
International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 203

FIR Filter Implementation on A FPGA Allowing Signed and Fraction

Coefficients with Coefficients Obtained Using Remez Exchange Algorithm

Animesh Panda*

animesh_6988@yahoo.co.in
 Satish Kumar Baghmar*

baghmar.satish@gmail.com
Shailesh Kumar Agrawal*

shailesh.lormi@gmail.com

T.Siva Kumar*

siva.kumar.1678@gmail.com

T. Usha

 usha156@gmail.com

Department of Mathematics, BIT Durg,

India

*Department of Electronics & Telecommunication BIT DURG , India491001

Abstract
A filter may be required to have a given frequency response, or a specific response to an

impulse, step, or ramp, or simulate an analog system. Depending on the response of the system,

digital filters can be classified into Finite Impulse Response (FIR) filters & Infinite Impulse

Response (IIR) filters. FIR Filters can be designed using frequency sampling or windowing

methods. But these methods have a problem in precise control of the critical frequencies. In the

optimal design method, the weighted approximation error between the actual frequency response

and the desired filter response is spread across the pass-band and the stop-band and the

maximum error is minimized, resulting in the pass-band and the stop-band having ripples. The

peak error can be computed using a computer-aided iterative procedure, known as the Remez

Exchange Algorithm.

Key words: Fir filter, Generic, FPGA

1. Introduction

The paper briefly introduces the general aspects of FIR filter. Structure and functions are

also discussed. Following the general view we will describe a generic FIR filter written in

behavioral VHDL Code. This defines the requirements on a filter generation program in VHDL

and its implementation on FPGA. We will also discuss the calculation of coefficients of filter

using MATLAB.

2. FIR Filter
FIR filters are a special kind of digital filters. They are non-recursive type of filter where the

present output depends on the present input sample and the previous samples. The impulse

response of FIR filter has finite number of non-zero terms. Few characteristics of FIR which

serve as their advantage are enlisted below:

i. FIR filters have exactly linear phase.

http://ijict.org/
mailto:animesh_6988@yahoo.co.in
mailto:baghmar.satish@gmail.com
mailto:shailesh.lormi@gmail.com
mailto:siva.kumar.1678@gmail.com
mailto:usha156@gmail.com

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 204

ii. FIR filters are always stable.

iii. FIR filters may be realized in both recursive and non- recursive structures.

iv. FIR filters with any arbitrary magnitude response can be tackled using FIR sequence.

2.1 Structure of FIR filter
The structure of a general FIR filter is shown in fig 1.

Fig 1: FIR filter structure

From this structure the transfer function of the filter can be easily described in z- domain as:

H (z) = α0 + α1.z
-1

 + α2.z
-2

 + ………+ αN.z
-N

Where N: filter order

Alternatively,

 Y (Z) M

H (Z) = ─── = ∑ bk . Z
-k

 . X (Z)

 X (Z)
….....

 (1)

The task of designing such a filter is therefore the determination of the filter coefficients αi. Two

common methods applied to solve this problem are:

1. Windowing method, and

 2. Iterative method.

Windowing method is much easier to implement. It is a straightforward approach. If we assume

that Hd(e
jw

) to be ideal response and hd(n) to be corresponding infinite-duration impulse response

sequence, then we can obtain a finite-duration causal impulse response by multiplying hd(n) with

finite-duration “ window” w(n)

h finite (n) = hd(n) . w(n)

Window functions for filter design should taper smoothly to a value of zero at each end. Two

commonly used windows are the Hamming and the Blackman window. These windows are

defined by the following equations:

Hamming: w(n) = 0.54 - 0.46 cos(2.π.n / N)

Blackman: w(n)= 0.42-0.5 cos(2.π.n / N) + 0.08cos(4.π.n / N)

where n= 0,1, …….N

http://ijict.org/

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 205

The iterative method allows the design of optimal filters. Optimal filter means filter with

constant equiripple in the pass band and the stop band. The most commonly applied algorithm

used is the Remez Exchange Algorithm. This algorithm is being discussed below.

3. Algorithm Used
The optimal filter uses the iterative method known as Remez Exchange Algorithm. This

algorithm is also known by the names: Remez Algorithm, Remes Algorithm, Remes Exchange

Algorithm or simply Exchange Algorithm. It was published by Evgeny Yakovlevich

Remez in 1934. It is an iterative algorithm used to find simple approximations to functions,

specifically, approximations by functions in the Chebyshev space.

3.1 Procedure
The Remez algorithm starts with the function f to be approximated and a set X of n + 2 sample

points x1, x2, in the approximation interval, usually the Chebyshev nodes linearly mapped to the

interval. The steps are:

1. Solve the linear system of equations

 (For i = 1, 2, n + 2)

 For the unknowns b0, b1...bn and E.

2. Use the bi as coefficients to form a polynomial Pn.

3. Find the set M of points of local maximum error | Pn(x) − f(x) | .

4. If the errors at every are of equal magnitude and alternate in sign, then Pn is

the minimax approximation polynomial. If not, replace X with M and repeat the steps

above.

The result is called the polynomial of best approximation, Chebyshev approximation, or

the minimax approximation.

4. Scaling of the Coefficients

The implementation of the filter uses a fixed point method to represent data. But the

coefficients used in the design of the filter is going to be fractional in nature and also it may be

negative. So to represent fractions the method of scaling of data has been used. The scaling was

done using scaling factors of 2’s complement and then shifting the data to the left or to the right.

For example if 0.375 is one coefficient which is to be multiplied by 2 to get 0.75 as the answer,

then first 0.375 is represented in digital as 0.0110. For doing the above operation first the data is

shifted to the left by four bits giving 0110.0, this data is then multiplied by 2 which gives 1100.0.

Now the data 1100.0 is again shifted to the right by four bits which gives 0.1100 this value is the

same as the required answer of 0.75. An extra bit has been has been included for considering the

overflow of the data.

5. Implementation

The implementation has been explained below starting with calculation of coefficients

using MATLAB, followed by VHDL program and its implementation:

5.1 Coefficient calculation in MATLAB

http://ijict.org/
http://en.wikipedia.org/wiki/Evgeny_Yakovlevich_Remez
http://en.wikipedia.org/wiki/Evgeny_Yakovlevich_Remez
http://en.wikipedia.org/wiki/1934
http://en.wikipedia.org/w/index.php?title=Chebyshev_space&action=edit&redlink=1
http://en.wikipedia.org/wiki/Chebyshev_nodes
http://en.wikipedia.org/w/index.php?title=Minimax_approximation&action=edit&redlink=1

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 206

The Remez FIR Filter Design block implements the Parks-McClellan algorithm to design

and apply a linear-phase filter with an arbitrary multiband magnitude response. The filter design,

which uses the firpm function in Signal Processing Toolbox, minimizes the maximum error

between the desired frequency response and the actual frequency response. Such filters are called

equiripple due to the equiripple behavior of their approximation error. The block applies the

filter to a discrete-time input using the Direct-Form II Transpose Filter block.

An M-by-N sample-based matrix input is treated as M*N independent channels and an M-by-N

frame-based matrix input is treated as N independent channels. In both cases, the block filters

each channel independently over time, and the output has the same size and frame status as the

input.

The Filter type parameter allows you to specify one of the following filters:

 Multiband: The multiband filter has an arbitrary magnitude response and linear phase.

 Differentiator: The differentiator filter approximates the ideal differentiator.

Differentiators are antisymmetric FIR filters with approximately linear magnitude

responses. To obtain the correct derivative, scale the Gains at these frequencies vector by

pFs rad/s, where Fs is the sample frequency in Hertz.

 Hilbert Transformer: The Hilbert transformer filter approximates the ideal Hilbert

transformer. Hilbert transformers are antisymmetric FIR filters with approximately

constant magnitude.

Parks-McClellan optimal FIR filter design Syntax

b = firpm(n,f,a)

b = firpm(n,f,a,w)

firpm designs a linear-phase FIR filter using the Parks-McClellan algorithm. The Parks-

McClellan algorithm uses the Remez exchange algorithm and Chebyshev approximation theory

to design filters with an optimal fit between the desired and actual frequency responses. The

filters are optimal in the sense that the maximum error between the desired frequency response

and the actual frequency response is minimized. firpm exhibits discontinuities at the head and tail

of its impulse response due to this equiripple nature.

b = firpm(n,f,a) returns row vector b containing the n+1 coefficients of the order n FIR filter

whose frequency-amplitude characteristics match those given by vectors f and a. The output

filter coefficients (taps) in b obey the symmetry relation:

Vectors f and a specify the frequency-magnitude characteristics of the filter:

 f is a vector of pairs of normalized frequency points, specified in the range between 0 and

1, where 1 corresponds to the Nyquist frequency. The frequencies must be in increasing

order.

 a is a vector containing the desired amplitudes at the points specified in f. The desired

amplitude at frequencies between pairs of points (f(k), f(k+1)) for k odd is the line

http://ijict.org/

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 207

segment connecting the points (f(k), a(k)) and (f(k+1), a(k+1)).The desired amplitude at

frequencies between pairs of points (f(k), f(k+1)) for k even is unspecified. The areas

between such points are transition or "don't care" regions.

 f and a must be the same length. The length must be an even number.

5.1.1 Filter Specifications

The implementation of Remez FIR filter is done for the specifications characterizing an

equiripple FIR design method for a Band pass response type. The frequency specifications are as

follows:

Sampling frequency, Fs = 48000 Hz

Stop band Frequency1. Fsotp1 = 7200 Hz

Pass band Frequency1, Fpass1 = 9600 Hz

Pass band Frequency2, Fpass2 = 12000 Hz

Stop band Frequency2. Fsotp2 = 14400 Hz

Fig 5 (a): Magnitude Response of Remez FIR filter of order 20

Fig 5 (b): Magnitude Response of Remez FIR filter of order 40

http://ijict.org/

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 208

Fig 5 (c): Magnitude Response of Remez FIR filter of order 60

Using the Filter Design and Analysis Tool (fdatool) in MATLAB the filter coefficients are

obtained.

5.2 VHDL Code

The following is the VHDL code for the above filter depicting the Optimal Linear Filter using

the Remez Exchange Algorithm:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity sas_fir is

generic (n: integer:=4;

 m: integer:=8);

port(x:in std_logic_vector(m-1 downto 0);

 clk,rst : in std_logic;

 z : out std_logic_vector(2*m-5 downto 0));

end sas_fir;

architecture unsignd of sas_fir is

---- declaration of array for storing registers and coefficient values

type shft_reg is array (n-2 downto 0) of std_logic_vector(m-1 downto 0);

type coefficients is array (n-1 downto 0) of std_logic_vector(m-1 downto 0);

signal reg_shft: shft_reg;

signal count: std_logic_vector(21 downto 0);

signal clk1: std_logic;

signal i: std_logic_vector(7 downto 0);

signal y : std_logic_vector(2*m-1 downto 0);

------ storing coefficeint values as constant

constant w : std_logic_vector(0 to 2*m -1) := "0000000000010000";

constant coeff: coefficients := ("00010000","00100000","00110000","01000000");

begin

process(rst,clk,count)

begin

 if rst = '1' then

http://ijict.org/

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 209

count <= "0000000000000000000000";

 clk1 <= '0' ;

 elsif clk'event and clk = '1' then

 count <= count + 1;

if count = "1111111111111111111111" then

count <= "0000000000000000000000";

 clk1 <= not clk1;

 end if;

end if;

end process;

process(clk1,rst)

---------- variable declaration

variable sum : std_logic_vector(2* m - 1 downto 0):= (others=>'0');

variable o_mul: std_logic_vector(2* m - 1 downto 0):= (others=>'0');

variable sign_bit: std_logic;

------ o_mul is output of multiplication between coefficient and sample value

------ sum saves sum of two values o_mul's at different clocks

begin

------------task to be peformed at reset=1-----

if(rst='1') then

for i in n-2 downto 0 loop

for j in m-1 downto 0 loop reg_shft(i)(j)<='0';

end loop; ------ end of loop in j

end loop; ------ end of loop in i

------------task to be peformed at reset=0-----elsif(clk1'event and clk1='1') then

sum:= coeff(0) * x;

for i in 1 to n-1 loop

o_mul:= coeff(i) * reg_shft(n-1-i);

sum:= sum + o_mul;

end loop; --- end of loop in i

reg_shft <= x & reg_shft(n-2 downto 1);

end if;

y <= sum; ---- sum of all the o_mul's is send as output

for i in 0 to 2*m-5 loop

z(i) <= y(i+4);

end loop;

end process; ------- end of process

end unsignd;

6. Conclusions

The result of the now constructed VHDL code can has been verified on an FPGA (Field

Programmable Gate Arrays).

Resources of FPGA used have been listed below:

No. of Slices : 57 out of 2352

No. of slice Flip Flops : 59 out of 4704

http://ijict.org/

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 210

No. of 4-input LUTs : 96 out of 4704

No. of bonded IOBs : 22 out of 140

No. of GCLKs : 02 out of 4

A Generic FIR filter using Remez Exchange Algorithm has been implemented on a

FPGA. The coefficients were obtained using the Filter Design and Analysis Tool of MATLAB.

The implementation in HDL offers the possibility to generate and use the FIR filter in any

developing environment. The implementation of FIR filter using Remez Exchange Algorithm

finds most of its applications, particularly in industry. The FIR filter using Remez Exchange

Algorithm is optimal in the sense that it minimizes the maximum error between the desired

frequency response and actual frequency response. Hence, it is also called MINIMAX filter.

Implementation is also found to be very much user-friendly. Besides this it gives a very universal

approach to the field of signal processing. The use of Remez Exchange algorithm includes

several advantages over other methods of calculating filter coefficients. This particular algorithm

tremendously reduces the number of multipliers and adders being used in narrow-transition band

linear-phase FIR filter. The overall process of synthesis is found to be very much faster than

other methods known. It is a powerful technique for designing arbitrary magnitude linear-phase

FIR filter.

References

[1] Bhasker J. (2006) Third Edition“A VHDL Primer” Pearson Education

[2] Perry L. Douglas Fourth Edition “VHDL Programming by Example” Tata Mcgraw Hill.

[3] Peter J. Ashenden, Jim Lewis (2007) “ VHDL 2008-Just the New Stuff ”

[4] Morgan Kaufmann, Salivahanan S., Vallavaraj A., Gnanapriya C.(2000) “ Digital Signal Processing” Tata

McGraw Hill

[5] Volnei A. Pedroni (2004) “Circuit Design with VHDL” MIT Press Cambridge, Massachusetts London,

England.

http://ijict.org/

