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Abstract

Japanese anchovy (Engraulis japonicus) is a commercially and ecologically important fish that exhibits group
synchronous and multiple spawning. However, the reproductive characteristics of the male in this species, especially
sperm features and activation, are still largely unknown. In this study, we confirmed that features of the sperm and
characteristics of the activations, regarding sperm motility and moving velocity. The average size of the sperm was
51 ± 1.3 µm in total length and possessed a normal structure with clockwise, anticlockwise, and linear motion. The
initial motility at one minute after activation in seawater was 75 ± 12% during spawning time in this species (21:00–
22:00), and the initial moving velocity (196 ± 26 µm/sec) remained constant for fifteen minutes post activation. While,
comparatively low motility (30 ± 10%) was found until 17:00, and the sperm was almost immotile in the morning
(08:00–09:00). Swimming ability was also confirmed with sperm that swam for more than one hour in seawater
without an exogenous energy supply derived from the ovary in females, suggesting the trigger for sperm activation in
multiple spawning fish is possibly species dependent. This report is the first to demonstrate time specific activation,
that is, circadian rhythm, in teleost males.

Keywords: Engraulis japonicus; Sperm motility; Synchronous
spawning; Circadian rhythm

Introduction
Japanese anchovy is a small pelagic fish belonging to the order

Clupeiformes and is widely distributed around Japan. This species is
commercially important to fisheries in Japan [1], China [2], Korea [3],
and Taiwan [4], and furthermore, it plays an important role as a key
member of marine ecosystems [5]. Japanese anchovy is known as a
multiple spawning fish having a long spawning season [6,7] and spawn
oval-shaped pelagic eggs. Females spawn periodically at intervals of
two or more days during the spawning period [8], and the spawning
rhythm is regulated by ambient water temperature [9]. However, the
reproductive characteristics of the male of this species, especially
sperm activity, have yet to be clarified.

To date, research on sperm in fish has centered on initiation
mechanisms of motility [10] and sperm quality for artificial
fertilization [11]. However, the acquisition mechanisms of sperm
motility have not yet been demonstrated. In Japanese eel, it has been
shown that spermatogenesis completes in an in vitro culture with 17α,
20β-dihydroxy-4-pregnen-3-one (DHP), and the sperm is
morphologically the same as functional sperm naturally matured from
males, but the sperm does not move in seawater (SW) [12]. In
addition, in vitro incubation of sperm, which was from artificially
matured males of Japanese eel with bicarbonate medium, showed
increased sperm motility [13]. These results indicate that
spermatogenesis and acquisition of sperm activation mechanism are
controlled by different mechanisms.

In oviparous teleosts, spermatogenesis is generally known to take a
long time (several weeks to months), in which spermatozoa are

released at the same time and place with female ovulation [14].
Therefore, the intrinsic quality and quantity of both gametes affect the
success of fertilization. Motility is one important function of the male
gametes (sperm), which allows them to actively reach and penetrate
the female gametes (eggs). A teleost egg is covered with a thick
envelope called a chorion, which has a narrow pore designated as a
micropyle that helps to avoid polyspermy [15]. Sperm can only enter
and reach the ooplasmic membrane through the micropyle [16,17].
Thus, sperm motility might directly influence fertilization.

In most external fertilization types of teleost, sperm remains
quiescent in the seminal plasma and becomes transiently motile when
released into hypotonic fresh water or hypertonic seawater depending
on the spawning environment [18]. In most freshwater species, sperm
usually moves for less than 2 min and high activation is observed for
less than 30 s [19]. Meanwhile, longer durations of sperm movement
have been reported in various marine fish, including Anarhichas
minor [20] and Abramis brama orientalis [21], and the time might be
related to their reproductive strategies. It is known that several factors
affect sperm motility, such as pH, temperature, ions, osmolality, and
ovarian fluid (OF) [22]. Ovarian fluid is slightly viscous fluid found in
the gonad cavity of oviparous fishes after ovulation. Ovarian fluid has
been studied for its role in fish reproduction, its chemical composition,
novel proteins and utility in testing for the presence of fish diseases
[23]. There are also some reports on sperm being activated by ovarian
fluid, which is extruded with ovulated eggs in Rainbow trout,
Oncorhynchus mykiss [24] and Arctic charr, Salvelinus alpinus (L.)
[25,26]. However, such information about the sperm activation of male
Japanese anchovy is not well known.

Although understanding of sperm activation in teleost species is
important, especially for commercial seed production, it is still a
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largely unknown area due to the technical difficulties of analyzing
sperm motility. A microscope connected to a computer analyzing
system (CASA: - is commonly used to evaluate sperm motility in fish,
such as common carp [27], African catfish [28], and zebrafish [29]. The
aim of the present study is to clarify the features of anchovy sperm and
time course changes in sperm motility using such a CASA system,
which should provide basic knowledge about male reproduction of a
multiple spawning teleost. Moreover, the effect of OF on motility was
also examined to verify the activation system of the sperm.

Materials and Methods

Experimental animals
Juvenile Japanese anchovy captured by a commercial fishing boat

were transferred to a sea surface aquaculture cage (5 × 5 × 5 m) located
in Mishou Bay in Southern Ehime in December 2014. Captive reared
anchovy were transferred to a 30-ton aquarium at the South Ehime
Fisheries Research Center, Ehime University, and reared under natural
photoperiod and water temperature conditions (19.5–20.9°C). About
two hundred adults (body weight range: approximately 10–12 g) were
placed into two one-ton tanks. Fish were fed 40 g of commercial feed
(Otohime S2; Nissin-Marubeni, Japan) per day, which corresponded to

about 2% of body weight, under a controlled photoperiod of 14L:10D
and reared from May to June 2015.

Sampling
Sampling was carried out at four different time points (Table 1). All

males from each time sampling point were examined. Gonads were
excised and weighed to calculate the gonadosomatic index (GSI;
[gonad weight/body weight] × 100). Intra-testicular semen was
collected by syringe after making an incision in the posterior part of
the excised testes and stored in a closed test tube (1.5 mL) on ice until
use (up to 1 h). Sperm features were individually assessed from all
sampled males. Stripped semen was diluted with Hank’s solution,
which is an inhibiting solution of sperm motility (Nacalai Tesque,
Kyoto, Japan) containing calcium and magnesium, at a ratio of 1:9
(semen:solution) and used within 1 h. Ovarian fluid was collected
from 5 ovulated females sampled at 21:00, the spawning time in this
species. After expelling the eggs onto a plastic plate by gentle
abdominal pressure, transfer in a sieve (mesh size 1 mm2) and the OF
was poured off, collected and store at 4°C for analysis or -30°C for
lateral use. The obtained OF was then diluted with Hank’s solution at a
ratio of 1:1 before use.

Sampling Point

08:00 - 09:00 12:00 - 13:00 16:00 - 17:00 20:00 - 21:00

Total sample fish 19 15 20 21

Total male 7 6 12 9

Physiological status of female (Pandey et al., In press) Final oocyte maturation Ovulation and
spawning

All experimental fishes were reared under 14L-10D photoperiod (light, from 05:00 to 20:00) with water natural temperature (19.5°C ~ 20.9°C).

Table 1: Sampling information of Japanese anchovy in this study.

Sperm motility analysis
Each 5 µL of semen diluent was added to 500 µL of filtered SW and

mixed gently. Then, 6 µL of the sperm suspension was pipetted into a
Standard Count 2 Chamber slide (Leja products B.V., GN Nieuw
Vennep, Netherlands) and observed under a microscope (VANOX-T;
Olympus, Japan) connected to a digital high speed camera (HAS-L1
Ver. 2.14; Detect Inc., Japan). Video tracking was carried out at 1, 5, 10,
15, 45, and 60 min post activation. Each video was recorded at 100
frame per second (FPS) at a resolution of 640 × 680 CFG. Sperm
motility was analyzed using capture video under sperm tracking
software DIPP-Motion Pro (Ditect Inc., Japan).

Statistical analysis
All data are presented as mean ± standard error (SEM) and were

subjected to one-way ANOVA followed by the Tukey and Kramer HSD
test. Statistical significance was set at P ≤ 0.05. All statistical analyses
were performed using SAS 10.0 packed in Jump (SAS; Cary, NC, USA).

Results

Morphology of Japanese anchovy sperm
The sperm of the Japanese anchovy was quite small and moved in a

linear, semi linear, and circular direction. The total length of the sperm
was approximately 51 ± 1.3 µm including the oval head (3.0 ± 0.2 µm),
mid piece (1.7 ± 0.1 µm), and tail (48.3 ± 1.7 µm) (Figure 1). There
were no changes in morphological features at the different sampling
times (data not shown).
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Figure 1: Japanese anchovy sperm under a light microscope. A;
single sperm including head, mid piece and tail, B; motile sperm at
1 min post activation, C; Motionless sperm after 60 min post
activation. h: head, m: mid piece, t: tail.

Gonadosomatic index
Our previous study showed that the GSI in female Japanese anchovy

is approximately 6 to 8 when they are undergoing final maturation
(FOM), and reaches 20 at the spawning time around 21:00 under
natural environmental conditions [30]. In this experiment, there was
no significant (p>0.05) difference in the GSI of the males between the
sampling times (Figure 2). However, the values were slightly higher
and reached 11 ± 2 at 17:00 and 21:00 rather than 09:00 and 13:00,
indicating the GSI was higher before spawning.

Figure 2: Changes in male gonadosomatic index (GSI) at different
sampling times.

Sperm motility and moving velocity
The percentage of motile sperm significantly differed among the

four groups: highest motility was confirmed at 21:00 (P<0.0001, Figure
3). Initial motility, at 1 min after SW dilution, at the sampling times of
9:00, 13:00, 17:00, and 21:00 were 4 ± 5%, 12 ± 9%, 28 ± 7%, and 75 ±
12%, respectively. Motility decreased in accordance with time (minutes
post activation) and became almost inactive after 60 min post
activation. On the other hand, the moving velocity of the motile sperm
was not significantly different between the time sampling points, even
though the values were slightly higher close to the spawning time
(Figure 4). The average moving velocity at 1 min post activation was
123 ± 17, 135 ± 17, 127 ± 25, and 196 ± 26 µm/s, respectively. The
moving velocity remained constant for 15 min post activation, and
reached zero after 60 min post activation.

Figure 3: Variations in sperm motility and moving velocity under
seawater activation by sampling time and duration. Data are
expressed as mean ± standard error. Means sharing a letter
superscript are not significantly different (P<0.05).

Figure 4: Effect of ovarian fluid on motility and moving velocity in
different tracking point post activation. Data are expressed as mean
± standard error.

Effect of ovarian fluid on sperm motility and moving velocity
Comparisons of two activation mediums, SW and SW + OF, on

sperm motility and moving velocity showed no significant differences
(Figure 4). Initial motility at 1 min post activation for SW and SW +
OF was 75 ± 12% and 62 ± 20%, respectively. The levels continuously
decreased in accordance with time and reached 13 ± 12% and 14 ±
11%, respectively, at 60 min post activation. On the other hand, the
initial moving velocity was 196 ± 26 µm/s in SW and 169 ± 10 µm/s in
SW + OF, remained constant until 15 min post activation, and then
decreased.
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Discussion
Sperm motility in teleosts can be evaluated using a number of

methods as follows: ratio of motile sperm, moving speed, and motile
duration. In this study, we accurately analyzed the ratio of moving
spermatozoa, moving speed, moving style whether straight or circular
or both, and moving duration using a CASA system to clarify the
features and characteristics of activation in sperm of Japanese anchovy.

Japanese anchovy is known as a multiple spawning fish [6] and the
females spawn at intervals of two days or more [8]. Thus, spawning
occurs in group stocking tanks every day under appropriate rearing
conditions. In our previous report about final oocyte maturation in
Japanese anchovy, spawning occurred from 21:00 to 22:00 every day
under captive conditions as follows: 14L:10D photoperiod in water of
19.5 to 20.9°C. Moreover, final oocyte maturation started from 13:00 to
15:00 and progressed to reach ovulation by around 21:00 [30]. Group
synchronized spawning of Japanese anchovy is also reported under
wild [6] and captive conditions [30]. It is noteworthy that circadian
rhythm in sperm motility was also observed in each sampled male
under the same captive condition in this study, revealing that male
anchovy has a daily rhythm in acquisition of sperm motility. Moreover,
this finding suggests that all mature males can synchronously
participate in fertilization at the same time of spawning. As shown in
Table 2, time duration of sperm movements in Japanese anchovy is
quite longer, at approximately 60 min, compared with other fish
species. The characteristics of the spermatozoa may ensure successful
fertilization in independently spawned unfertilized eggs without
pairing behavior. In addition, this characteristic may enable a high
genetic variability because a clutch of eggs from one female can be
fertilized by spermatozoa, suspended in the surrounding seawater,
from many males.

 Duration of
motility

(s or min)

Initial
velocity
(µm/s)

References

Fresh-water fish
species

   

Esox lucius 60-80 s 160-170 [37]

Oreochromis
mossambicus

>30 min 70-80 [38]

Anguilla anguilla <30 min 120-160 [39]

Carassius auratus 3 min at 18-21°C ND [40]

Cyprinus carpio 200 s 140 [41]

Salmo irideus 60-105 s ND [42]

Sea-water fish species    

Thunnus thynnus 140 s 215-230 [43]

Merluccius merluccius 400-500 s 65-130 [43]

Gadus morhua 700-800 s 130 [43, 44]

Dicentrarchus labrax 50-60 s 120 [45]

Acipenser persicus 1.5-5 min at
15-20°C

ND [46]

Anarhichas minor >2 days 40-50 [20]

Scophthalmus maximus 600 s 220 [47]

Takifugu niphobles 50 s 160 [48]

Oncorhynchus mykiss 30 s 220 [49]

Abramis brama
orientalis

20 min ND [21]

Engraulis Japonicus 60 ± 11 min at RT 196 ± 26 Present
result

* Duration of motility refers to the period of time from activation to complete
inactivation where no single sperm is seen to be active. Temperature of
experimental test is indicated in °C; RT refers to ‘room temperature’.

**Initial velocity refers to the earliest value of sperm moving velocity at
activation. ND: not defined.

Table 2: Experimental values for duration of motility and initial
velocity for spermatozoa of various fish species.

In Pacific herring, which belongs to the same order (Clupeiformes)
as Japanese anchovy, intensive studies related to the initiation of sperm
motility have been conducted [10,31]. Although the Pacific herring
sperm did not move in seawater when released for spawning, they
started moving near unfertilized eggs through the action of herring
sperm activating protein (HSAP) contained in OF [32], and entered an
egg micropyle through the action of sperm motility initiating factor
(SMIF), which is present near the micropyle [31,33]. Also, the
functional relationship of these two physiological activation factors in
fertilization is discussed in Pacific herring [10]. Such activation is also
observed in the nest-building marine sculpin Hemilepidotus gilberti in
the presence of OF, resulting in an increased period of sperm motility
of up to 90 min, six times longer than in SW alone [34]. Sperm of
freshwater species, such as bullhead Cottus gobio L. [35] and the wolf
fish Anarhichas minor Olafsen [20], also showed an extended period
of sperm movement in the presence of OF, with motility lasting for 2 h
in the bullhead and 48 h in the wolf fish. In contrast, ovarian fluid did
not influence sperm motility in fifteen-spined stickleback Spinachia
spinachia [36]. In this study, the moving ability of the sperm also not
change in the presence of OF, indicating that OF may not influence
activation of sperm in Japanese anchovy. This finding may be related to
species-specific egg characteristics, for example, the eggs of Japanese
anchovy are pelagic and non-adhesive, whereas herring eggs are
demersal and adhesive. However, the mechanism is not clear, and thus
should be verified with further research.

In this study, we have clarified the process in which spermatozoa
acquire motility during a time period of approximately half a day. It is
suggested that the process occurs concomitant with female final oocyte
maturation. Synchronous functionalization of both female and male
gametes is suggested to ensure efficient fertilization in Japanese
anchovy. Moreover, long duration sperm moving seems likely to
guarantee a group synchronous non-pairing spawning style. To show
the rhythm is possible among teleost species having multiple spawning
characteristics, further research is necessary to determine such a
rhythm of sperm motility in other species. Finally, this is the first
report showing the time course of acquisition of sperm motility in a
multiple spawning teleost.
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