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Introduction
DNA dynamics continues to attract a great deals of interest 

nowadays. Its complex structure and dynamical features are on 
the basis of life at the molecular level. The interest in the nonlinear 
dynamics of DNA started when Englander et al. [1] suggested that 
the existence of solitons propagating along the DNA molecule may 
be important in a process called “DNA transcription”. In the last 
decade, several models were proposed in order to substantiate this 
idea in quantitative terms. The scope of RNA transcription is to 
copy genetic information from DNA into messenger RNA. During 
this process, the two DNA strands have to locally separate (local 
opening of DNA) to let the genetic information stored within one of 
the strands be copied into RNA polymerase that will be the template 
for the synthesis of the protein. There are two important models, the 
one proposed by Yakushevich [2] and improved by Gaeta [3], and the 
second proposed by Peyrard and Bishop (PB) [4] which concentrate 
on transversal openings of base pairs. In fact, the PB model is one of 
the simplest models that investigates DNA at the scale of a base pair 
[4]. The complex double-stranded molecule is described by postulating 
some simple effective interactions among the bases within a pair, and 
along the strands. The model has been successfully applied to analyze 
experiments on the melting of short DNA chains [5]. Furthermore, it 
allows to easily include the effect of heterogeneities [6] yielding a sharp 
staircase structure of the melting curve (number of open base pairs as 
a function of the temperature T) [7]. Beyond its original motivation 
to explain the denaturation, the PB model has an intrinsic theoretical 
interest as one of the simplest one-dimensional systems displaying a 
genuine phase transition [8,9].

The nonlinear effects might focus the vibration energy of DNA into 
localized soliton-like excitations [10-15]. Indeed, the local opening can 
be analytically described as breather-like objects of small amplitude, 
which have nevertheless interesting properties; as long as their 
amplitude is small enough they can move along the chain. Thus, comes 
out the importance of discrete solitons in explaining local openings of 
the hydrogen bonds and formation of denaturation bubbles. Discrete 
solitons in nonlinear lattices have been the focus of considerable 
attention in diverse branches of science [16-18] and they are possible 
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in several physical settings, such as biological systems [19-23], atomic 
chains [24,25], solid state physics [26], electrical lattices [27] and Bose-
Einstein condensates [28]. In DNA, such waves have been shown to 
carry the energy necessary for the initiation of the complex and key 
phenomena of replication and transcription [11-14]. In recent studies, 
on DNA models, the role of the enzymes such as RNA polymerase has 
been shown to be the collection of the thermal energy available in the 
system [13,15], an argument which has motivated the present work. 
The discrete character of DNA is exploited to show that such energy and 
the DNA bubble during transcription, for example, behave like shape-
changing colliding discrete solitons. The problem is therefore solved 
in a pure discrete way, where the generic PB model is first reduced to 
a discrete nonlinear Schr¨odinger (DNLS) equation. Exact one- and 
two-soliton solutions for the latter are then investigated via the discrete 
Hirota method [29-32]. The rest of the paper is therefore structured 
as follows. In section“model and mathematical background”, after 
a brief presentation of the PB model of DNA dynamics, I sketch the 
discrete expansion method that allows me to obtain the equation 
that governs the amplitude of planar waves in the form of the DNLS 
equation. In section“Discrete Solitons Solution of the PB Model”, I 
present the one-soliton and two-soliton solutions obtained by the 
Hirota’s method. I study the collision of these solution in the PB model 
with DNA parameters by means of direct numerical experiments, 
using the solutions described above as initial conditions, in section 
“Soliton Interaction, Collision and Shape Changing in the PB Model”. 
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Abstract
I explore the collision of localized structures that arise from a general initial solutions in the Peyrard- Bishop 

model. By means of the semi-discrete approximation, it is shown that the amplitudes of waves are described by the 
the discrete nonlinear Schrödinger equation. The corresponding soliton solutions of this equation are obtained through 
the Hirota’s bilinearization method. These solutions include the one- as well as the two-soliton solutions. Particular 
attention is paid to the behaviors displayed by the two-soliton solution. Taking one of the soliton as a pump and the 
other as the bubble that describes the local opening of the two strands of DNA, I show that, the enhancement of the 
bubbles is due to energy transfer from the pump to the bubble within the collision process. It is also shown that the 
underlying solitons undergo fascinating shape changing (intensity redistribution) collision.
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Equation 7 is a nonlinear ODEs which cannot be solved exactly. 

It is thus convenient to think about reducing equation 7 to a more 
simple system that, under some approximations, can allow us to find 
and study localized structures. In this sense, many techniques are 
nowadays used to derive DNLS equation from discrete differential 
equations. Some of them have been introduced: by Peyrard and Kivshar 
[36], by Daumont et al. [37] as well as recently by Johansson [38], just 
to name a few. In this work, we paid our attention to the one used by 
Johansson. The one used by Kivshar and Peyrard [36] can be extended 
here but, since the Morse potential is nonsymmetric, the method used 
by Daumontet al. [37] is appropriate. In fact, it takes into consideration 
the first harmonics and introduces a few functions Fj,n, which bring out 
the importance of nonlinear parameters. It amounts in considering the 
solution of the nonlinear equation in the form

2
1, 0, 2,( ) ( ) ( ) ( ) .− −= + + +g gi t i t

n n n nu t F t e F t F t e c cω ω

      (8)
The subsequent system in terms of the harmonics eilωgt, with l = 0; 1; 

2, are obtained as follows:
20 2 2

0, 1 0, 1 0, 0, 1,: ( 2 ) 2 0−
+ −+ − − + =gi t

n n n g n g ne K F F F F Fω ω αω  (9)     

0
1, 1, 1 1, 1 1,

22 2 * 2
0, 1, 2, 1 , 1, 1,

: 2 ( 2 )

2 2 3 0

−
+ −− − + −

+ + + =



gi t
g n n n n

g n n g n n g n n

e i F K F F F

F F F F F F

ω ω

αω αω βω       (10) 

2 0 2 2 2
2, 1 2, 1 2, 2, 1,: ( 2 ) 3 ( ) 0−

+ −+ − + + =gi t
n n n g n g ne K F F F F Fω ω αω                  (11)

To extract the different harmonics, I assume that the envelopes 
are slowly varying, i.e., ,j nF

 
<<

,j ng Fω , and consider a highly discrete 

lattice which implies 2
gω >> 4K. On these hypotheses, equations (9) and 

(11) give the harmonic F0,n and F2,nin the form
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          (12)The above solutions are then replaced into equation 10 and one 

obtains the following one-dimensional modified discrete NLS equation:
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The NLS equation is among the most important physical models 
in the field of nonlinear waves. Be- sides its fundamental value as a 
first-order nonlinear wave equation, it is an integrable model in the 
one-dimensional case [25] and represents many different physical 
systems: from laser wave packets propagating in nonlinear material 
to matter waves in Bose-Einstein condensates, gravitational models 
for quantum mechanics, plasma physics, here DNA, or wave 
propagation in geological systems, among others [26-28]. In the next 
section “Discrete Solitons Solution of the PB Model”, I will apply the 
Hirota’sbilinearization method to check soliton like solutions of the 
DNLS equation 13 [38-40].

Discrete Solitons Solution of the PB Model
The construction of the exact solutions of nonlinear partial 

differential (NLPD) equations is one of the most important and 
essential tasks in nonlinear science. With the help of exact solutions, 
when they exist, the phenomena modelled by NLPD equations can 
be better understood. In recent decades, many powerful methods to 

I show that the underlying solitons undergo shape changing-intensity 
redistribution collision. The last section“conclusion”is devoted to 
concluding remarks and outlooks.

Model and Mathematical Background
The PB model is one of the model describing the dynamics of large-

amplitude localized excitations in the DNA molecule [4,33]. The B-form 
DNA in Watson-Crick model is a double helix, which consists of two 
strands, S1 and S2, linked by nearest-neighbor harmonic interactions 
along the chain. The strands are coupled to each other through 
hydrogen bonds, which are supposed to be responsible for transverse 
displacements of nucleotides. Only the transversal displacements of 
the bases, denoted byynand zn, from their equilibrium positions along 
the direction of the hydrogen bonds, are considered. The molecule 
consists of the following elements: a common mass mis used for all the 
nucleotides in a strand, and the same coupling constant k along each 
strand is assumed. Using the above notations, the Hamiltonian of the 
discrete system is written as follows [4,33]:

2 2
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The intrapair potential is the Morse potential V (yn − zn) = 
D[e−a(yn −zn) − 1]2, where D is the dissociation energy and a a parameter 
homogeneous to the inverse of a length, which sets the spatial scale of 
the potential. The Hamiltonian (1) gives the equations of motion for 
yn and  zn
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To analyze the motion of the two strands, it is 
convenient to introduce the following dependent variables, 

( ) / 2, ( ) / 2.= + = −n n n n n nr y z u y z 	                               (4)
I then have
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The variables rn and un represent the in-phase and out-of-phase 
elongations, respectively. Equation 5 is a linear differential-difference 
equation with the usual plane wave solutions whereas equation 6 
contains nonlinear terms. It is interesting to relate our model to 
nonlinear excitations. The equations of the out-of-phase motion are 
then written, after expanding the terms in exponential, as

2 2 3
1 1( 2 ) ( ),+ −= + − − + +n n n n g n n nu K u u u u u uω α β

           (7)

where
2 2

2 4 3 7, , .
32g

k a D a aK and
m m

ω α β= = =− = I  use the 
parameter values D = 0:04eV (=0:64x10-20J), a = 4:45Ǻ-1(= 4:45×10-10m-

1), m = 300 a.m.u (= 5:00×10-25 Kg) and the coupling parameter k = 
0:06eV/ Ǻ2(= 0:96J=m2), 

which have been widely used in DNA-like models [34,35]. 
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I substitute equations 36-39 into the set of equations 28-35 and 
equation 28 and equation 29 successively give
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And equation 30 and equation 31 successively give
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and

2* *
1 2 1 2

2

* * * *
1 1 1 2 2 1 2 2

sinh sinh
2 2

.
8

sinh sinh sinh sinh
2 2 2 2

  − − 
          =          + + + + 
        

        

Q
p

κ κ κ κ

µ
κ κ κ κ κ κ κ κ   (44)

construct exact analytical solutions have been proposed. Among them, 
we have the tanh-function method [41], the elliptic function approach 
[42], and the Hirota’sbilinearization method [29-32], to name just few. 
Here, the Hirota’sbilinearization method is used to investigate exact 
solitons solution of the PB model. In so doing, the Hirota bilinear 
transformation F1,n= gn/fn[29-32] is applied, where gn and fn are complex 
and real functions, respectively. Introducing the above transformation 
into equation 13 and decoupling the resultant equation lead to the 
bilinear equations

*
1 2( . ) 0, ( . ) . ,= =n n n n n nA g f A f f g g
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1 2
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The above set of equations can be solved by introducing, for 
example, the following power series expansion for the functions fn and 
gn in powers of a small parameter εas

(1) 2 (2), 1 .= ∈ = +∈n n n ng g f f 			              
(18)

The bright one-soliton solution of the PB equation

In order to obtain the bright one-soliton solution of the DNLS 
equation 13, I assume

(1) 2 (2), 1 .= ∈ = +∈n n n ng g f f          		              (19)

Then, inserting equation 19 into equation 16 and collecting terms 
of the same power in ε, I obtain
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and I can write the solution of equation 13, taking ε = 1, as 
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The above one-soliton solution is depicted in Figure 1.

The bright two-soliton solution of the PB equation

To obtain the bright two-soliton solution, the power series 
expansion are expressed at the higher-order terms

( ) ( ) ( ) ( )1 3 3 43 2 4, 1 .= + = + +n n n n n ng g g f f fε ε ε ε                      (27)
Then by solving the resultant linear partial differential equation 

recursively, the following expressions,
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double helix over many base pairs. A possible pathway to the opening 
would be to collect the thermal energy that is present along DNA and, 
this could be the role of the enzyme. In so doing, S2 can be described 
as the energy collected along DNA, which enhances the bubble S1 
and tends to vanish. The same behaviors are observed in figure 3(b), 
where the role is changed. This is fully reinforced by the suppression 
of one of the initial solitons in figure 4. As one can see, the total energy 
collected is used to enhance either the bubble S1or the bubble S2 (Figure 
4), while the pump completely disappears. We can conclude that, in 
all dynamical process (replication, transcription,...) which take place in 
DNA, there is a need of energy to occur and, this energy is brought by 
the molecule itself. In this frame, thermal fluctuations, which exist in 
the molecule at physiological temperature, are shown to be a pathway 

Figure 1: Intensity plot of the one-soliton solution in the DNLS equation for D 
= 0.04eV , a = 4.45Å−1,,m = 300 a.m.u, k = 0.06eV/Å2, κ = 1 + i, ωb  = 1.

Figure 2: Elastic collision of two solitons in the DNLS equation for D = 0.04eV 
, a = 4.45Å −1, m = 300 a.m.u, k = 0.06eV/Å 2, κ1 = 1.0 + i, κ2 = 1.0 − i.

The solution of the DNLS equation, for ε = 1, is then written as
(1) (3)

1, (2) (4)1
+

=
+ +

n n
n

n n

g gF
f f

                                                                      (45)

Soliton Interaction, Collision and Shape Changing in 
the PB Model

One of the most essential properties of solitons concerns their 
interaction and their behaviors at collisions [43]. Some striking 
differences exist in the nature of interactions between solitary waves in 
media with saturable nonlinearity with those of their well-known Kerr-
soliton counterpart. As shown in ref. [44] for the (1+1) D case, solitons 
of the lower solution branch in media with saturable nonlinearity 
behave quasi elastically, similar to Kerr solitons, and retain their shape 
after collision. In contrast, two solitons of the upper solution branch 
with a saturable small crossing angle (or a small frequency shift in the 
case of temporal solitons) fuse to a single solitary output waves with 
a changed propagation direction. In this section “soliton interaction, 
collision and shape changing in the PB Model”, I investigate the elastic 
and inelastic collisions between two bright solitonsS1and S2 shown in 
figures 2-4.

In figure 2, for κ1 = 1.0 + i and κ2 = 1.5 − i, I have a pure elastic 
collision of the two solitons which are well separated before and after 
collision. This case is not really interesting for this work because, it does 
not explain the features observed in real DNA. Contrarily, in figures 3 
and 4, I observe shape changing and intensity redistribution of the initial 
soliton. It is possible to design one of the solitons, either S1 or S2, as an 
energy reservoir (pump) and the other one as the transcription bubble 
(or the data carrier). This is depicted in figure 3, where S1 represents the 
bubble and S2, the energy pump, due to thermal fluctuations available in 
the molecule. In fact, the first step of the transcription of DNA is a local 
opening of the double helix that extends over about 20 base pairs. Such 
local unwindings of the helix can be obtained by heating DNA to about 
70oC. But in the life of an organism they must occur at physiological 
temperature. This is achieved by the action of an enzyme. However, 
one may wonder how this can be possible since, whatever its origin, the 
local opening requires the breaking of the same number of hydrogen 
bonds, hence the same amount of energy, and the enzyme does not 
bring in energy. Of course, under normal physiological conditions 
there are thermal fluctuations along the DNA chain. They can be 
weakly localized by nonlinear effects to generate what biologists called 
“Breathing of DNA”. But their intensity is not high enough to open the 

Figure 3: Shape changing (intensity redistribution) collision of two solitons in the 
DNLS equation for D = 0.04eV , a = 4.45Å-1, m = 300 a.m.u, k = 0.06eV/Å 2,κ1 = 
−2.0 + 3i, κ2 = 1.0 − i.

Figure 4: Shape changing (intensity redistribution) collision of two solitons in 
the DNLS equation for D = 0.04eV , a = 4.45Å-1, m = 300 a.m.u, k = 0.06eV/Å2, 
κ1 = 5.0 + 2i, κ2 = −1.0 − 8i.
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to energy localization and formation of local structures [45,46]. 
Furthermore, it has been shown recently by Kalosakaset al. [47,48] how 
a combination of these thermal fluctuations, sequence specificity, and 
nonlinearity induce large and slow bubbles in the chain that coincide 
with the localization of start site of transcription [47,48].

Conclusion
Studying nonlinear excitations in biopolymers still attracts deep 

interest. It contributes to describe biomolecular processes, such as the 
vibrational energy transport in proteins on the basis of 1D nonlinear 
lattices, the energy localization and the transcription and replication 
phenomenon in DNA. Many models have been proposed to account 
for these nonlinear phenomenon but, the one used in this work is 
the PB model. It is shown in this work that, the local openings of the 
complementary base pairs can be described by the DNLS equation. 
Using the Hirota method, I have derived the one- and two- solitons 
solution of the PB model. These solutions are well already known as the 
consequence of energy localization in DNA. The head-on collisions of 
these solutions have been explored. The exchanged energy results from 
the collision of two bubbles, causing the intensity and the width of one 
of the bubbles to change in some cases. The collision may be elastic, 
that is, the two bubbles keep their shape as before the collision, or 
inelastic, that is, there is energy exchange leading in some cases to the 
suppression of one of the soliton. The inelastic collisions can explain 
the enhancement of transcription bubbles. It is indeed known that, 
in such a process, there is collection of the available thermal energy, 
present in the molecule at physiological temperature, by enzymes. 
That energy is carried by one of the solitons which acts as the energy 
pump while the other solitons is the bubble itself which receive that 
energy. The interactions could lead to the suppression of the pump. 
Furthermore, the stability of such solitons has been shown thus, they 
are good candidates in describing transcription and replication of DNA. 
Such a study is not complete and should be taken with prudence in real 
DNA studies because, it does not take into account the conformational 
changes due to twisting and even the modelling of the vibrational 
phenomena present in DNA. In so doing, it will be of a great interest to 
perform such a study in a model where, helicity and thermal bath are 
taken into account.
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