th2 lymphocyte immune response is 
triggered by extracellular organisms including helminthic infections, 
and is characterized by absence of IFN-γ and production of IL-4 [52]. 
It has been hypothesized that this qualitative Th-type response may 
also impact AIDS pathogenesis. A switch in the response from Th1 to 
Th2 and the production of associated cytokines may be related to, and 
facilitate, disease progression [53].

As described above, HIV infection is characterized by a progressive 
loss of the CD4+ helper subset of lymphocytes. The loss of Th cells 
leads to severe damage to the immune function and consequently 
permits opportunistic infections that would not occur in persons 
with a healthy immune system [54]. In general, the pattern of HIV 
infection progression can be subdivided into three phases. The primary 
or acute phase, which comprises the first weeks after infection, the 
infected individual usually develops a high virus load and CD4+ T cell 
concentration transiently falls followed by a recovery to almost normal 
levels. At the end of this phase there is a decrease of viral load followed 
by the second (chronic) phase of HIV infection characterized by the 
lack of any symptomatic signs, which can last 5-11 years [49]. Although 
during the chronic phase the infection is largely asymptomatic, the virus 
continues its replication and CD4+ T cell concentration falls gradually, 
leading to the late phase of the infection and the progression to AIDS 
[55]. During the course of infection, there is also heightened state of 
systemic immune activation in both macrophages and lymphocytes 
leaded by the gp120 glycoprotein [56] and proinflammatory cytokines 
[57,58].

Immune Activation
Although immune activation in response to an invading organism 

is essential in order to support an effective host response to an invading 
pathogen, it may also provide an optimal immunological environment 
for the viral replication in HIV-positive persons. Immune activations 

in response to the presence of exogenous pathogens could have a 
substantial impact in the viral life cycle at host level leading to increases 
in HIV replication systematically or localized anatomical sites. The 
common denominator of external viral induction of HIV expression is 
the ability of these concurrent infections to induce an immune response 
along with the expression of proteins that are used by HIV to regulate 
virus production. Furthermore, the life cycle of HIV is closely related to 
the activation state of its host cells since it depends on host cell surface 
receptor expression for entry, and also on many cellular pathways and 
transcription machinery for viral gene expression.

A variety of concurrent infections may facilitate the cellular entry 
of HIV and virus transmission and propagation between the host’s 
immune cell pool. Immune activation consequence of the presence 
of other infections, or the antigenic stimulus generated by HIV 
infection itself, may affect the surface expression of these coreceptors 
in mononuclear cells, thus modulating their susceptibility to the 
virus [59]. For instance, immune activations associated with the high 
prevalence of co-infections among HIV-positive individuals in settings 
such as Africa may be responsible for the increased CCR5 expression 
in mononuclear cells in persons living in this region [60]. High local 
concentrations of proinflammatory cytokines and HIV along with 
heightened immune activation provide a suitable environment for 
intercellular spread and propagation of the virus [61,62]. Furthermore, 
antigen presentation results in the activation and clonal expansion of 
the pool of susceptible HIV target cells such as CD45RO+ memory 
CD4+ T lymphocytes [62]. 

Inflammatory immune response to concurrent infections also 
provides a suitable environment for cell to cell HIV transmission 
during the process of antigen presentation conducted by antigen-
presenting cells (APCs), which are important reservoirs of the virus 
[61]. During this process, intercellular signaling augments the 
induction of cellular activation and proinflamatory cytokine secretion 
leading to up-regulation of viral transcription in infected cells [63,64]. 
Since viral replication is closely regulated by the host cell transcriptional 
machinery, the state of host cell activation is a key element for the 
enhancement of HIV proviral transcription regulated by sequences in 
the LTR (Figure 2). 

The key mechanism by which immune activation enhances virus 
transcription is the recognition of several inducible host transcription 
factors by the modulatory enhanced region located upstream of the 
core promoter region within the LTR [46]. This region contains several 
defined elements that bind cellular transcription factors such as the 
nuclear-factor-κB (NF-κB) [65]. The LTR also contains transcriptional 
regulatory sequences including TATA box, three SP1 binding sites [66], 
a core enhancer region, and a negative regulatory region [67,68]. HIV 
also encodes Tat whose target is located in the TAR area of the LTR 
[69]. Tat, as described before, is involved in several activities including 
transcriptional activation and post-transcriptional enhancement of 
HIV mRNA [69-71].

Previous studies found that HIV replicates poorly in T cells in 
the absence of activation signals such as phytohemagglutinin (PHA) 
and IL-2 [72,73]. In uninfected cells, exposure to PHA induces the 
production of NF-κB that binds to specific segments of the host cell 
DNA that encode for IL-2 and IL-2 receptors [74]. In the case of HIV 
infected cells, NF-κB molecules interact with the NF-κB binding sites 
located in the LTR region resulting in the stimulation of HIV RNA 
transcription, and ultimately, virus expression [75].
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Moreover, cytokine biology might provide a suitable framework 
to understand the effect of co-infection in the transmission of HIV. 
Cytokines are signaling molecules that enable communication 
among cells of the immune system in response to infection, such as 
polarization [76,77] and amplification of immune responses [78]. They 
are key elements of immune cell activation that act as physiological 
inductive signals in the regulation of immune responses. As mentioned 
previously, one of such cytokines is the TNF-α, which has been shown 
to stimulate virus expression in chronically infected Th cell and 
monocytes. TNF-α induces HIV transcription in both macrophages 
and Th lymphocytes by mediating the activation of NF-κB, and 
represents an important mechanism by which concurrent infections 
with bacteria, viruses and other immunological stimuli may enhance 
HIV replication. Other cytokines such as IL-6 and IL-1 enhance viral 
replication by synergize with TNF-α [79]. 

Furthermore, cytokines can also suppress viral expression. For 
instance, IFN-α is able to decrease HIV expression by inhibiting 
the budding of virions [80]. On the other hand, cytokines such as 
transforming growth factor-β (TGFβ) down-regulates virus expression 
by blocking both transcriptional and post-transcriptional mechanisms 
depending on the inductive signaling [81-83]. 

Concurrent Infections and HIV Replication
As described above, concurrent infections in HIV-positive 

individuals might exacerbate the cellular activation raising the 
cytoplasmic concentration of certain modulators that facilitate virus 
expression. Furthermore, co-infection might increase the pool of target 
cells that are able to support productive viral infection (Figure 2) [84]. 
Immune activations are likely to result in profound modifications 
of the interaction between the immune system and HIV. Moreover, 
epidemiological evidence indicates that parasite transmission in general 
can be strongly affected by concurrent infections, and the persistent 
activation of the immune system generated by frequent infections has 

been hypothesized to be involved in the spread and pathogenesis of 
HIV, particularly in sub-Saharan Africa [26,79,85].

Viral infections (HSV-2)

The existence of a synergistic relationship between HIV and HSV-
2 has been evidenced by many observational and biological studies 
in which HSV-2 has been implicated as a biological cofactor for the 
transmission and acquisition of HIV [86,87]. The rapid spread of HIV 
as a sexually transmitted disease is exceeded by that of HSV-2 [88]. The 
prevalence of HSV-2, which may be as high as 75% among women in 
parts of sub-Saharan Africa [89], has reached a prevalence of up to 90% 
in HIV-positive persons [87]. HSV-2 infection has a complex dynamic, 
characterized as chronic, with frequent and typically unrecognized 
reactivations [90], and by its relatively high probability of transmission 
per sexual act. 

An important characteristic of HSV-2 is that infected individuals 
do not recover from the infection; but after the 10-year chronic stage, 
individuals stop transmitting the HSV-2 infection [91]. While bacterial 
STIs such as gonorrhea and syphilis tend to be concentrated in high 
risk groups [92], the biological characteristics of HSV-2 previously 
described allow this virus to be sustainable in the general population; 
thus its prevalence can reach very high levels such as those observed in 
sub-Saharan Africa [93]. Consequently, as the HIV epidemic reaches 
the general population, the epidemiological overlap between HSV-2 
and HIV is significantly larger than any other STI [30]. 

The enhanced HIV infectivity caused by HSV-2 co-infection has 
also been corroborated by population-based studies suggesting a 
relative risk of two to five fold of HIV transmission from co-infected 
individuals compared to HSV-2 seronegative individuals infected with 
HIV [7,93,94], and suppression of HSV-2 with acyclovir was associated 
with a measurable decrease on the HIV-RNA levels [95]. These data 
indicate epidemiologic synergy between the two infectious diseases at 
the population level, and suggest that HSV-2 may be playing a key role 
fueling the HIV epidemic in sub-Saharan Africa [27]. Furthermore, 
mathematical and simulation models have also demonstrated the 
essential role played by co-infections with other STIs, particularly HSV-
2, in understanding the geographical differences in HIV prevalence 
[96].

HSV-2 might facilitate the expression of HIV RNA by two main 
mechanisms: the local influx of activated CD4+ T lymphocytes in HSV-
infected lesions, and by the transactivation of the HIV Tat protein and 
LTR by HSV-2 proteins (Figure 2). Replication of HSV is mostly limited 
to the epidermis or mucosal squamous keratinocytes [97]. During 
symptomatic infection, antigen specific CD4+ T cells and NK cells 
infiltrate the subjacent dermis after two days of the lesion formation. 
This influx of HSV-2 specific CD4+ cells might raise the number of HIV 
target cells into recurrent HSV-2 lesions [98].

Furthermore, several HSV regulatory proteins enhance HIV 
replication through interactions with the HIV LTR [99]. HSV 
replication is regulated by three classes of genes expressed at different 
stages [100]. The intermediate-early (alpha) genes (ICP0, ICP4, 
ICP22, ICP27, and ICP47) appear to be regulatory in nature. Some 
of these proteins might be implicated in the enhancement of the HIV 
replication. Since transcription of all HIV mRNA originates in the LTR, 
agents that are able to bind the NF-κB and Sp1 sites might activate HIV 
LTR transcription [101-103]. Some studies have suggested that HSV 
immediate-early genes ICP4 and ICP0 could transactivate the LTR 
region of the virus genome [104-106], probably by the induction and 

Figure 2: Immune responses to concurrent infections such as malaria or 
HSV-2 provide a suitable environment for HIV infection and replication 
by the rise of certain modulators that promote cellular activation and the 
consequent increment in the pool of HIV target cells (1), and up-regulation 
of viral replication (2). Cellular activation also increases the concentration 
of modulators in the host cell that facilitate virus expression (3), and viruses 
such as HSV-2 have regulatory proteins that interact with the HIV LTR up-
regulating HIV replication (4).
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binding of NF-κB and Sp1 to their respective sites on the LTR [104]. 
More recent studies, however, have indicated that ICP0, but not ICP4, 
was essential for up-regulation of HIV replication [99,107].

Parasitic infections (Malaria)

The activation of the immune system, however, is not only 
produced by STIs such as HSV-2. Parasitic infections such as malaria, 
helminthic infections, and leishmaniasis might produce a strong 
response from the immune system and consequently generate similar 
effects on the replication of the virus in HIV co-infected individuals 
[108-112]. On special interest, and due to the geographical overlap 
observed between infections, malaria in particular has generated a 
major attention regarding its possible interaction with HIV in sub-
Saharan Africa [113].

Malaria occurs throughout the tropical world, where it remains one 
of the most prevalent infectious diseases, with an estimated 300 million 
cases per year [114]. Malaria is a disease caused by protozoa of the 
genus Plasmodium, which are transmitted as sporozoites through bites 
of infected female Anopheles mosquitoes. During this life cycle stage, 
the sporozoites invade hepatocytes and replicate asexually, followed by 
the invasion of mature red blood cells (erythrocytes) by merozoites. The 
rupture of an infected erythrocyte releases a few dozens of merozoite 
progeny that are competent to infect new erythrocytes and thus begin 
a new cycle [115,116]. 

The evidence of the interaction between malaria and HIV comes 
from various sources. Several in vitro studies have found that malaria 
antigens significantly enhanced HIV replication [110,111,117,118]. 
Furthermore, population-based studies conducted with HIV infected 
adults have indicated that the HIV-RNA concentration almost 
doubled between baseline and those co-infected with malaria. Authors 
concluded that HIV-positive individuals co-infected with malaria had 
a significantly increased viral load, and possibly increased infection 
transmission and accelerated disease progression [110].

Researchers estimated that, on average, malaria generates a 
0.25 (95% CI 0.11-0.39) log10 increment on the mean HIV-RNA 
concentration [110]. We generated a mathematical model to examine 
the impact of this increment on the HIV epidemic in Kisimu, Kenya 
[28]. Using the functional relationship between HIV plasma viral load 
and transmission probability per coital act, in which a logarithmic 
increase in viral load is associated with a 2.45-fold increase in 
transmission probability [15], we demonstrated that the enhancement 
on the HIV infectivity of co-infected individuals may account for a 
cumulative 8500 excess HIV infections in Kisumu district. Supporting 
this mathematical model, we examined the geographical overlap 
between malaria and HIV [29]. We found that those who live in areas 
with high Plasmodium falciparum parasite rate have about twice the 
risk of being HIV-positive compared to individuals who live in areas 
with low parasite rate in East sub-Saharan Africa.

Immunity to malaria is complex and still not well understood. 
The activation of the immune system is considered more important 
in controlling liver-stage infections, where the sporozoite (liver stage) 
represents the first encounter of the immune host with the parasite, 
although humoral immune mechanisms could be more important in 
controlling the blood stages. Several genes are involved in these immune 
responses including class I and class II major histocompatibility 
complex (MHC) molecules, inducible nitric oxide synthase (iNOS), 
mannose-binding protein (MBP), cytokines and cytokines receptors. 
The parasite induces a specific immune response by stimulating 

the release of cytokines from peripheral blood mononuclear cells 
(PBMC) [119,120], which is a key step for the activation of monocytes, 
neutrophils, Th cells and NK cells [120-123].

Initial antigen presentation leads to recognition by CTLs and 
posterior killing of the infected cell or stimulation of NK and CD4+ 

T cells to produce IFN-γ, which triggers a cascade of immunological 
reactions that ultimately lead the elimination of the intracellular 
parasite [124]. In the blood stage, at the time of erythrocyte rupture, 
parasite antigens are released into the bloodstream stimulating the 
release of TNF-α among others [125]. The release of TNF-α has a role 
in the regulation of macrophage IL-12 production, and it is also an 
important co-factor for IL-12-induced production of IFN-γ by KN 
cells [126]. The immunodulatory cytokine IL-12 appears to stimulate 
antibody production in B cells and promote the differentiation of T 
cells belonging to the Th1 subset [127]. The Th1 effectors generate the 
production of IFN-γ which is a direct consequence of CD4+ and CD8+ 

T cell activation [127].

Anti-inflammatory responses also play an important role in the 
immune response to malaria. During mild malaria, inflammatory 
responses might be down-regulated by anti-inflammatory cytokines 
such as IL-4, IL-10, and TGFβ. The cytokine TGFβ, which is produced 
by macrophages, NK, T, and B cells among others, has a pivotal role 
in the control of the transition between proinflammatory (Th1) and 
anti-inflammatory (Th2) response during acute and recovery phases 
of malaria infection [128]. In vitro, the TGFβ concentration is a key 
element for macrophage activation [128]. Immature monocytes or 
macrophages have high concentration of TGFβ receptors and are 
highly sensitive to low concentrations of TGFβ, which promote 
macrophage maturation. When the concentration of TGFβ rises, the 
production of TGFβ is down-regulated stopping the activation process 
[128]. Furthermore, TGFβ inhibits IFN-γ and TNF-α production, and 
up-regulates IL-10 [129], a cytokine produced by monocytes, Th2 cells 
and B cells, that inhibits cytokine production in Th1 and CD8+ T cells 
[130]. 

Several proinflamatory cytokines induced by malaria previously 
described (e.g TNF-α and IL-6) could play a role in the enhancement 
of HIV expression. Indeed, the greater viral load observed in patients 
co-infected with malaria correlated with a marked increase in the pro-
inflammatory cytokine response to the parasite, and generated systemic 
immune response originated from macrophages [118]. In vitro studies, 
however, have shown conflicting results. First, exposure of PBMCs 
to soluble pigments from P. falciparum enhanced HIV replication 
associated with the induction of TNF-α and subsequent activation 
of the LTR viral transcription [117]. Later, it was reported that short 
stimulation with P. falciparum antigens down-regulated CCR5 but not 
CXCR4. Long stimulations, however, up-regulated CCR5 through the 
induction of IFN-γ with the subsequent blocking of HIV replication 
[131]. In a following work, it was shown that mononuclear cell 
activation by malaria antigens increases the susceptibility of these cells 
to HIV infection and reactivates replication of endogenous HIV in cells 
from HIV-positive individuals [132]. A recent challenge system study 
confirmed the enhanced replication of HIV in PBMCs co-cultured 
with malaria pigments [133]. They also found that HIV replication was 
accompanied with an enhancement in the secretion of proinflammatory 
cytokines TNF-α, IFN-γ, and macrophage inflammatory protein-1α 
(MIP-1α), and the accompanied increment of activated CD4+ T cells 
[133]. 

Other parasitic infections such as helminthic infections and 
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leishmaniasis generate immune responses that are able to enhance 
virus replication [26,134]. Helminthic infections are one of the most 
common in several developing countries. All helminthic infections 
are associated with a strong immune response dominated by Th2 
response with increased IL-4, IL-5 and IL-10 secretion along with an 
enhancement on cell activation and apoptosis [135-138]. Moreover, 
chronic immune activation due to helminthic infections is associated 
with increment in the expression of CCR5 and CXCR4 co-receptors 
along with increased susceptibility for HIV infection in vitro [60].

Besides, low CD4+ T cell count and high viral load are characteristics 
of the HIV-leishmaniasis co-infection. Leishmania antigens are capable 
to up-regulate HIV replication in PBMC, and in mononuclear cells 
in vivo [139], and might be associated with three main mechanisms: 
1) cellular activation and increased expression of cellular immune 
activation markers (CD25, HLA-DR) in the CD4 cell pool; 2) increased 
secretion of TNF-α, IL-2, and IL-6 [140,141]; and 3) by altering the 
Th1-Th2 balance. Leishmania tends to depress the activity of Th1 and 
induce the activity of Th2, and whose switch of cytokine profile is 
associated with the enhancement of HIV replication [142].

Conclusion
The intimate relationship between HIV and the activation state 

of the host immune system supporting viral replication results in a 
synergistic interaction between HIV and concurrent infections. A 
common denominator of co-infection is the systemic immune activation 
resulting in an enhancement of the HIV viral load that ultimately 
facilitates the transmission of the virus (Figure 1). Despite the evidence 
for this interaction, the quantitative effect of these co-infections on HIV 
transmission or acquisition remains to be determined. Cofactor values 
are commonly estimated from population-based observations that 
monitored HIV transmission and co-infection status in individuals or 
couples [143]. For instance, the association between the transmission 
of HIV and concurrent infections is expressed in terms of odd ratios, 
hazard ratios or relative risk per sexual contact [144]. These estimates, 
however, can be particularly difficult to interpret as a consequence of 
multiple potential biases that may inflate or deflate these values. 

To reduce confounding effects resulting from other behavioral 
and biological risk factors, estimates of cofactor effects are statistically 
adjusted for the influence of these risk factors. These analyses may 
not completely control for the confounding effects because infections 
such as STIs, HIV and other behavioral and biological risk factors may 
cluster not only in study subjects but also in the unknown partners 
of the individuals included in the study [143]. Furthermore, the 
confounding generated by the characteristics of the sexual network 
such as concurrency, mixing patterns and numbers of sexual partners 
is virtually impossible to completely control for the confounding effects 
[143].

Moreover, the lack of knowledge regarding possible interactions 
between cofactors due to concurrent STIs or parasitic infections 
obscures cofactor estimation when there is more than one concurrent 
infection present [145]. The effect generated by multiple concurrent 
infections in the transmission of HIV may be additive, multiplicative or 
more complex functions of cofactor values. If the cofactor effects result 
from different biological mechanisms, multiplication of their values 
seems to be biologically plausible. On the other hand, in cases where 
cofactor effects result from the same mechanism, as for example, the 
enhancement of the viral load, a saturation function might describe the 
cofactor effect more accurately. This uncertainty emphasizes the need 

for more field studies on the interaction among concurrent infections 
and the risk of HIV transmission, and on the impact of control 
interventions, especially in sub-Saharan Africa.

The remarkably high HIV prevalence observed in sub-Saharan 
Africa may reflect the particular environment that is unique to this 
setting, and highlight the role of co-infection as a contributing factor in 
the successful spread and survival of HIV in this part of the world. This in 
turn suggests that an HIV epidemic may be mitigated or halted through 
measures that decrease viral infectivity. The control and treatment of 
several common infectious diseases could decrease the incidence of 
HIV over the long-term [145]. The epidemiological perspectives of these 
interactions, however, are still not entirely clear. Some studies [146,147] 
highlight the role of biological and epidemiological differences that 
could alter the effect of co-infection and underscore the importance 
of identifying these factors for the implementation of effective control 
interventions focused on co-infection. Therefore, there is a need for 
more population-based studies of concurrent infections, and microbe-
microbe interaction at the host level to better understand the impact of 
co-infections on the natural history of HIV, and the potential impact 
of co-infection on interventions aimed to reduce the incidence of HIV. 
This conclusion is particularly important in developing settings, where 
concurrent infections are very common and the access to antiretroviral 
therapy is still scarce.
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