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Introduction
Flow cytometry (FCM) is a high-throughput measurement tech-

nology that allows a large variety of cell level measurements from 
counting cell populations using cell surface markers to quantification 
of signaling protein levels with intracellular staining [1]. In blood can-
cers, in particular acute leukemia, FCM based cell counting is routinely 
used for disease diagnosis and measurement of minimal residual dis-
ease during follow-up [2]. An FCM capable of measuring six markers, 
which is a typical setting in clinical applications, can produce over 3 
million data points for one patient. The need to analyze data from co-
horts of patients together with the increasing numbers of FCM markers 
calls for computationally efficient tools to manage, analyze, visualize 
and integrate FCM data.

The analysis workflow from the raw FCM data to interpretable 
results useful for clinical decision making is complex and consists of 
several steps most of which are currently done manually with various 
software. One of the most time consuming step in the FCM data analy-
sis is arguably gating, i.e., the selection of cells of interest from the data. 
Software such as FlowJo (TreeStar, Ashland, OR), FCS Express (De 
Novo Software, Los Angeles, CA) and Cytobank [3] aim at easy-to-use 
manual gating. As manual gating is not practical in the analysis of FCM 
data from tens or hundreds or patients, several methods for automatic 
gating, such as SamSPECTRAL [4] and flowMeans [5], have been sug-
gested. Gating, however, is only one step in FCM data processing and 
current frameworks that allow integrated analysis, such as FLAME 
[6], FIND [7] and flowCore [8] do not scale up to analyze millions of 
data points that emerge from clinical applications. Furthermore, users 
typically need to copy and paste results from one software to another, 
which makes the manual process error-prone and tedious.

We present a computational framework (FlowAnd) for compre-
hensive analysis of high-throughput FCM data from large cohorts of 
patients. FlowAnd integrates several individually published flow cy-
tometry analysis tools to herein developed novel ones within a unified 
computational framework that supports parallel programming of the 
computationally demanding methods as well as statistical methods for 
downstream analyses. The FlowAnd software is thoroughly document-
ed, actively maintained and new versions are released periodically.

Materials and methods
Data

In order to demonstrate FlowAnd we used data from a previously 
published experiment with intracellular phosphoprotein measure-
ments from six-color FCM from chronic myeloid leukemia patients 
[9]. To test the functionality of FlowAnd and compare the implement-
ed methods we used data for one patient and for a test of large-scale 
capabilities we used a large data set with 37 patient samples. All data 
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are freely available at http://csbi.ltdk.helsinki.fi/flowand. Comparison 
of the performance of the automatic gating methods to a golden stan-
dard of manually gated data was quantified using the F-score and cor-
relation of the identified cell populations. The F-score is a measure of 
accuracy for a classification test that accounts for both precision and 
recall of a test:

  .2 `precision recallF
precision recall

= ×
+

 The range for F-score is [0,…,1].

In the multiple patient dataset there were four sample groups: 
healthy controls (n=7), patients at diagnosis (n=10), patients after ima-
tinib treatment (n=10) and patients after dasatinib treatment (n=10). 
In order to study the differences in signaling, the intracellular signaling 
of the cells was induced ex vivo with various cytokines and a control 
PBS-stimulation. For baseline phosphoprotein studies fixed cells were 
stored without cytokine or PBS stimulation.

For each patient, due to the different stimulations, four different 
panels of fluorescent antibodies were used. The panels were used so 
that for the control stimulation all panels were measured, and for each 
of the three different cytokine cocktails two of the panels were mea-
sured, resulting in a total of 10 experiments and data files for each pa-
tient (Table 1 as in [9]). For the baseline study done with samples with 
no stimulations, the panels in Table 2 were used. Therefore when con-
sidering each panel in addition to the forward scatter and side scatter 
measurements, there are always a total of eight parameters measured 
from each cell. Each individual file typically has hundreds of thousands 
of cells resulting in a data set with roughly 112 million data points, 
which render manual analysis tedious. Details of experimental proto-
cols can be found in [9].

Software implementation

FlowAnd runs on the freely available Anduril framework [10]. An-
duril is a flexible data analysis framework that is intended for analysis 
and integration of data from various data sources. The Anduril frame-
work is designed so that individual components in the system can be 
created with different programming languages, currently covering Java, 
R, Python, MATLAB and Perl. Anduril supports parallel programming 
and thus computationally intensive jobs can be run in parallel.

FlowAnd and user guide are freely available under GNU General 
Public License at http://csbi.ltdk.helsinki.fi/flowand. The main mod-
ules in FlowAnd are data import, preprocessing, cell gating, population 

identification and statistical analysis as shown in Figure 1. Each module 
consists of several algorithms. For example, the data import module ac-
cepts Flow Cytometry Standard (FCS) files. The data import functions 
are mainly from the flowCore package. Preprocessing module contains 
data transformation functions, such as logarithmic and arcsinh, as well 
as tools to filter outlier data points that are likely debris.

The cell gating module currently consists of three gating algorithms: 
the FLAME algorithm of mixture modeling with a t-skew distribution 
[6], SamSPECTRAL that combines spectral clustering with a FCM 
tailored sampling procedure [4], and a variant of k-means clustering 
(flowMeans) [5]. To assist with the automation of the gating procedure, 
we have developed a component that allows the use of rules based on 
biological knowledge. The component is given a priori rules about the 
approximate locations of the cell populations as specific parameters 
also enabling rules relating clusters to one another. For example, it is 
known that the lymphocyte population has higher CD45 expression 
than the granulocyte and monocyte populations but a low side scatter 
value. Furthermore, in normal blood sample and bone marrow samples 
granulocytes are known to have a large number of cells and a high side 
scatter value with a high variance. This type of biological knowledge 
can be translated into rules that can be used to identify the populations.

These automatic tools do not always work perfectly and a user 
may want to visually inspect the clustering and population labeling 
manually. To allow manual intervention FlowAnd has a component 
that produces a graphical interface where the user can see the results 
of the clustering with the automatically identified cluster labels, manu-
ally correct these identifications and use them in processing the final 
results. The population identification can be run repeatedly for any 
identified population to identify subpopulations.

For final results, various statistical tests can be performed. For in-
stance, to compare the expression of a protein in various cell popula-
tion of two patient groups, or generate heatmaps for visualization of 
the high-dimensional FCM data.

Figure 1: FlowAnd overview: An overview figure of the steps in a full analysis 
of flow cytometry data. First data are preprocessed by applying compensation 
and a transformation to the data. Next the cells are filtered by clustering and 
selecting debris clusters out from the data. The third step is to identify cell 
populations from the data and this is done by first clustering the data and then 
applying a rule based method to label the clusters into populations. Finally 
once the correct populations have been identified, the data can be summarized 
in a report.

Panel ID A488 PE PerCP PECy7 A647 APCH2 Conditions

1 ERK 1/2 STAT1 CD4 CD3 STAT3 CD45
Control, 
Stimulations A, B 
and C

2 STAT5 STAT1 CD4 CD3 STAT3 CD45 Control, 
Stimulations A

3 STAT5 STAT1 CD4 CD25 STAT3 CD45 Control, 
Stimulations B

4 STAT1 STAT6 CD4 CD25 STAT3 CD45 Control, 
Stimulations C

Table 1: Panels of fluorescence antibodies used for specific stimulation conditions. 
This table is adapted from [9].

Panel ID A488 PE PerCP PECy7 A647 APCH7
1 ERK1/2 STAT1 CD4 CD25 STAT3 CD45
2 STAT5 STAT6 CD4 CD25 STAT3 CD45

Table 2:  Panels of fluorescence antibodies used for baseline study.
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Results
Single patient case study

We selected one patient to demonstrate a full analysis workflow and 
compare performances of three gating algorithms (FLAME, flowMeans 
and SamSPECTRAL) to manual gating results of three cell populations 
(granulocytes, monocytes and lymphocytes). The first step of analysis 
is to identify the cells from the debris, as this data contain a significant 
amount of debris. This is due to the fact that the samples analyzed 
were permeabilized cells which are required for enabling intracellular 
staining. Debris filtering is important because clustering methods 
perform much faster when only the relevant cells are used. For this 
filtering, data were clustered based on the scatter channels and CD-
markers, a total of five variables for each file (FSC, SSC, CD45, CD4, 
and CD25/CD3 depending on the panel of antibodies used). The debris 
was filtered out automatically by selecting the clusters that had lower 

median values for FSC, SSC and CD45 than the average cluster median 
values, as is typically done when manually selecting the cell data from 
the raw data. This filtering step reduced the data from hundreds of 
thousands of cells (mean of 340,000 cells in raw data) to less than one 
hundred thousand cells (mean of 70,000 cells after filtering).

The smaller amount of debris-free data were used again with the 
clustering algorithm to obtain more precise clustering results than 
clustering with all of the raw data. The granulocyte, monocyte and 
lymphocyte populations were identified from the clusters resulting 
from all three methods and the results were compared to manually 
gated data. Figure 2 shows a representative image of clustering results 
by the different methods. With flowMeans and SamSPECTRAL 
we get relatively similar clusters and the three main populations 
(granulocytes, monocytes and lymphocytes) can be identified from the 
clustering results. The FLAME method identified too many clusters 

Figure 2:  Comparison of gating algorithms: Comparison of a) manual gating to automatic gating with b) flowMeans, c) SamSPECTRAL and d) FLAME clustering. 
FlowMeans and SamSPECTRAL identify the three populations relatively well, while the FLAME mixture modeling with t skew distribution identifies too many clusters.
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that do not separate the three main cell populations. The distribution 
of the cells is different with the three images because also cell and debris 
identification is done with different clustering results, and it can be seen 
that the FLAME method leaves more debris data. It is evident from 
the results that FCM gating algorithms can result in widely dissimilar 
results. Thus, the FlowAnd-type framework approach that includes 
several methods allows the use of the best performing method in any 
particular instances.

For a more detailed comparison of clustering methods we used the 
F-score and correlation. The most accurate method with this data was 
SamSPECTRAL with an F-score of 0.97 followed by flowMeans (F-score 
0.91), whereas FLAME failed to give reasonable clusters (F-score 0.63, 
Figure 2). The correlation between manual gating and SamSPECTRAL 
was 0.99, whereas flowMeans and FLAME achieved 0.69 and 0.42, 
respectively. flowMeans was the fastest method (1.5 hours wall clock 
time using five parallel processes) followed by SamSPECTRAL (6h) 
and FLAME (40h). These results demonstrate that there are differences 
between the performance of gating methods, and similar results were 
obtained with other patient samples (data not shown). It is thus an 
advantage to be able to use several methods in parallel and choose 
the best performing one. Furthermore, FlowAnd allows the use of 
faster methods, such as flowMeans, for computationally demanding 
clustering that do not require high accuracy and of more accurate but 
slower methods, such as SamSPECTRAL, for identifying detailed cell 
populations after coarse gating.

Multiple patient case study

To demonstrate the performance of FlowAnd in the analysis of a 
large number of samples, we reanalyzed the data from 37 patient sam-
ples with two experiments for each patient for a total of 74 FCS ex-
periments [9]. The aim of this study was to replicate the previous find-
ing of a decrease in the expression of pSTAT3 in the lymphocytes of 
dasatinib-treated patients in comparison to healthy controls. For this, 
the lymphocyte populations of all patients needed to be identified and 
the median pSTAT3 expression of these cells calculated.

We used flowMeans for clustering due to its high speed and rela-

tively good accuracy and also included a second round of clustering in 
case the automatic parametrization did not identify all of the desired 
cell populations. The full analysis of the data with 10 parallel process-
es took 8.5 hours (wall clock time), which included only 20 minutes 
of manual work for checking the population labels of the clustering 
results. Compared to manual analysis time for identification of three 
populations from 74 FCM-experiments, this is a significant decrease in 
time. The FLAME webservice or standalone versions were not able to 
handle these data.

We compared the expression of phosphoproteins obtained using 
FlowAnd in comparison to manually gated lymphocytes in [9]. We 
used median values of pSTAT3 expression in lymphocytes from manu-
ally gated and computationally gated data. Both data sets were analyzed 
with a Kruskall-Wallis test with a null hypothesis of equal population 
medians for the four patient groups: healthy controls (n=7), patients at 
diagnosis (n=10), patients after imatinib treatment (n=10) and patients 
after dasatinib treatment (n=10). A p-value of less than or equal to 0.05 
was considered significant. The manually gated lymphocyte data are 
plotted in Figure 3A and the FlowAnd gated data in Figure 3B and both 
methods gave similar results showing that there is a difference in the 
expression of pSTAT3 and that the difference was between the con-
trol and dasatinib treated individuals. Similar analyses were done with 
FlowAnd for other populations and markers (data not shown).

Discussion
FlowAnd is designed to allow the analysis of large-scale FCM 

experiments with tens to hundreds of patients and multiple FCM 
experiments for each patient. Our objective was to create a framework 
that is scalable, enable the use of different clustering algorithms, and 
provide an environment where analysis is straightforward, repeatable, 
and rapid in comparison to manual analysis. These features were 
demonstrated with two case studies comprising of one and 37 leukemia 
patients. When using Cytobank or FlowJo, the manual gating is a time 
consuming process and for all downstream analysis, the values must 
be copied from the original software to another statistical software. 
FlowAnd is implemented in Anduril, which allows taking advantage 
of tools for multivariate statistics, such as Weka, MATLAB and R, in a 

Figure 3: Visualization of results of statistical testing: A. The results of manual gating for STAT3 in the lymphocyte populations of 37 individuals from four patient 
groups, healthy controls, patients at diagnosis, patients after imatinib treatment and patients after dasatinib treatment. B. The replicated experiment using FlowAnd and 
the semi-automated analysis pipeline.
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unified framework.

As complexity and numbers of FCM analyses are increasing in 
research and diagnostic laboratories, there is a need for computational 
frameworks, such as FlowAnd, that allow accurate, fast and well 
documented analysis of multidimensional FCM experiments. The 
results of these case studies demonstrate that FlowAnd is able to 
efficiently process large-scale FCM data as well as integrate analysis 
tools into a coherent framework. FlowAnd can be easily modified to 
comply with various marker panels and parameter settings.
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