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Introduction
Obesity is a worldwide epidemic that results in enormous costs to 

health-care systems [1,2]. Data from the World Health Organization 
(WHO) have shown that the incidence of obesity worldwide has 
doubled since the 1980s [3]. Obesity-associated inflammation is widely 
regarded as one of the major factors driving insulin resistance (IR) 
and the onset of type-2 diabetes (T2D). A hallmark of inflammation 
in obesity is the accumulation and expansion of visceral adipose tissue 
(VAT) macrophages with an inflammatory phenotype, which, along 
with the decrease in anti-inflammatory T-regulatory cells in the VAT, 
results in an imbalanced environment and is thought to drive IR and 
the progression to T2D in obese subjects [4]. In spite of the relevance 
of the effects of inflammatory states on the hematopoietic system, 
leading to cytokine dysregulation, disturbances in cell proliferation, 
self-renewal rates, metabolism and cell cycle, little is known regarding 
the changes in the hematopoietic system induced by the inflammatory 
state carried by obesity [5].

An important aspect observed during chronic inflammatory states 
is the appearance of extramedullary hematopoiesis (EMH), which 
consists in the ability of marrow cells to home, proliferate, and mature in 
extramedullary organs of adult animals. This involves pathophysiologic 
alterations in the stem cells and their microenvironment, enveloping 
extracellular matrix and stromal cells, in addition to local and systemic 
chemokine production [6]. Of importance here are our previous studies 
showing the relevance of the restoration of both the myelosuppression 
and the increased splenic EMH for recovering the homeostatic 

balance in the immunocompromised host, as observed during chronic 
inflammatory states such as infection and tumors [7-16]. 

The search for natural agents able to minimize the undesirable 
effects of the available pharmacological treatment for obesity [17,18] 
is receiving increasing attention [19,20]. In this context, Chlorella, a 
microscopic single-celled freshwater alga containing all the ingredients 
necessary to promote human health [21] has emerged as an alternative 
agent against obesity-related complications [22,23]. Chlorella is called 
an adaptogen, meaning it helps protect the body against various 
stresses, including physical and psychogenic [7,24-32].

Of relevance, the stimulation of the pool of hematopoietic stem cells 
and the activation of mature leukocytes consisted of important aspects 
of Chlorella effects on the hematopoietic system. Our previous studies 
demonstrate a significant recovery in the reduced number of myeloid 
progenitor cells (CFU-GM) in the bone marrow of immunosuppressed 
host, in consequence of biologically active cytokine release, which 
was observed in several experimental models of psychogenical and 
physical stress [7,11,26,28-30,32-36]. These results demonstrated that 
Chlorella up-regulates the production of colony-stimulating factors in 
the same manner as for CFU-GM, leading to appropriate production 
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Abstract 
In this study, Balb/C mice received standard or high-fat diet (HFD) and were treated with Chlorella for 5 days 

prior and 4 weeks after the onset of HFD. We demonstrate here, for the first time in the literature, that in HFD-
induced obesity, the rapid decline in the number of granulocyte and macrophage progenitors (CFU-GM) in the bone 
marrow is associated with a continuous migration/increase of these cells into the spleen, a process characterized as 
extramedullary hematopoiesis (EMH). No changes in the size of the primitive (LSK), and reduction in the size of the 
granulocyte/macrophage (GMP) hematopoietic populations in the  bone marrow were observed. We also found that 
increased expression of C-C chemokine receptor type 2 (CCR2) on GMP in the spleen might be a mechanism related 
to the migration of CFU-GM to this organ. Increased serum colony-stimulating activity (CSA) was also found in obese 
mice. IL-6 serum levels, measured at the end of the treatment (12 weeks), when impaired glucose tolerance was 
already established (22), was increased. Treatment with Chlorella restored to normal values the numbers of CFU-
GM in the marrow and spleen, the percentage of GMP in the marrow, the expression of CCR2 on spleen GMP, the 
increased serum levels of IL-6, and further increased CSA compared to obese mice. These findings suggest the ability 
of Chlorella to modulate the shift in hematopoietic topographical hierarchy, probably due its anti-inflammatory properties.
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and efficient mobilization of early immune cells, which are crucial to 
the performance of the surveillance as well as the effector functions of 
the immune system. Importantly, the ability of the alga to reverse both 
the myelosuppression and the splenic EMH was related to its ability to 
recover the homeostasis [7,11,26,30,33].

In addition, clinical and experimental studies in the literature 
reported a series of biochemical and physiological effects of Chlorella, 
such as decreasing serum cholesterol fractions, triglycerides and 
glucose levels in addition to reducing body weight [37-41]. In a recent 
study [22], we demonstrated that prevention by the alga of high-fat diet 
(HFD)-induced insulin resistance in obese mice is due to improvement 
in insulin signaling pathway by increasing phosphorylation levels of 
IR, IRS-1 and Akt and reducing phosphorylation levels of IRS-1ser307. 
We also found that Chlorella prevents HFD-induced dyslipidemia by 
reducing triglyceride, cholesterol and free fatty acid levels. Altogether 
our findings suggest that prevention by the alga of the deleterious 
effects induced by HFD is a good indicator for its use as a prophylactic-
therapeutic agent against obesity-related complications.

In this context, the present study was designed to investigate the 
modulating therapeutic effects of Chlorella on the production of CFU-
GM in the bone marrow of obese mice and their migration into the 
spleen (EMH). Colony-stimulating activity (CSA) and interleukin 
(IL)-6 levels in the serum were investigated. The numbers of primitive 
(LSK) and granulocyte/macrophage progenitor (GMP) hematopoietic 
populations in the bone marrow and the expression of C-C chemokine 
receptor type 2 (CCR2) on GMP cells in the spleen were also studied.

Materials and Methods
Mice

Six-week-old male Balb/C mice were maintained in a controlled 
environment (room temperature: 22 ± 3°C, humidity: 55 ± 5%), under 
specific pathogen-free conditions in a regimen of 12 h dark/light cycles. 
The animals were randomly divided into four groups (n=6 mice per 
group), as follows: standard rodent chow and vehicle (control-CT), 
standard rodent chow and Chlorella (CV), high-fat diet and vehicle 
(HFD) and high-fat diet+Chlorella (HFD+CV). The HFD consisted of 
55% calories from fat, 29% from carbohydrate and 16% from protein, 
as described previously [22,42-44]. The animals received water and 
their respective diets ad libitum for the whole period. Body weight 
and fasting blood glucose were measured weekly [22]. CFU-GM, 
CSA assays, flow cytometric analysis of LSK, GMP and CCR2 were 
performed at 4 weeks of HFD intake. At the end of the experiment (12 
weeks), IL-6 levels were measured. All animal studies were approved 
by the Animal Care and Use Committee at the State University of 
Campinas (process: 1987-1) and are in accordance with the guidelines 
for the Care and Use of Laboratory Animals.

Chlorella and treatment

The dried alga Chlorella (Parachlorell beyerinckii CK-5), previously 
identified as Chlorella vulgaris CK-5, a strain of unicellular green alga, 
was kindly provided by Research Laboratories, Chlorella Industry 
Co., Ltd. (Fukuoka, Japan). Previous study from our laboratory 
demonstrated the nutritional composition of the alga [22]. Chlorella 
was prepared in distilled water and doses of 50 mg/kg/day were given 
orally once daily by gavage of 0.2 ml volume/mouse for 5 days prior and 
4 weeks after the onset of HFD. CT and HFD groups received vehicle 
(distilled water) only. In all groups, the experiments were performed 
during the morning, 24 h after the last administration of Chlorella. The 
selection of Chlorella dose was based on the preliminary dose-response 

studies performed in our laboratory [11,26]. Prophylactic-therapeutic 
administration was used in all our studies, since our aim is to investigate 
the modulating effects of Chlorella as a functionally whole food able 
to protect the host acting as a biological response modifier, what also 
justifies the use of the oral route for the administration of the alga. 

Progenitor cell assays

CFU-GM assays were performed using bone marrow and spleen 
cells. The concentration of 1 × 105 cells/mL for bone marrow and 2 
× 105 for spleen cells were cultivated in duplicate agar cultures in 35-
mm Petri dishes. The medium used was Dulbecco’s Modified Eagle’s 
Medium (DMEM, Sigma Chemical Co. St. Louis, MO) containing 20% 
fetal bovine serum and 0.3% agar. Colony formation was stimulated by 
the addition of recombinant murine macrophage–granulocyte colony-
stimulating factor (rmGM-CSF, Sigma) at a final concentration of 0.5 
ng/mL. The cultures were incubated for seven days in a fully humidified 
atmosphere of 5% CO2 in air and colony formation (clones >50 cells) 
was scored at 35X magnification using a dissection microscope [45]. 

Assay for serum colony-stimulating activity

The mice were bled from the heart under deep halothane anesthesia. 
Within each experimental group, the blood was pooled, left at 37°C for 
30 min, and the clots were allowed to retract overnight at 4°C. Following 
centrifugation, the serum was removed and stored at - 20 °C. CSA was 
determined by measuring the ability of serum obtained from control 
and experimental groups to stimulate hematopoietic progenitor form 
CFU-GM (1 × 105 cells) from normal mice. The results were expressed 
as units of CSA/mL, where 1 unit/mL was defined as the lowest amount 
of CSA able to induce the formation of colonies [46]. 

Quantification of IL-6

Levels of IL-6 in the serum of obese mice were quantified by 
sandwich ELISA in microtiter plates (96-well flat-bottom maxisorp 
microplate-NUNC, Roskilde, DM) using the following Kit: anti-IL-6 
(BD Biosciences, San Diego, CA, USA) Cytokine determinations 
were performed according to the ELISA protocol. Cytokine titers 
are expressed as pg/mL, calculated by reference to standard curves 
constructed with known amounts of recombinant cytokines. 

Flow cytometric analysis

To determine hematopoietic cells populations, whole bone marrows 
and spleens were collected, cells were removed, fixed and labeled (1 × 
106 cells). For the primitive population (LSK: CD90+Lin-Sca-1+c-Kit+), 
macrophage-granulocyte progenitor population (GMP: Lin-IL7R-c-
Kit+Sca-1-CD34+CD16high) and CCR2 expression we used the following 
antibodies conjugated with different fluorocromes: CD90-FITC, Sca-
1-Cy7-PE, c-Kit-APC, CD34-FITC, CD16-APC, IL-7R-PE, Lin (B220, 
CD3, TER119, GR1, CD11b)-PE, CCR2-FITC. The cells were collected 
using a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA, 
USA) and data analyzes were performed using CellQuest software (BD 
Biosciences). The antibodies were purchased from BD Biosciences (San 
Diego, CA, USA). 

Statistical analysis

Data were analyzed for statistically significant experimental 
differences using analysis of variance (ANOVA) followed by the 
Bonferroni test to compare data among all groups. Statistical 
significance was reached when p<0.05. In all cases, at least three 
independent experiments were conducted to warrant that the results 
were representative. 
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Results

Medullar and extramedullary hematopoiesis in obese mice

The growth and differentiation of bone marrow and spleen CFU-
GM of HFD fed mice and treated with Chlorella are demonstrated 
in Figure 1. In HFD mice, bone marrow CFU-GM was significantly 
reduced (p<0.05), reaching levels approximately 2.8-fold lower than 
control values. Conversely, CFU-GM in the spleen was significantly 
increased, reaching levels 2.4-fold higher than controls. Treatment 
with Chlorella restored to control values the numbers of CFU-GM in 
the marrow and spleen. Importantly, no changes were produced by the 
alga in control animals. 

Serum colony-stimulating activity (CSA) in obese mice

The presence of CSA in serum obtained from mice fed on HFD and 
treated with Chlorella is presented in Figure 2. CSA titers significantly 
increased (p<0.05) in HFD mice, reaching levels approximately 2.5-fold 
higher than control values. Treatment with the alga further increased 
(p<0.05) this serum activity, reaching values 2-fold higher than those 
observed in the HFD group and 7.5-fold higher than controls. Of 
importance, Chlorella also increased CSA in control group (p<0.05). 
This effect of the alga was consistent with our previous studies using 
different experimental models [11,26,30,32,33]. 

Primitive and granulocyte-macrophage progenitor hemato-
poietic populations

Most primitive hematopoietic population (LSK) and granulocyte-
macrophage progenitor (GMP) hematopoietic populations in the bone 
marrow of HFD mice treated with Chlorella are presented in Figure 3. 
Although a tendency of reduced percentage of LSK cells was observed 
in mice receiving HFD, no significant differences were found in all 
groups studied. In relation to GMP population, significant reduction 
(p<0.05) in the percentage of this population was found in HFD mice, 
reaching values approximately 1.5-fold lower than controls. Treatment of 
HFD mice with the alga recovered the percentage of these cells to values 
similar to those of control group. No changes were produced by Chlorella 
treatment on both LSK and GMP populations of control animals. 

Serum levels of IL-6

The effects of Chlorella on serum levels of IL-6 are presented in 
Figure 4. In HFD mice, a significant (p<0.05) increase (3-fold) was 
observed in the levels of IL-6 in the serum, compared to controls. 
Treatment with the alga restored IL-6 levels to values similar to those of 
control group. No changes in the levels of this cytokine were produced 
by the alga in control animals.

Expression of CCR2 on granulocyte-macrophage progenitor cells

The expression of CCR2 on granulocyte-macrophage progenitor 
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Figure 1: Number of bone marrow (left) and spleen (right) granulocyte-
macrophage progenitors (CFU-GM) of mice fed on high-fat diet (HFD) and treated 
in a prophylactic–therapeutic manner with daily oral doses of 50 mg/kg Chlorella 
(CV). Treatment was given for 5 days prior and 4 weeks after the onset of HFD. 
Experiments were performed in the morning, 24 h after the last administration of 
CV. Controls (CT and HFD) received vehicle only. Results represent means ± SD 
of 6 mice per group. *p<0.05 vs. CT; #p<0.05 vs. HFD. ANOVA; Bonferroni Test. 
(CT- control; CV- Chlorella; HFD- high-fat diet; HFD+CV- high-fat diet+Chlorella).
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Figure 2: Serum colony-stimulating activity (CSA) in mice fed on high-fat diet 
(HFD) and treated in a prophylactic–therapeutic manner with daily oral doses of 
50 mg/kg Chlorella (CV). Treatment was given for 5 days prior and 4 weeks after 
the onset of HFD. Experiments were performed in the morning, 24 h after the 
last administration of CV. Controls (CT and HFD) received vehicle only. Results 
represent means ± SD of 6 mice per group. +p<0.05 vs. CT; *p<0.05 vs. CT 
and CV groups; #p<0.05 vs. HFD. ANOVA; Bonferroni Test. (CT- control; CV- 
Chlorella; HFD- high-fat diet; HFD+CV- high-fat diet+Chlorella).
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Figure 3: Quantification of (A) primitive LSK and (B) granulocyte-macrophage 
(GMP) populations in the bone marrow of mice fed on high-fat diet (HFD) and 
treated in a prophylactic–therapeutic manner with daily oral doses of 50 mg/
kg Chlorella (CV). Treatment was given for 5 days prior and 4 weeks after 
the onset of HFD. Experiments were performed in the morning, 24 h after 
the last administration of CV. Controls (CT and HFD) received vehicle only. 
Results represent means ± SD of 6 mice per group. *p<0.05 vs. CT; #p<0.05 
vs. HFD. ANOVA; Bonferroni Test. (CT- control; CV- Chlorella; HFD- high-fat 
diet; HFD+CV- high-fat diet + Chlorella). (C) Representative dot plots from flow 
cytometric analysis. Phenotypes: LSK: CD90+Lin-Sca-1+c-kit+; GMP: Lin-IL7R-c-
Kit+Sca-1-CD34+CD16high.
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bearing mice [9,11,16,32,47], and this effect has been interpreted 
as a consequence of the activity of suppressor cells, particularly 
macrophages, in the spleen of these animals [48]. Some suppressor 
cells-derived colony-stimulating factors (CSFs) appear to induce at 
least two populations of immune suppressor cells. One population 
consists of mature macrophages, whose expansion becomes stimulated 
by the GM-CSF itself. A second population consists of less mature 
suppressor cells with a null phenotype, which appear in the bone 
marrow as a result of myelopoietic stimulation [49,50]. The connection 
between these findings becomes even more relevant considering the 
general association between obesity and several cancers, suggesting 
the presence of common underlying biological mechanisms. Different 
aspects of the pathophysiology of obesity, namely insulin resistance, 
adiposity, and low-grade chronic inflammation, may facilitate a 
cancer-promoting state [51]. These findings seem to indicate that the 
presence of EMH in obese mice might be an early indicator of the 
immunosuppressive environment fostered by immunosuppressive 
cells, being therefore a potential conduit by which components of 
obesity may increase risks for cancer. Importantly, treatment with 
Chlorella further increased CSA titers in obese mice, which was 
consistent with the restauration of normal production of CFU-GM in 
the bone marrow and prevention of splenic EMH. It is well known that 
the persistent elevation of CSF levels serves as a continuing stimulus 
that supports the survival, proliferation, differentiation, and end cell 
function of granulocytes and monocytes [52].

Robbins et al. [53] studied extramedullary hematopoiesis using a 
murine model of atherosclerosis, a chronic disease characterized by the 
accumulation of lipids and leukocytes in the arterial vessel wall [54-
56], whose pathological mechanisms recapitulate many features of the 
inflammatory processes at work in obesity [4]. The authors demonstrated 
that hematopoietic progenitors progressively relocate from the bone 
marrow to the GM-CSF– and IL-3–rich splenic environment, where 
they clonally expand and differentiate into inflammatory monocytes 
and accumulate in lesions, giving rise to macrophages in the 
atheromata. Eventually, they ingest lipids and become foam cells, thus 
indicating that extramedullary sites supplement the hematopoietic 
function of the bone marrow by producing circulating inflammatory 
cells that infiltrate and generate lesions. In this context, our findings 
of a reduced percentage of GMP in the bone marrow, and increased 
expression of CCR2 on the surface of GMP cells in the spleen of obese 
mice corroborate these results. It is well known that monocytes, 
stem cell and progenitor cells are recruited to sites of inflammation 
via activation of this surface receptor by chemoattractant proteins 
[57,58]. Importantly, treatment with Chlorella restored GMP 
percentage in the marrow and CCR2 expression on GMP cells in 
the spleen to normal values.

With the purpose to demonstrate some additional mechanism 
by which the alga produces its modulating effects, we evaluated the 
production of serum IL-6, a multifaceted, pleiotropic cytokine that 
is a central player in the regulation of inflammation, hematopoiesis, 
immune responses, and host defense mechanisms [59]. In addition it 
is well known that increased systemic IL-6 expression is related with 
insulin resistance by impairing IRS1 phosphorylation [59-61]. Our 
results demonstrate that in obese mice serum IL-6 levels are significantly 
increased, thus corroborating previous findings in the literature [60]. 
Treatment of obese mice with Chlorella reduced to control values 
the increased levels of IL-6 in serum, which was consistent with our 
previously published findings showing the ability of the alga to reduce 
free fatty acid levels and prevent the development of insulin resistance 
in obese mice by increasing the phosphorylation levels of proteins such 

Figure 4: Levels of IL-6 in the serum of mice fed on high-fat diet (HFD) and treated 
in a prophylactic-therapeutic manner with daily oral doses of 50 mg/kg Chlorella 
(CV). Treatment was given for 5 days prior and 12 weeks after the onset of HFD. 
Experiments were performed in the morning, 24 h after the last administration of 
CV. Controls (CT and HFD) received vehicle only. Results represent means ± SD 
of 6 mice per group. *p<0.05 vs. CT; #p<0.05 vs. HFD. ANOVA; Bonferroni Test. 
(CT- control; CV- Chlorella; HFD- high-fat diet; HFD+CV- high-fat diet+Chlorella).
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Figure 5: Quantification of granulocyte/macrophage progenitor (GMP) cells 
expressing CCR2 in the spleen of mice fed on high-fat diet (HFD) and treated in 
a prophylactic–therapeutic manner with daily oral doses of 50 mg/kg Chlorella 
(CV). Treatment was given for 5 days prior and 4 weeks after the onset of HFD. 
Experiments were performed in the morning, 24 h after the last administration 
of Chlorella. Controls (CT and HFD) received vehicle only. Results represent 
means ± SD of 6 mice per group. *p<0.05 vs. CT; #p<0.05 vs. HFD. ANOVA; 
Bonferroni Test. (CT- control; CV- Chlorella; HFD- high-fat diet; HFD+CV- high-
fat diet+Chlorella). Phenotypes: GMP: Lin-IL7R-c-Kit+Sca-1-CD34+CD16high.

(GMP) cells in the spleen is presented on Figure 5. In HFD mice, the 
fraction of GMP cells expressing CCR2 increased (p<0.05), compared 
to controls. Treatment with Chlorella restored the percentage of these 
cells to values similar to those of control group. 

Discussion
Obesity is characterized by a state of chronic inflammation and 

its effects on the hematopoietic system are poorly understood. In the 
present study, we demonstrate that in HFD-induced obesity, the rapid 
decline in the number of CFU-GM in the bone marrow is associated 
with a continuous migration of these cells into the spleen, which is 
characterized as extramedullary hematopoiesis (EMH). Treatment 
with Chlorella, in spite of not causing any effect on the number of CFU-
GM in the bone marrow and spleen of normal mice, restored to control 
values both the reduced CFU-GM numbers in the bone marrow and 
the increased number of these progenitors in the spleen of obese mice. 
Corroborating these findings are our results with infected [7] and 
tumour-bearing mice [22]. In these two experimental models, the ability 
of the algae to produce cure (infection) or prolong survival (tumor) was 
related to the degree of reversion of both myelosuppression and the 
increased EMH, thus reinforcing the assumption that this modulating 
effect of the algae is relevant to its therapeutic activity. 

Another important observation in this obesity model was the 
increased serum CSA, in spite of the reduced marrow CFU-GM 
numbers. These data corroborate our earlier reports in tumor-
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as IR, IRS-1 and Akt [22]. Moreover, related to the fact that IL-6 has 
been implicated as a marker for visceral adiposity [62], recent studies 
[63] demonstrate the ability of Chlorella to modulate adipose tissue 
hypertrophy. 

Altogether, our findings suggest that adjuvant colony-stimulating 
factors produced by Chlorella treatment, which act synergistically for 
highly enriched numbers of CFU-GM in combinations of modulatory 
cytokines, may inhibit suppressive effects of inflammatory processes on 
critical pools of hematopoietic progenitor cells leading to appropriate 
production and efficient mobilization of early immune cells, which are 
crucial to the performance of the surveillance as well as the effector 
functions in the organism.

Other findings in the literature support the ability of Chlorella to 
offset the major pathogenic mechanism underlying obesity. Hasegawa 
et al. [27] demonstrated the ability of the alga to inhibit the elevation 
of serum glucocorticoids induced by stress. It is well known that 
these hormones contribute to insulin resistance by counteracting 

insulin, promoting hyperglycemia-causing hepatic gluconeogenesis, 
inhibiting the peripheral utilization of glucose and impairing insulin-
stimulated translocation of glucose transporter type-4 (GLUT-4) [64]. 
In this context, findings showing the ability of Chlorella to increase the 
expression of GLUT-4 are relevant. Moreover, the alga was demonstrate 
to attenuate oxidative stress by increasing antioxidant processes, thus 
suppressing inflammatory activation in peritoneal macrophages and 
liver of mice fed on an atherogenic diet, reducing DNA damage and 
lipid peroxidation in diabetic rats [65,66]. These findings support 
the ability of the alga to offset the increased oxidative stress observed 
during obesity, which is correlated to fat accumulation, representing a 
major pathogenic mechanism underlying the disease [67].

In conclusion, our pioneer findings showing the ability of the alga 
to modulate the shift in hematopoietic topographical hierarchy during 
inflammation are likely to have significant biological, diagnostic, and 
therapeutic implications in the treatment of insulin resistance. A 
summary of our findings and those in the literature mentioned here of 
the effects of Chlorella in obese mice is presented in Figure 6.

Figure 6: Review of our findings and those in the literature of the effects of Chlorella in obese mice. In the bone marrow, Chlorella restores to normal levels the production 
of CFU-GM and the number of GMP population. In the spleen, Chlorella prevents EMH and restores increased CCR2 expression on GMP cells. In the blood, Chlorella 
further increased CSA, reduced to normal levels IL-6 and restores to normal levels free fatty acid, triglyceride, cholesterol and LDL. In the liver, adipose tissue and muscle, 
Chlorella increased the phosphorylation in tyrosine levels of proteins such as IR, IRS-1, increasing the phosphorylation in Akt, translocation of GLUT-4 and increasing 
glucose uptake, thus contributing to prevention of insulin resistance. Abbreviations: BM: bone marrow; CFU-GM: number of colony-forming units of granulocytes 
and macrophages; CSA: colony-stimulating activity; LSK: primitive hematopoietic cells (Lin-Sca-1+c-Kit+); GLUT4: glucose transporter type-4; GMP: granulocyte and 
macrophage progenitor; CCR2: C-C chemokine receptor type 2; IL: interleukin; FFA: free fatty acid levels; LDL: low density lipoproteins.
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