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Introduction
The rapamycin actions of preventing in-stent restenosis seem 

to be complex and are still not well understood [1]. It is known that 
rapamycin due to formation of an intracellular complex with its 
receptor FKBP12 inhibits different cellular processes like proliferation 
of vascular smooth muscle cells, inflammation [1], protein synthesis 
and matrix production [2]. Moreover, rapamycin regulates the 
biology of dendritic cells. The last function is of a great importance as 
dendritic cells activate immunological responses after vascular trauma. 
Rapamycin may influence these cells via: (i) in vitro inhibition of 
interleukin-4 mediated maturing of dendritic cells [3], (ii) attenuation 
of antigen intake via inhibition of macropinocytosis and endocytosis 
[4], (iii) impairment of immunological reactions induced by dendritic 
cells [5], (iv) in vivo depletion of growth factor for dendritic cells [3] 
and eventually via augmentation of dendritic cell apoptosis [6].

In this context, in our present work, we sought to detect FKBP12, 
the primary intracellular receptor of rapamycin, in the post stent swine 
neointima, determine the spatiotemporal pattern of its expression 
as well as to evaluate the presence of FKBP12 positive neointimal 
dendritic cells.

Materials and Methods
Swine model of stent implantation

Male minipigs (age: 12 months, mean weight: 23.1 kg) were 
anesthetised by ketamine (10-15 mg/kg), atropine (1 mg), azaperone 
(2 mg/kg). Two days before stent implantation, the therapy with 
ticlopidine (250 mg once a day, p.o.) was started and it was continued 
in the next 4 weeks. The femoral artery was punctured percutaneously 
and a 9F sheath was introduced. After angiography of the descending 
aorta, commercially available stainless steel (American Iron und Steel 
Institute) 316-L-Stents (Saxx Stent, CR Bard, Tempe, AZ, USA) were 
implanted. The PTCA balloon (Bard Optiplast) with the stent was 
inflated with the pressure of 10 atmospheres within 10 sec. The balloon 
diameter was approximately 10-25% larger than that of the vessel at the 

implantation site. Periprocedurally, aspirin (250 mg i.v.) and heparin 
(5000 I.E. i.v.) were administrated. The animals were sacrificed with 
a lethal dose of pentobarbital at days 7 (n=2), 14 (n=2), 30 (n=3), 
60 (n=3) and 90 (n=4). All experiments were approved by the local 
governmental authorities (Bezirksregierung Hannover; 42502-02/563) 
and complied with the NIH current guidelines (Guide for the care and 
use of laboratory animals; NIH publication 85-23, 1985, revised 1996).

Immunohistochemistry
Paraffin cross sections (4 µm) were dewaxed and rehydrated. 

After proteolysis, nonspecific antibody binding sites were inhibited 
with fetal calf serum. Subsequently, the sections were treated with the 
polyclonal rabbit anti-FKBP12 (1:500, Biomol, Hamburg, Germany) 
and anti-S100 (1:40, Sigma, Deisenhofen, Germany).  Thereafter, 
AffiniPure mouse anti-rabbit IgG (1:75, Dianova Inc., Hamburg, 
Germany) was applied for 30 min. The visualization occurred with the 
APAAP method (Dianova, Hamburg, Germany) and Fast Red (Sigma, 
Steinheim, Germany), according to standard protocols [7,8]. Nuclei 
were counterstained with hematoxylin.

Double immunostaining experiments were performed analogically 
with the use of two chromogens: Fast Blue (Sigma, Steinheim, 
Germany) for FKBP12 and Fast Red for S100. In order to avoid a 
confusion of the blue marked nuclei with the blue stained FKBP12+ 
signals, the nuclei hematoxylin staining was omitted. In each 
experiment tissue specimens without primary antibody application 
served as negative controls.
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Abstract
Background: Despite promising clinical results for rapamycin-eluting stents, the exact mechanism of action 

and cellular targets are not clear. Therefore, we determined the presence and spatiotemporal signal pattern of the 
rapamycin receptor FK506-binding protein FKBP 12 in minipig aortic segments after stent implantation.

Methods: Male minipigs underwent bare metal stent implantation to aortic segments. At days 7, 14, 30, 60 and 
90 after injury, arterial cross sections were analyzed by immunohistochemistry for FKBP12 and S100+ dendritic cells.

Results: At day 7, about 25% of neointimal cells expressed FKBP12. In further time course signaling for FKBP12 
decreased continuously and revealed two predilection regions at luminal and stented sites. Throughout the observation 
time, a significant portion of FKBP12+ cells coexpressed S100 marker.

Conclusion: The rapamycin receptor FKBP12 is predominantly present in early neointima. Colocalisation of 
FKBP12 and S100 suggests that dendritic cells may be another important target for rapamycin actions.
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Histological analysis

The percentage of FKBP12+ or S100+ cells in neointima was 
determined by means of a computer-assisted morphometric system 
(VFG-1-grafic card/VIBAM 0.0 Software) [7,8]. In detail, FKBP12 or 
S100 marked cells and all neointimal cells were counted in each of five 
randomly selected neointimal areas per cross section. The expression 
of the immunostained cells was calculated as an average number of 
positive cells per total average number of cells within neointima for 
each tissue sample.

Statistical analysis

The data are expressed as mean ± SD. The differences between the 
means of multiple groups were compared with the Kruskal-Wallis-H 
test (SPSS for Windows software, version 10.0, SPSS Inc.). P<0.05 was 
considered statistically significant.

Results
The rapamycin receptor FKBP12 was expressed in approximately 

25% of all neointimal cells at day 7 after stent implantation (Figure 1). 
With ongoing neointima development, at day 14, the FKBP12 signaling 
reduced. In time course, the expression of FKBP12 further decreased 
and was exclusively detected in luminal areas of neointima and near 
to the stent struts. Mature neointima was almost free of FKBP12 
signals. S100+ cells revealed a similar spatiotemporal expression 
pattern with two predilection regions at luminal and stented sites in 
late neointima (Figure 1). Differences in expression of FKBP12 and 
S100 were significant across the different time points studied (p<0.05, 
respectively). The double immunostaining experiments showed a 
colocalisation of FKBP12+ and S100+ cells throughout the observation 
time (Figure 2). The media and vessel-free adventitia demonstrated 
no signals for either of both markers at any time point. Only small 
adventitial vessels showed single S100 signals during the study time.

Discussion
In our study, we showed the pronounced presence of rapamycin 

receptor FKBP12 during early neointima formation of swine after 
stent implantation and the co-expression of FKBP12 and the dendritic 
cell marker S100. Herein, the present data extend previous findings 
concerning detection of FKBP12 signals in the post angioplasty 
neointima of rat, in human atheroma and in human in-stent restenoses 
[7-9].

In our work, the strongest immunolabeling for FKBP12 was 
detected in neointima at days 7 and 14, thus at early stages of neointima 
formation characterised by enhanced inflammation, cell migration, 
proliferation and apoptosis [10,11]; this suggests that rapamycin would 
be most effective in the incipient neointima. Taking into consideration 
the fact that rapamycin may impair reendothelialisation and promote 
thrombus formation [12], our data provide evidence that the time of 
rapamycin action should be restricted to early phases after vascular 
trauma. Moreover, the detection of FKBP12+ cells in peristrut 
neointimal regions may indicate that these cells are the primary targets 
for rapamycin. However, keeping in mind, the excellent lipophility 
of rapamycin [13], it is probable that also the luminal FKBP12+ cells 
are affected by rapamycin. The exposure of these cells to rapamycin 
influence is greater when the diffusion way is shorter, which takes place 
in incipient neointima. This fact supports again our hypothesis to limit 
the drug release time of rapamycin coated stents to early time points 
after vascular damage.

Another finding of our work was the identification of FKBP12+ 
S100+ dendritic cells as cellular targets for rapamycin action. Dendritic 
cells are known initiators of immunologic reactions and in consequence 
may contribute to neointimal growth. Several studies have shown that 
the function of dendritic cells may be modified by rapamycin at different 
levels of their maturing process [3-6]. The detection of FKBP12+ S100+ 
cells in post stent neointima may emphasize the antiimmune action of 
rapamycin in addition to its antiproliferative one underlying excellent 
clinical results in the prevention of restenosis via implantation of 
rapamycin coated stents [14].

In summary, the rapamycin receptor FKBP12 is predominantely 
present in early neointima after stent implantation. The FKBP12+ 
S100+ dendritic cells represent novel target structures for rapamycin 
action.
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Figure 1: Average number of FKBP12 and S100 positive cells per total average 
number of neointimal cells presented as expression values (%) in neointima in 
time course after stent implantation. d=days.
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Figure 2: Luminal prevalence of FKBP12 (A) and S100 (B) signaling in 
neointima at day 30. Double immunostaining of FKBP12 (dark blue) and S100 
(red) in neointima at days 14 (C) and 90 (D). Arrow=FKBP12+ S100+ cell. 
Bar=20µm. N=Neointima. M=Media.
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