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Abstract
Extracellular vesicles (EVs) are a group of heterogeneous, nano-sized structures surrounded by lipid bilayer 

membranes that are released by cells. Depending on their size and mechanisms of formation, EVs are often referred 
to as exosomes, microvesicles (MVs) and apoptotic bodies (AB). EVs are evolutionally conserved vesicles that 
mediate intercellular communications and cross-talk, via transferring proteins, lipids and nucleic acids. Accumulating 
evidence suggests that EVs exert essential physiological and pathological functions on both their mother and recipient 
cells. Therefore, growing interests focus on the potentials of EVs to serve as novel targets for the development of 
therapeutic and diagnostic strategies. Currently, extensive reports are yielded from cancer research. However, besides 
malignancy, EVs may also serve as crucial regulators in other devastating conditions, such as the acute respiratory 
distress syndrome (ARDS) and acute lung injury (ALI). The generation, regulation and function of EVs in ARDS/ALI 
are largely unexplored. In this mini review, we will briefly review the current understanding of EVs and their known 
physiological/pathological functions in the pathogenesis of ARDS/ALI. Previously, only scattered reports have been 
published in this field. We believe that further investigations focusing on EVs and their compositions will shed light on 
novel insights in the research of ARDS/ALI. 
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Background
Accumulating evidence suggest that extracellular vesicles (EVs) 

mediate cell-cell cross talk [1], particularly in the fields of tumor genesis 
[2-6]. In recent years, extracellular vesicles have been isolated from most 
non-malignant cells and biological fluids including saliva [7], bronchial 
lavage fluid (BALF) [8,9], breast milk [10], amniotic fluid [11], blood 
[12,13], and urine [14]. Findings have also suggested that EV-shuttling 
molecules, including proteins, RNAs, microRNAs (miRNAs) and lipids, 
potentially exert essential roles in the pathogenesis of human diseases [15]. 

Acute respiratory distress syndrome (ARDS) is a devastating entity 
encountered in critical ill patients. Despite the recent advances on 
medical knowledge and strategies, the mortality and mobility of ARDS 
remain unacceptably high [16]. There is dire need of identification of 
novel targets to develop diagnostic and therapeutic strategies Human 
lungs have a large surface area only second to skin and are in contact 
with air constantly. The lung epithelium plays an essential role in innate 
immunity and host defense due to constant exposure to environmental 
stimuli including microorganisms and disease pathogens [17]. Lung 
injury frequently occurs in response to diverse noxious stimuli and 
pathogens numerous types of cells reside in the lungs and intercellular 
communication during lung injury is poorly understood. The discovery 
of EVs shines a light on our understanding of the development of 
human lung injury. 

Classification of EVs
EVs refer to a group of heterogeneous vesicles in which the 

contents, size and mechanisms of formation are different [15]. The 
International Society of Extracellular Vesicles recently defined three 
main subgroups of EVs [15]. Exosomes are the smallest subgroup 
measuring approximately 30-100 nm in diameter [18-20]. Microvesicles 
(MVs) are the second largest subgroup in size, ranging from 100 nm 
to 500 nm [18-20]. Apoptotic bodies (ABs) have the largest size and 
are the most variable vesicles amongst the three subgroups. They range 
from 500-2000 nm in diameter and are comparable to platelets [18-20]. 

Mechanistically, exosomes are released from cells after multivesicular 
bodies (MVBs) fuse with the plasma membrane [5,20]. MV formation 
involves direct protruding from plasma membranes [19,20]. Similarly, 
ABs is formed by plasma membrane blebbing during the process of 
apoptosis [21]. However, our interests focus more on the exosomes 
and MVs rather than ABs, given that vesicles and their compositions 
derived from live cells potentially play more crucial functions in the 
development of lung injury. That being said, currently there is no single 
marker can uniquely identify each subgroup of EVs. The groups of 
proteins which have often been used as markers of EVs are not specific 
to either exosomes or MVs. These proteins include, but are not limited 
to: tetraspanins such as CD9, CD63, CD81 and CD82; 14-3-3 proteins, 
major histocompatibility complex (MHC) molecules and heat shock 
proteins; HSPs, Tsg101 and the Endosomal Sorting Complex Required 
for Transport (ESCRT-3) binding protein Alix [22-26].

EV Composition
Thus far, proteins, nucleic acids and lipids have all been identified in 

EVs [27]. These compositions are derived based on the parent cells [27]. 
For example, lung surfactant proteins 

(SPs) have been detected in the EVs derived from lung epithelial 
cells [28]. These cell-specific proteins can serve as markers to reflect 
the origins of the EVs. Abundant cytoskeletal-, cytosolic-, heat shock-, 
plasma membrane proteins, and proteins involved in vesicle trafficking 
have been found in both exosomes and MVs [29]. 
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EV-shuttling cytokines identified so far include, but are not 
limited to, interleukin 1β (IL-1β), IL1α, IL-18, macrophage migration 
inhibitory factor (MIF), IL-32, tumor necrosis factor (TNF), IL-6, 
vascular endothelial growth factor (VEGF), IL-8 (CXCL8), fractalkine 
(CX3CL1), CCL2-5 and CCL20 [30]. Whether the EV-containing 
cytokines and chemokines are functional in their recipient cells remains 
unclear and requires further investigation.

RNAs were first identified in EVs in 2006 [31]. The EV-containing 
RNAs appear much smaller (less than 700 nucleotides (nt)) in 
comparison to cellular RNAs. However, fragments of long RNAs such 
as the mRNAs, long non-coding RNAs (lncRNAs), ribosomal RNA 
(rRNA) have all been identified in EVs [18,32,33]. More interestingly, 
miRNAs, the 20-22 nt small non-coding RNA molecules, have also 
been found in a variety of EVs [34], suggesting that EVs serve as a 
cargo for circulating miRNAs. Oncogenic DNAs, mitochondrial DNA 
(mtDNA), single-stranded DNA, double-stranded DNA (dsDNA) have 
all been identified in EVs [35-39]. 

Lipids were first described in prostate-derived EVs (named 
prostasomes) in 1989 [40]. Emerging new lipid families have been 
described in EVs, including prostaglandin E2, F2, J2 and D2 [41]. 
Lysobisphosphatidic acid may participate in exosome biogenesis and 
contribute to vesicle budding from cell membranes [42]. The lipids from 
cellular plasma membranes are expectedly found in the lipid bilayers 
of exosomes. These includesphingomyelin, phosphatidylcholine, 
phosphatidyl-ethanolamine, phosphatidylserine, ganglioside GM3 and 
phosphatidylinositol [43-45]. 

EV Uptakes by Target Cells
Multiple theories have been proposed on how EVs reach 

their recipient cells and transmit carried information Postulated 
mechanisms include, initial internalization of the EVs into the recipient 
cells, with subsequent transport of EV-shuttling molecules, such as 
proteins, cytokines, RNA/DNA molecules or fragments, non-coding 
RNAs, miRNAs, etc. [46,47] into the recipient cells. Currently, EV-
mediated small non-coding RNA or small interfering RNAs (siRNAs) 
delivery has been confirmed in a number of cell types [48-50]. The 
proposed mechanisms for EV uptake by the recipient cells primarily 
include clathrin-mediated endocytosis (CME), phagocytosis, macro-
pinocytosis and plasma membrane fusion [46]. A second mechanism 
may include interactions between EV proteins and plasma membrane 
receptors on recipient cells [3,51-53]. Additionally, fusion with the 
plasma membrane of the recipient cells provides another route to 
deliver EV compositions into the recipient cells [54].

EV Functions in the Development of Lung Injury
The most commonly proposed roles of EVs include the emission 

and transportation of signaling/regulatory molecules for intercellular 
communications, subsequently resulting in the modulation of the 
immune system and antigen presentation. There is increasing attention 
on the application of EVs in diagnostics and therapeutics for human 
diseases, particularly in the field of cancer diagnosis and cancer 
metastasis diagnosis. Despite the growing applications of EVs in the 
field of oncology, the functions of EVs in lung diseases remain unclear. 

Role of EVs in acute lung injury (ALI)

Numerous observations have linked EVs with the development of 
lung injury/ARDS. For example, during the pathogenesis of a variety 
of type of lung injury, the generation of “microparticles” (MPs) has 
been observed in the platelets, neutrophils, monocytes, lymphocytes, 

red blood cells, and endothelial and epithelial cells [55]. Endothelial 
cell-derived “EVs” have been reported to contain S1PR3 and represent 
the inflammatory states of acute lung injury (ALI) [56]. Endothelial cell 
(EC)-derived EVs are also believed to be important markers of lung 
vascular injury in the development of ventilator induced lung injury 
(VILI) [57]. Endothelial EVs significantly increase after exposure of 
endothelial cells to physiological or pathological mechanical stress, 
such as cyclic stretch. Similar observations have been made in the 
infection-associated ALI. Robustly higher amounts of endothelial EVs 
are noted after exposure to LPS [57]. 

Stored, packed RBCs release RBC-originated MPs which contribute 
to neutrophil priming, activation and transfusion associated ALI 
(TRALI) [58]. In addition to RBCs, the platelet-derived MPs increase 
during the storage period, prime the fMLP-activated PMN respiration 
burst, which may induce TRALI [59]. Moreover, monocyte-derived 
MPs up regulate the level of pro-inflammatory factors in lung epithelial 
cells, primarily through activating NF-κB and PPAR-γ dependent 
pathways [60].

Mitochondria-mediated ROS play a crucial function in the 
pathogenesis of ALI [61]. Mitochondria in bone-marrow-derived 
stromal cells are released in a microvesicle-containing manner, and 
subsequently play a protective role in ALI [62]. On the other hand, 
alveolar epithelial cell-derived “EVs” are reported to serve as the main 
source of tissue factor (TF) pro-coagulant activity in ARDS [63]. 

Recently, using the hyperoxia induced ALI mouse mode (HALI), 
Moon et al. have demonstrated that lung epithelial cells release a robust 
amount of EVs [28]. These EVs are derived from live cells rather than 
apoptotic or dying cells. Their sizes fall mainly the range of exosomes 
or MVs (100-500 nm). Interestingly, stromal cells remove harmful 
mitochondria via EVs in a similar mechanism. Lung epithelial cells also 
release robust amount of EV-enwrapped caspase 3. This observation 
suggests that in additional to being a messenger, EVs also serve as a 
cargo for “trash” disposal. Moreover, Moon et al further observed 
that epithelial EVs trigger alveolar macrophage activation and pro-
inflammatory cytokine releases, confirming their roles in mediating 
cell-cell cross-talk [28]. 

In summary, the potential roles of EVs in the pathogenesis of ARDS/
lung injury have been reported in a variety of settings, including but 
not limited to - infection, oxidative stress, transfusion and mechanical 
stretch-associated ALI. Almost all cell types release EVs, and these EVs 
may be protective or detrimental, depending on the type of stimuli, the 
type of mother cells and the type and compositions of the EVs. Despite 
the above mentioned observations, detailed characterization and 
mechanistic exploration on EVs involving in ALI/ARDS remain largely 
unclear. Further directions include extensive investigations on the EV-
functions under diverse stimuli, EV-compositions and classifications, 
as well as the mechanisms of EV formation.
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