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Introduction
Driver fatigue is one of the main causes of traffic crashes. Each 

year, 100,000 police-reported crashes were directly caused by driver 
fatigue, which resulted in about 1,550 deaths, 71,000 injuries, and 
$12.5 billion financial losses, according to estimation of the National 
Highway Traffic Safety Administration (NHTSA, 2005). Driver fatigue 
was involved in 1.2% to 1.6% of all police-reported crashes and 3.2% of 
the fatal crashes in the United States (Knipling & Wang, 1995; NHTSA, 
1996). The National Sleep Foundation estimated in 2002 that 51% of 
adult drivers had driven a vehicle while drowsy and 17% had fallen 
asleep behind the wheel.  

These traffic-related deaths and financial losses have encouraged 
the development of technologies to mitigate the risks of driver fatigue. 
Researchers often used vehicle-mounted cameras and laptop computers 
to detect and monitor driver fatigue. Indicators of fatigue include the 
movement of driver’s face, eye blink rate, head nod, and yawn of mouth 
etc. [1,2]. Another approach is to use electrophysiological signals 
to detect driver fatigue [3]. The relative powers of EEG signals, for 
example, (α+β)/θ, α/ β, (θ+ α)/ (α+β) and θ/ β, are indicative of driver 
fatigue [4]. However, both the camera-based and EEG-based solutions 
require drivers to purchase special equipment, which limits the 
popularity of these fatigue detection technologies. A more technically 
feasible and financially practical solution is to build the fatigue 
detection technology using smartphones. As of 2012, as many as 45% of 
American adults owned a smartphone [5]. The computational powers 
of smartphones keep increasing, which allows the computer vision 
algorithms to run reasonably fast in smartphones. A smartphone-based 
fatigue detection technology would be more portable and affordable 
than many alternative fatigue detection systems, which use devoted in-
vehicle cameras or EEG sensors [6]. 

The proposed system in this paper uses a smartphone (either 
an Android smartphone or an iPhone) as a driver fatigue detection 
system. The front camera of a smartphone captures images of the 
driver, and then feeds the images to the CPU of the smartphone for 
image processing. Intel’s open-source computer vision framework, 
the OpenCV 2.3 for the Android and iOS operating system, is used 
to develop the computer vision algorithms for face detection and eye 
detection. 

A simulated driving study was also carried out to describe the visual 
indicators of drowsy driving. In the rest of the paper, section 4 describes 
the algorithms for fatigue detection; section 5 describes the battery 
performance of smartphones; section 6 describes a simulated driving 
study, reporting visual indicators of drowsy driving. Discussions about 
the potential application and future studies are described in section 7. 

Methods
Equipment and platform

The algorithms were developed for both the Android and iPhone. A 
Samsung Galaxy Note and an iPhone 4s were used in the development. 
The Samsung Galaxy Note Android smartphone was first released in 
late October 2011 and was available in North America in February 
2012. The smartphone runs the Android 2.3.6 operating system with 
the kernel 2.6.35.11. The smartphone has a CPU of 1.4  GHz  dual-
core  ARM  Cortex-A9  (GT-N7000), with 1  GB  RAM memory. The 
battery is Li-ion 2500 mAh. The front camera has 2M pixel resolution.

The iPhone 4s was released in October 2011. The iPhone 4s has an 
800MHz dual-core ARM Cortex-A9 CPU with 512 MB memory. The 
iPhonehad a non-removable Li-Po 1432 mAh battery. The camera of 
the iPhone was 8 million pixels with a resolution of 3264x2448 pixels.

The computer vision algorithms were implemented using the 
Java programming language and the OpenCV 2.3 computer vision 
framework for the Android. The OpenCV framework was developed 
and released under a BSD license by Intel and freely available for both 
academic and commercial applications.
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Abstract
Driver fatigue is the major cause of traffic crashes and financial losses. This paper presents an advanced 

computer vision and mobile technology using smartphones to monitor visual indicators of driver fatigue, allowing 
the possibility of making fatigue detection systems more affordable and portable. This technology uses the front 
camera of a smartphone to capture images of drivers, and then uses advanced computer vision algorithms to detect 
and track the face and eye of the drivers. Head nod, head rotation and eye blinks are then detected as indicators of 
driver fatigue. A simulated driving study showed that drowsy drivers differed significantly in the frequency of head 
nod, head rotation and eye blinks, compared to when they were attentive. The smartphone-based fatigue detection 
technology may have important applications in reducing drowsiness-related traffic accidents and improving driving 
safety.
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System setup

Figure 1 shows the setup of the proposed driver fatigue detection 
system in real-world driving. The smartphone can be mounted on the 
dashboard of a vehicle. The smartphone is placed horizontally with the 
front camera aimed towards the driver’s face. 

Algorithm framework

The fatigue detection algorithms are carried out in five steps. 
The first step is image preprocessing. Figure 2 depicts the algorithm 
framework for the driver fatigue detection system. Computer vision 
performance depends heavily on the image size, which is a great concern 
for smartphone applications considering the limited computational 
resources of smartphones. The second step is face detection. A face 
is located using Haar-like feature detectors. The third step is eye 
detection within the upper half of the detected face. The fourth step is 
blink detection by estimating the changes in black pixels within the eye 
regions. The fifth step is fatigue judgment.

Image preprocessing

The camera of the smartphone captures images at the resolution 
of 720×1280. The raw image is first reduced to a resolution of 180 × 
320, a quarter of its original resolution. Then, the resized color image is 
converted to a grey image. Resized images and grey/color conversion 
can greatly reduce the amount of data that need to be processed, which 
makes the smartphone application run much faster. 

Haar-like feature detector

A Haar-like feature detector is used for face detection and eye 
detection. The Haar-like feature detector using the AdaBoost algorithm 
is commonly used in face detections because it is fast and accurate [7,8]. 

A Haar-like feature detector considers adjacent rectangles at 
a specific region in a moving detection window. An image area can 
be described as the combination of different Haar-like features. The 
number and type of Haar-like features can be used to represent different 
objects. We define an accumulated sum of intensity from the origin as:

( ) i j
x 0 y 0S i, j I (i, j)= == ∑ ∑  

where I (i,j) is the intensity at the location (i,j), S(i,j) is the accumulated 
sum of intensity from origin at the location (i,j). 

The sum of intensity of a rectangle in the image, defined as two 
points at (xleft, yup) and (xright, ydown), can be easily calculated as the 
following equation, which greatly speeds up the computation: 

Sacc (xright,ydown) - Sacc (xleft,ydown)- Sacc (xright,yup)+ Sacc (xleft,yup)

Face detection

The face is detected using the Haar-like feature detector for faces 
[7,8]. The centroid of the face is then calculated and used to determine 
head nod and head rotation. A head nod is defined as a large velocity 
of the head centroid, with vertical velocity larger than horizontal 
velocity. A head rotation is defined as a large velocity change of the 
head centroid, with the horizontal velocity larger than the vertical 
velocity. An empirical value of 100 pixels per second is set as the 
velocitythreshold for the horizontal and vertical head movement. 

Eye detection

The commonly used algorithms for eye detection include Hough 
transform, template matching, Principle Component Analysis (PCA), 
and the Adaboost algorithm. In this paper, the eye is detected with the 
Adaboost algorithm, using the Haar-like feature detector for eyes [7,8]. 
To improve computational efficiency, the search area for eyes is limited 
to the upper portion of the detected face. Figure 3 depicts the areas of 
interest for eye detection within a face. 

Horizontally, the eye area is between 1/6 to 5/6 of the face; 
vertically, the eye area is within 1/4 to 1/2 of the face. The width and 
height of the areas of interest for eye detection is determined by the 
following criterions:

Waoi = Wface × 1/4

Haoi = Hface × 1/3
Figure 1: The system setup of the driver fatigue detection system using a 
smartphone.

Figure 2: The algorithm framework for the driver fatigue detection system.
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Blink detection

An eye blink is detected using the change of black pixels in the eye 
region. An open eye will have a larger visible pupil than a blinking eye. 
The pupil is often darker than the color of the rest of the eye. Thus, an 
open eye should have more black pixels. 

In the detected eye region, the eye image is converted to a binary 
image using image thresholding. Then, the ratio of black pixels in the 
binary image of the eye is calculated. The ratio of black pixels is used as 
the criterion for eye blinks. Figure 4 shows an example of an open eye 
and a closed eye, and their binary images after thresholding.

Fatigue detection

Three criteria are used to determine the state of driver fatigue, 
that is, the frequency of head nods and head rotationsand PERCLOS 
(Percent Eye Closed). A drowsy driver may exhibit frequent head 
nodsand eye blinks.

PERCLOS is another important and frequently used indicator of 
fatigue. PERCLOS is defined as the percent of time when the eyes are 
closed in a short time window (often 30s). An eye is treated as closed 
if the height of the visible pupil is smaller than 30% of its maximum 
opening.

In this paper, PERCLOS is calculated using the following equation:

PERCLOS = 
30×

blinkN
S

where Nblink is the number of eye blinks in the recent 30 second time 
window. S is the sampling rate. 

Figure 5 shows a screenshot of the Fatigue Sensing application in 
detection mode. It shows the development version of the application 
running in an iPhone 4s. Faces of drivers were not shown in order 
minimize potential visual distractions. The spinning ring in the center 
indicates the application is running. Users can set the parameters 
such as alert sound and volume in the Setting tab. Their frequencies of 
drowsiness report by time or by drives can be viewed in the Report tab. 

Battery Performance
Smartphone has limited battery. Thus, how long the smartphone 

can support the fatigue detection application is critical for fatigue 
monitoring while driving. Both Android and iPhone smartphones are 
tested for its battery performance when running thefatigue detection 
algorithm. 

The Samsung Galaxy Note Android smartphone was tested with 
WiFi and 3G data enabled. The Task Manager application is used to 
log the battery consumption data. As shown in Figure 6, the Fatigue 
Sensing app in Android consumes about 23.76% of battery for one 
hour’s continuous use. The battery of a typical Android smartphone 
can last about 4.2 hours without charging. 

The iPhone 4s smartphone was tested with WiFi and 3G data 

Figure 3: Interest area for eye detection within a face. Wface is the width of 
the face area; Hface is height of the face area; Waoi is the width of the area 
of interest for eye detection; Haoi is the height of the area of interest for eye 
detection.

a b 

c d 

Figure 4: Demo for blink detection. (a) an open eye region; (b) binary image 
after thresholding of the image in (a); (c) closed eye region; (d) binary image 
after thresholding of the image in (c).

Figure 5: Screenshot for the Fatigue Sensing application in detection mode.
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enabled. The Battery Monitor was used to log the battery consumption 
data. As shown in Figure 7, the Fatigue Sensing app in iPhone consumes 
about 24.84% of battery for one hour’s continuous use. The battery of 
iPhone 4s can last about 4.02 hours without charging. 

Driving Simulation Study
To evaluate the effectiveness of smartphone-based driver fatigue 

detection, a simulated driving experiment was carried out to explore 
the visual indicators of driver fatigue. 

Participants

Twenty experienced drivers (8 females and 12 males) were recruited 
from the local community of Wichita, KS by online advertisements 
and posters.The average age of the participants was 24.95 years with 
a standard deviation of 3.72 years. All participants had a valid driver’s 
license for at least two years at the time of the experiment. They have 
held a driver license for 6.22 years on average with a standard deviation 
of 3.98 years. Their yearly mileage was 11605.88 miles with a standard 
deviation of 9129.11miles. All participants were well informed about 
the experiment and signed a consent form to participate in the 
experiment. Participants were thanked and reimbursed with 10$/hour 
for a two hour experiment. 

Equipment and materials

The driving task was simulated using a desktop driving simulator. 
The driving simulator was consisted of a 39-inch Insignia LCD TV 
monitor, a Dell desktop computer, and anMC2 steering wheel and 
pedal. The TORCS driving simulator software running inthe Windows 
8 operating system was used to create and simulate the driving task. 

An iPhone 4s smartphone running the latest version of Fatigue 
Sensing application was mounted on the desktop of the driving 
simulator. The smartphone used computer vision algorithms to detect 
visual indicators of driver fatigue, including head nods, head rotations 
and eye blinks. 

The Stanford Sleepiness Scale (SSS) and Karolinska Sleepiness 
Scale (KSS) were used to measure subjects’ self-perceived drowsiness 
at the beginning and ending of each drive session. The Stanford 
Sleepiness Scale is a 1-item measure of sleepiness in a given moment 
[9]. The Karolinska Sleepiness Scale [10] is a 1-item scale developed 
by the Karolinska Institute is a quick measure of “state” sleepiness. It 

measures how sleepy a person is in a given moment. Please refer to 
Appendix for the detailed information of the scales.

Driving task

A monotonous driving task with few road stimuli and lasted ninety 
minutes was designed to induce driver fatigue. The road was a two-
lane rural road. The driving task was a classic car following task [11-
13]. Drivers were instructed to drive in the right lane, following a lead 
vehicle (Figure 8). The lead vehicle broke at random time intervals. 
Subject drivers were instructed to maintain a safe drive distance from 
the lead vehicle and brake when necessary. 

Procedure

Participants were screened before the driving task. To qualify 
for the study, participants should have at least two years driving 
experience, with normal or corrected to normal vision ability, no 
medical contraindications, such as motion sickness, alcoholism, 
drug abuse, and psychological or intellectual problems likely to limit 
compliance. Participants were asked not to have caffeine and tea for 4 
hours and alcohol for 24 hours before the study. 

Upon arrival at the lab, participants were informed about the 
experiment, signed the consent form, and filled out a demographical 
information survey. Then participants practiced driving in the simulator 
for 10 minutes to get familiar with the hardware and operations. They 
were allowed to ask any questions during the practice drive. When 
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Figure 6: Battery consumption of the Fatigue Sensing app in Samsung Galaxy 
Note-I running Android 2.3 operating system.
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Figure 7: Battery consumption of the Fatigue Sensing app in iPhone 4s.

Figure 8: The car following task.
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Figure 9: Self-reported drowsiness across drive sessions.

participants were comfortable to drive in the driving simulator, they 
first self-evaluated their drowsy state using the Karolinska Sleepiness 
Scale (KSS) [10] and Stanford Sleepiness Scale (SSS) [9], then drove 
in three drive sessions continuously, each lasting 30 minutes. At the 
end of the drive session, they evaluated their drowsy state again using 
the KSS and SSS scale. Visual behaviors (including head nods, head 
rotations, and eye blinks) and vehicle dynamics were automatically 
saved by the iPhoneand the TORCS simulation software. 

At the end of the experiment, participants were thanked and 
rewarded with $ 20 in total for a two hour experiments. Participants 
were allowed to stay in the lab until they felt comfortable to leave. 

Results
Self-reported drowsiness

At the beginning and ending of each session, subjects self-reported 
their drowsiness in two scales, the Stanford Sleepiness Scale (SSS) 
and Karolinska Sleepiness Scale (KSS). As shown in Figure 9, the self-
reported drowsiness steadily increases across drive sessions in both 
scales. 

The self-reported drowsiness score in SSS produces a main effect of 
drive sessions, F(3, 57) =60.17, p<.001, η2= 0.76. Pair-wise comparisons 
show that all the session-pairs are significantly different from each 
other, all ps <0.01. The data of self-reported drowsiness score in the KSS 
produces similar results. Self-reported drowsiness data thus confirm 
the successful manipulation of the driving study to incur drowsiness. 

Head movements

The head nodding frequency produces a main effect of drive 
sessions, F (2, 38) =9.74, p<0.001, η2= 0.34. As shown in Figure 10, 
the frequency of head nodding gradually increases as drive duration 
increases. Pair-wise comparisons show that the frequency of head 
nodding in session 1 (M = 0.16Hz, SD =0.17Hz) and session 2 (M = 
0.21Hz, SD =0.19Hz) are significantly lower than that of session 3 
(M = 0.28Hz, SD =0.25Hz), t (19) =3.66, p =.002 and t (19) =2.76, p 
=0.01 respectively. The frequency of head nodding in session 2is also 
significantly larger than session 1, t (19) =2.16, p =0.04. 

The frequency of head rotation is also significantly different across 
drive sessions, F(2,38) =11.93, p<.001, η2 = 0.39. As shown in Figure 11, 

the frequency of head rotation gradually increases as driving duration 
increases. The frequency of head rotation in session 1 (M = 0.24Hz, 
SD =0.22Hz) and session 2 (M = 0.40Hz, SD =0.35Hz) is significantly 
smaller than that in session 3(M = 0.53Hz, SD =0.43Hz), t (19) =3.85, 
p =0.001 and t (19) =3.42, p =0.003 respectively. The frequency of head 
rotation in session 2 is also significantly smaller than session 3, t (19) 
=2.49, p =0.02.

The increasing frequency of head rotations as driving duration 
increased may be a combination of the specific driving scenario in this 
study and the drivers’ strategy. The driving scenario in this study had 
only one route, without road side vehicle, traffic lights and pedestrians. 
Thus, drivers did not have to scan the environment by rotating their 
heads, resulting in a low baseline for head rotations. Drivers in session 
2 and 3 increased their frequency of head rotations, which was a 
possible strategy to keep them awake when they were still aware of 
their drowsiness states, according to their self-report at the end of the 
experiment. 

Eye movements

When the eye blinks, the percentage of black pixels in the eye 
area decreases. Thus, the standard deviation of percent of black pixels 
reflects the frequency of eye blinks. As shown in Figure12, the standard 
deviation of percent of black pixels in the eye area increases gradually 
as driving duration increases, producing a marginally significant main 
effect of drive sessions, F (2, 38) =3.06, p =0.058, η2 = 0.14. Pair-wise 
comparisons show that the percent of black pixels in session 1 (M = 
0.09, SD =0.04) is significantly smaller than that of session 3(M = 0.10, 
SD =0.04), t (19) =2.14, p =0.046. The percent of black pixels in the 
eye area does not differ between session 1 and session 2 (M = 0.08, SD 
=0.04), or session 2 and session 3, t (19) =0.95, p =0.35 and t (19) =1.57, 
p =0.13 respectively. 

The frequency of eye blinks is shown in Figure13. The blink 
frequency gradually increases as driving duration increases, producing 
a marginally significant main effect of drive sessions, F (2, 38) =3.02, p 
=0.06, η2 = 0.14. Pair-wise comparisons show that the blink frequency 
in session 1 (M = 0.08, SD =0.24) is significantly smaller than that of 
session 2 (M = 0.11, SD =0.24) and session 3 (M = 0.18, SD =0.42), t 
(19) =2.28, p =0.034 and t (19) =2.12, p =0.047 respectively. The blink 
frequency does not differ between session 2 and session 3, t (19) = 1.29, 
p =0.21. 
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The average PERCLOS is shown in Figure14. The average PERCLOS 
increases numerically, but does not reach statistical significance, F (2, 
38) =2.24, p =0.12, η2 =0.11. Pair-wise comparisons show that the 
average PERCLOS in session 3 (M = 0.24, SD =0.01) is significantly 
larger than that of session 2 (M = 0.23, SD =0.01), t (19) =2.40, p =0.03. 
The average PERCLOS does not differ between session 1(M = 0.23, SD 

=0.01) and session 2, or session 1 and session 3, t (19) =0.61, p =0.55 
and t (19) = 1.74, p =0.10 respectively. 

The increases in the standard deviation of percent black pixels in 
the eye area, the blink frequency and the average PERCLOS indicate 
that the eye movement behaviors change systematically as a result of 
long driving duration. 

Discussion
To reduce the risks of driver fatigue, we developed a smartphone-

based technology to monitor visual indicators of driver fatigue, 
including head nods, head rotations, and eye blinks. This smartphone-
based fatigue detection technology provides a portable and affordable 
alternative to existing fatigue detection systems. 

Computer vision technology has a wide application in improving 
driving safety. Many safety technologies (such as fatigue detection 
system, forward collision warning system and lane departure warning 
system) rely on computer vision algorithms. However, most of the 
computer vision-based technologies need devoted cameras and 
computer processors, thus, making the price of the technologies too 
high to be affordable for average drivers. The invention of smartphones 
makes the processors and cameras much smaller in its size and more 
portable. Smartphone-based computer vision technologies for driving 
safety does not require additional equipment than the smartphones 
drivers already have. Thus, smartphone-based technologies are more 

Figure 10: The frequency of head nodding.

Figure 11: The frequency of head rotation.

Figure 12: The standard deviation of the percent black pixels in the eye area.

Figure 13: The mean of blink frequency.

Figure 14: The average PERCLOS (Percent Eye Closed).
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likely to be commonly adopted by average drivers and gain a wide 
popularity. For example, researchers have developed lane departure 
warning systems using iPhone [14,15] and a vehicle detection system 
using an Android smartphone [16]. To our best knowledge, the 
fatigue detection algorithms described in this paper are the first time 
implemented in smartphones. Fatigue detection using smartphones 
has the potentials to be more widely adopted than traditional camera 
based or EEG based fatigue detection technology. 

With the limited computational resources of smartphones, our 
algorithms still achieve a high sampling rate of about 7Hz, which is fast 
enough for practical applications. We strive to obtain this high sampling 
rate by grey color conversion, image resizing, and localization of the 
areas of interest. The rapid development of smartphone technology and 
its hardware will allow even better computational performance of the 
fatigue detection algorithm. 

Future study should include research to improve the quality of 
face and eye detection under low-lighting conditions, for example, 
during nighttime driving on the highway. Infrared illuminator may be 
able to improve the quality of face and eye detection and enhance the 
algorithm performance [17]. Besides eye blinks and head movements, 
other indicators of driver fatigue, such as yawn detection and vehicle 
dynamics, should also be considered and incorporated for driver 
fatigue detection [1]. 

This smartphone-based fatigue detection is not without limitations. 
For example, the computer vision algorithms use battery quickly. 
Drivers are expected to use this technology with a car charger to 
powerthe smartphone. Future breakthroughs in battery technology 
may reduce this limitation. Another limitation is that eye detection 
is difficult for drivers wearing sunglasses. When eye detection is not 
possible, head nods and rotations can still be used to detect fatigue. 
In these scenarios, yawn detection and vehicle dynamics should 
be considered to compensate for the reduction of fatigue detection 
performance when eye blink information is not available. 

This research contributes to the effort to detect driver fatigue by 
providing a working prototype for real-time fatigue detection using 
an Android smartphone or an iPhone. This technology has important 
applications for improving driving safety. 

Appendix
Scales to measure driver fatigue

Stanford sleepiness scale
Please circle the item which best describes your current sleepiness 

level.

1 = Feeling active, vital, alert, or wide awake 

2 = Functioning at high levels, but not at peak; able to concentrate

3 = Awake, but relaxed; responsive but not fully alert

4 = Somewhat foggy, let down

5 = Foggy; losing interest in remaining awake; slowed down

6 = Sleepy, woozy, fighting sleep; prefer to lie down

7 = No longer fighting sleep, sleep onset soon; having dream= like 
thoughts

Karolinska sleepiness scale
Please circle the item which best describes your current sleepiness 

level.

1= Extremely alert 

2= Very alert 

3= Alert 

4= Rather alert 

5= Neither alert nor sleepy 

6= Some signs of sleepiness 

7= Sleepy, but no effort to keep alert 

8= Sleepy, some effort to keep alert 

9= Very sleepy, great effort to keep alert, fighting sleep.
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