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Introduction
Cholangiocarcinomas (CCAs) are a heterogeneous group of rare

malignancies originating from the epithelial cells of the biliary tract,
which can be classified anatomically as intrahepatic (IHCC), perihilar
(PHCC), and distal (DCC) CCA. Although rare, the incidence of
CCAs has increased worldwide over the past 3 decades, which may be
caused by the following reasons: firstly, diagnosis of CCAs is usually in
the 70’s of age, its incidence is inevitably increased with the prosperity
of aging society; secondly, more CCAs are detected in recent years
because of the development of imagology, especially in developing
countries. However, the risk factors of CCAs remain to be confirmed at
present. In addition, the 5-year overall survival rate after diagnosis
remains low at 10% [1,2].

Surgery is the only curative treatment for CCA patients; however,
less than one-third of patients are resectable at diagnosis as metastasis
already occurred [3]. Moreover, majority of patients with CCAs
develop an early recurrence after resection. The relatively low resection
rate and high relapse rate provide the rational of adjuvant strategies to
improve prognosis of CCA patients. Unfortunately, the highly
desmoplastic nature, extensive support by a rich tumor
microenvironment, and profound genetic heterogeneity of CCAs all
contribute to its therapeutic resistance [4]. Therefore, further
investigation on the molecular mechanisms of CCA metastasis is
eagerly needed to find new diagnostic biomarkers and therapeutic
targets.

Discussion
CCAs are featured by prominent heterogeneous nature and highly

desmoplastic and hypovascularized stroma [5]. The initiation and
development of CCAs involve genetic and epigenetic alterations,
chromosome aberrations and profound changes in oncogene and
inflammatory signaling pathways [6]. Furthermore, IHCC, PHCC and
DCC exhibited completely different phenotypes in tumor
etiopathogenesis, diagnosis and treatment strategies and prognosis,
which makes CCAs a group of rather complicated malignances.

Metastasis in early stage is another characteristic of CCAs. IHCC
usually disseminated intrahepatically through venous system, while
lymphatic system is the most common route for PHCC and DCC
metastasis. EGFR has been identified as an independent risk factor for
IHCC prognosis and is associated with clinical factors involved in
PHCC and DCC progression and invasion. VEGF expression is

correlated with IHCC intrahepatic metastasis [7]. Several molecules,
including NGF, NCAM, MMP, Ach and TGF have been reported to
have prognostic significance, and offer clues to the mechanism of CCA
neural invasion [8].

Although many advances have been made in the diagnosis and
management of CCA, no standard adjuvant strategy for CCAs has
been made at present as current evidences for adjuvant therapy in
CCAs is poor. The vast majority of published literatures are statistically
underpowered, nonrandomized, restricted to short-term follow-up, or
demonstrated poor response rates [9]. Currently existing large-scale
randomized clinical trials also have their own inherent limitations. The
well-known large-scale randomized phase III trial of systemic therapy
performed by Valle J et al. showed that gemcitabine plus cisplatin was
associated with a significant survival advantage without the addition of
substantial toxicity, as compared with gemcitabine alone (11.7 months
vs 8.1 months) [10]. However, IHCC, PHCC and DCC were grouped
together in this study despite their obvious differences in anatomic
location, etiopathogenesis, diagnosis, treatment and prognosis [6,11].
Furthermore, adjuvant therapy agents, doses and scheduling varied
greatly among different literatures [12-14]. In addition, the clinical
data of CCAs are usually collected over many years with a limited
number of patients for the rarity of this disease, which inevitably lead
to bias for the variability of diagnosis and treatment strategy. All these
factors contribute to the difficulty of making comparisons between
series and preclude clinical practice guidelines in establishing a
“standard of care” for patients with advanced CCAs [15]. More
confirmed evidences and treatment strategies are eagerly awaited for
CCA patients.

In the era of precision medicine, targeted therapy based on gene
sequence and expression provides a potentially effective way for CCA
patients. Breakthroughs of immunologic therapies with antibodies
targeting cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) and
the programmed cell death protein 1 pathway (PD-1/PD-L1) have
been made in a variety of malignancies [16-21]. Recent clinical trials of
CCAs have focused on the agents targeted to specific genes such as
EGFR and VEGFR, but promising clinical activity was not observed to
date [22-24]. Further elucidation on tumor biology and molecular
markers of CCAs is essential for future evaluation of targeted therapies.

In an article published in Oncotarget, Yang et al. [25] reported that
FBXW7, a substrate recognition component of the SCF (complex of
SKP1, CUL1 and F-box protein) complex, could suppress epithelial-
mesenchymal transition, stemness and metastatic potential of CCA
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cells. The expression of FBXW7 was deficient in CCA cell lines and
tumor tissues compared with human intrahepatic biliary epithelial cell
line and tumor adjacent tissues. Besides, FBXW7 expression was
negatively correlates with tumor metastasis, TNM stage and
histological grade of IHCC and PHCC. The role of FBXW7 in
suppressing CCA metastasis, epithelial-mesenchymal transition and
stemness was confirmed both in vitro and in vivo. Mechanistically,
mTOR/ZEB1 signaling pathway was investigated to mediate the
function of FBXW7 in suppressing CCA metastasis. These results
defined a critical function of FBXW7 in regulating CCA metastasis.
Furthermore, mTOR could be a potential therapeutic target of CCAs,
especially for patients with FBXW7 deficiency.

The ubiquitin ligase component FBXW7 is regarded as the most
commonly deregulated ubiquitin-proteasome system protein in human
cancers [26]. It mediates the ubiquitin-dependent proteolysis of
numerous well-known oncoproteins, including Cyclin E, Notch, c-Jun,
c-Myc and mTOR [27]. Most of these substrates are transcriptional
regulators that control complex gene-expression programs and this
extends FBXW7 impact far beyond its direct substrates [26]. It has
been demonstrated to play an essential role in cell cycle progression,
cell proliferation, differentiation, DNA damage response, maintenance
of genomic stability, and neural cell stemness. Lessons learned from
FBXW7-associated murine cancer models also convincingly
demonstrated that it is a bona fide tumor suppressor gene with
extensive functions [26]. Recent genetic profiles of human cancers
based on high-throughput sequencing revealed that FBXW7 is among
the most frequently mutated cancer genes [28-33]. Thus, FBXW7 has
been illuminated to be a central mediator in tumorigenesis [34].
Interestingly, a recent report showed that FBXW7 could inhibit cancer
metastasis in a non-cell-autonomous manner by modulating the
recruitment of both monocytic myeloid-derived suppressor cells and
macrophages through FBXW7/NOTCH/CCL2 axis [35], implicating
FBXW7 may also be a critical regulator in tumor microenvironment.
With the roles and mechanisms of FBXW7 in suppressing
tumorigenesis being further illuminated gradually, novel therapeutic
strategies targeting FBXW7 pathway in cancer have been designed
[26]. Furthermore, FBXW7 has been demonstrated to be a prognostic
marker in colorectal cancer, gastric cancer, IHCC, hepatocellular
carcinoma and T cell acute lymphoblastic leukemia [36-40], indicating
FBXW7 may be measured perioperatively for making adjuvant
therapeutic regimen and evaluating prognosis. Yang et al. [25]
demonstrated FBXW7 plays a pivotal role in suppressing CCA
metastasis, which may serve as an essential clue for targeting FBXW7
pathway in CCA patients.

mTOR is a well-known ubiquitination target of FBXW7 [41].
Several mTOR inhibitors (sirolimus, everolimus and temsirolimus)
have been approved by FDA with indications for cancer treatment
[42]. Due to the fundamental role that mTOR plays in major cell
processes, mTOR inhibitors are usually used in combination with other
adjuvant therapy agents. Recently, several preclinical experiments have
obtained positive results in enhancing the anti-tumor effects by
combining mTOR inhibitors with gemcitabine in treating advanced
pancreatic cancer [43,44]. Moreover, phase I clinical trial has
demonstrated the favorable toxicity profile of the combination in
pancreatic cancer patients [45]. As known, CCAs share many
similarities with pancreatic adenocarcinoma in tumor phenotypes,
including extremely stroma-rich and resistant to chemotherapy. As
mentioned above, gemcitabine is one fundamental agent in CCA
chemotherapy. Moreover, mTOR inhibitor, combined with other
antitumor agents or not, could inhibit CCA development, and mTOR

has been considered to be a potential therapeutic target of CCAs in
recent reports [46-48]. Especially, it has been validated that inhibition
of mTOR signaling pathway could protect FBXW7-deficient mice from
radiation-induced tumor development [49]. Similar result was
observed in a clinical case harboring an FBXW7 mutation both
clinically and radiographicly benefited from treatment with the mTOR
inhibitor temsirolimus [50]. Thus, it is promising to combine mTOR
inhibitors with gemcitabine in CCA adjuvant therapeutic regimen,
especially for patients with FBXW7 deficiency.

Conclusion
In conclusion, in spite of the significant progress in cancer research

and management, the treatment strategy and prognosis of CCA
patients are still poor now. More accurate and optimal evidence are
needed for discovering novel therapeutic targets and making standard
treatment strategy. Considering the metastatic feature of CCAs and the
mechanistic and therapeutic roles of FBXW7 and mTOR in CCAs
revealed by Yang et al. and others, FBXW7-mTOR pathway may
provide a potential therapeutic target of CCAs, which deserves further
investigation.
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