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Abstract

 Differential proteome analyses focus on the detection and quantification of expression changes between samples

from different biological groups. While the significance of an expression change is detected by some statistical

test, the strength of an expression change is usually quantified by some ratio estimate, e.g. the ‘fold change’.

Due to its quantitative character, the fold change is more intuitively for biologists than the decision of a statistical

test. However, strong expression changes are often misleading if this change is not significant. For this reason,

we propose the employment of confidence intervals, adjusted for multiple hypotheses testing, which naturally

comprise both, test decision and quantification. The adjusted confidence intervals can be used for making test

decisions under the control of error rates typically considered in multiple hypotheses testing (e.g. the family-

wise error rate or the false discovery rate). For biologists, test decisions based on adjusted confidence intervals

offer a more intuitive method for selecting proteins with a significant expression change between two groups.

The length of the intervals can be used for sample size planning of upcoming experiments. Our approach is

primarily addressed to protein expression data recorded by two-dimensional Difference Gel Electrophoresis.

Keywords: Differential proteome analysis; Confidence intervals; Multiple hypothesis testing; 2-Dimensional Difference Gel
Electrophoresis
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Introduction

Typically, a differential proteome study is performed for
comparing samples from distinct biological groups, each

consisting of several individuals. Stühler et al. (2006) for
example compared pairwise the brain proteome of mice
from groups of different developmental stages, embryonic,
juvenile and adult. Another experimental design is the
comparison of proteome samples from several individuals
before and after treatment. Differences in the proteome of
a neuroblastoma cell line before and several hours after
stimulation with a nerve growth factor were for example
studied by Sitek et al. (2005). The common goal of such
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studies is to detect candidate proteins involved in relevant
biological pathways or as drug targets co-regulated with
the examined biological groups or with the applied treatments.
Here, we consider particularly the case of two independent
groups.

The application of two-dimensional gel electrophoresis (2-
DE) means to compare the expression levels from thousands
of proteins and their post translational modified species
simultaneously. 2-DE is an important tool for measuring
protein expression levels by separating proteins by their
isoelectric point and molecular size (Klose and Kobalz,
1995). Being covalently labelled by a fluorescent dye or
silver-stained before and after separation, respectively, the
proteins are revealed as distinct spots on the 2-D gels, where
intensity of a spot can be taken as a measure of abundance.
The image of each gel is digitized by a scanner and spots
are detected by an automatic image analyzing algorithm.

An improvement of 2-DE is two-dimensional Difference
Gel Electrophoresis (2-D DIGE), which allows to analyze
up to three distinct proteome samples, labelled by three
different fluorescent dyes (Cy2, Cy3 and Cy5), within the
same gel (Ünlü et al., 1997). Usually, these three samples
are one observation from the treatment group, one from the
control group and one is an internal standard. Consequently,
equal group sizes are normally used in such an experimental
set-up. The internal standard is a mixture of the proteome
samples from all individuals involved in the experiment. It is
used to standardize the recorded expression levels of the
treatment and control group and making thus the separate
gels comparable. A 2-D DIGE gel in the described setup
yields three different digital images, which are obtained using
different emission wavelengths for scanning, specifically for
each of the dyes. In this article we specifically regard data
from the 2-D DIGE technique, though our approach is also
applicable to protein expression levels recorded by other
quantitative proteome techniques. In order to match the spot
maps of the individual gels, one master gel is selected (which
is representative for the experiment) and all spot maps from
the other gels are matched to the spot map of the master
gel. Because not all protein spots that were detected on the
master gel are found in the other gels the effective sample
size is different for single proteins (Jung et al., 2005; Jung et
al., 2006).

Significant expression changes between treatment and
control sample are usually detected by classical t-tests in 2-

D DIGE experiments. While the p-values resulting from
these tests can be taken as a measure of significance, they
do not provide quantitative information and are often not
intuitively comprehensible for non-statisticians. For this
reason, besides detecting statistical significance of
expression changes by t-tests, the strength of those changes
is usually quantified by some ratio estimate, e.g. the ‘fold
change’. If the ratio is greater than one, the protein is called
up-regulated and it is called down-regulated if the ratio falls
below one. It is a common practice in proteomics studies to
pre-select proteins for further laboratory analyses not only
by test decisions, but also by the magnitude of the ratio.
However, the applied thresholds for these ratios are mostly
unjustified values. For instance, it has been suggested to
utilize two times the standard deviation of an in-gel analysis
(DIA, Difference in Gel Analysis) as the threshold for the
determination of significant expression changes (Karp et
al., 2004). Furthermore, these ratio estimates can be
misleading by suggesting a strong expression change for a
certain protein, while the variance of this ratio is also very
high and the expression change is thus not significant. Hence,
a ratio of for example 1.5 can have different accuracy and
does not necessarily mean that the respective protein is truly
up-regulated. Thus, making a test decision by using a
confidence interval instead of the p-value, gives on the one
hand not only the information for rejection or non-rejection
of the null hypothesis, but relativizes the view to the simple
fold change on the other hand.

Therefore, we propose here to make use of the general
duality between test and confidence interval. A confidence
interval is generally defined as a region that covers the true
parameter with probability (1 – α). If one quantifies the
strength of the expression changes by confidence intervals,
one can call a particular protein significantly up-regulated if
the lower confidence limit exceeds one and down-regulated
if the upper limit falls below one. This has the benefit of
testing and quantifying at the same time.

Searching for differentially expressed proteins means to
perform thousands of tests simultaneously. If the individual
significance level for each test is for example α = 5%, a
high number of false positive findings is to be expected in
many cases. In fact, if the individual significance level for
each test is α = 5%, the global significance level α*
increases by 1 – (1 – α)n, where n is the number of individual
tests (Lehmann, 1986). Thus, the global significance level
α*, i.e. the probability for making a false test decission,
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becomes nearly equal 1 if the number n of tests is just one
hundred. Therefore, certain error rates are usually controlled
in multiple hypothesis testing, e.g. the false discovery rate
(FDR) or the more strict family-wise error rate (FWER).
These error rates can for example be controlled by
adjustment algorithms for the raw p-values of the tests. Test
decisions based on adjusted p-values result in smaller
portions of false positive findings than those based on the
raw p-values. Here, in a two-step algorithm, we firstly
calculate such adjusted p-values for finding an adjusted α-
level, and secondly use this α-level for calculating the
confidence intervals. Thus, the test decisions based on the
confidence intervals are also under control of the chosen
error rate. Whereas the duality between test and confidence
interval is a natural fact in statistical test theory, and p-value
adjustments for certain error rates are already widely used,
a combination of both for analyzing high-dimensional data
has not yet been used within the field of proteomics.

This paper is organized as follows: In the next section we
present our experiment, formalize the data structure resulting
from 2-D DIGE experiments and detail the adjustment of
confidence intervals. In the subsequent section we present
the results of a 2-D DIGE study, analysing a lung
adenocarcinoma cell line A549 upon TGFβ treatment
applying our method. At the end we give a discussion of our
method and the results.

Material and Methods

Data acquisition: 2D-DIGE analysis of a cellular

model for lung fibrosis

In order to collect a data set, large enough for in depth
statistical analysis, we choose a cellular model for lung
fibrosis. By stimulating the well established lung
adenocarcinoma cell line A549 (Giard et al., 1973) with the
growth factor TGFß we hope to additionally get insights in
the process of TGFß signal transduction and secondary
cellular effects. TGFβ is known to be a mediator of multiple
processes in lung tissue like wound repair, inflammatory
processes, senescence or survival of certain cell populations.
In our 2-D gel based approach we compared TGFβ

stimulated with non-stimulated cells: we used cell lysates
prepared from 40 independent culture dishes – 20 for each
group (TGFβ treated and untreated). Expression levels of
these samples were measured by the use of 2D-DIGE gels
(method described by Sitek et al., 2005). For this 50 µg of

cell lysates were labelled with fluorescence dyes (TGFß
treated: Cy3; untreated: Cy5; internal standard – a mixture
of all samples: Cy2), combined and separated in two
dimensions (Klose and Kobalz, 1995). Subsequently the 20
produced gels were scanned using the Typhoon 9400 scanner
(GE Healthcare) and three images per gel acquired
representing the three different Cy-dye channels resulting
in 60 spot map images.

Before image analysis with the DeCyder 2D 6.5 software
(GE Healthcare) the images were cropped with
ImageQuantTM software (GE Healthcare). The intra-gel spot
detection was performed using the Differential In-gel
Analysis (DIA) mode of the DeCyder software. The
estimated number of spots was set to 10,000. An exclusion
filter was applied to remove spots with a volume value <
20,000. The DeCyder BVA module has been used for spot
matching and quantitation of spot volume data. The software
algorithm first applies a normalization procedure resulting in
normalized spot volumes for each spot map. Based on these
normal volumes, standardization was performed by building
ratios between the Cy3 and Cy2 channel (internal standard)
and Cy5 and Cy2 channel respectively of each spot pair.
The resulting normalized and standardized spot volumes were
used for further calculations: the mean volumes of matched
spots were calculated for each group and provided the basis
for building spot volume ratios.

Adjustment of confidence intervals

We begin this section with a short scheme of the data
structure resulting from a 2-D DIGE experiment. Let n be
the total number of protein spots detected on the master gel
and the individual spots themselves be indexed by j (j = 1,..., n). 

As mentioned before, not each spot detected on the
master gel is found on all other gels and available sample
sizes m

j
 are thus different for the individual spots. For spot

j, m
j
 denotes the number of gels were this spot has been

detected by the automatic image analysis algorithm. The
expression levels for spot j can be denoted by x

j
 = (x

j1
,...,x

jm
)

 for the treatment group and by y
j
 = (y

j1
,...,y

jm
) for

the control group. We re-emphasize that the available
sample size m

j
 of each spot is the same in both groups,

because missing spots ‘occur’ always simultaneously in a
2-D DIGE experiment in the used setup.

In the following, we assume that x
j
  and y

j
  represent

already pre-processed expression levels, i.e. they are

j

j
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normalized, standardized and log-transformed.

A typical measure which is often used for estimating the
expression change of a particular protein j is called the ‘fold
change’ R

j
. For protein j it is defined by:

       (1)

where and are the geometric means of the expression
levels in the treatment and control group, respectively, before
log-transformation. Thus, a fold change of 2 means a 2-fold
up-regulation in the treatment group, whereas a fold change
of 0.5 means a 2-fold down-regulation. For better
interpretation, fold changes less than one are often
represented as their negative reciprocal.

For assessing the significance of a protein’s expression
change, Welch’s t-test is usually used in the analysis of such
2-D DIGE experiments. The null hypothesis of this test is
that there is no difference between the means of the log-
transformed expression levels of the two groups. A
confidence interval for this difference is given by

        (2)

where and are the means and standard
deviations in the two groups and is the (1 – α / 2)-
quantil of the t-distribution with

(3)

degrees of freedom (Moser and Stewens, 1992). Simple
confidence intervals for the fold change can now be obtained
by exponentiating the confidence limits in equation (2).
Instead of making a test decision by the p-value of the t-
test, one can use these confidence intervals for deciding
whether a protein is significantly differentially regulated: a
significant up-regulation is given if the lower bound exceeds
one, and a significant down-regulation is given if the upper
confidence bound falls below one.

Testing each of the several thousand proteins with an
individual significance level of α = 0.05 may possibly result

in a large number of false positive test decisions. Therefore,
an adjustment of p-values with respect to some error rate is
common. Two special error rates that are often desired to
be controlled in multiple hypothesis testing are the family-
wise error rate (FWER) and the false discovery rate (FDR).
The FWER is defined as the probability of having at least
one false positive. This error rate can be controlled by the
Bonferroni-correction, which is either made by performing
each test with an adjusted significance level of αBonf = α /

n, i.e. the individual significance level divided by the number
n of tests, or by adjusting the raw p-value P

j
 of protein j by

        (4)

and comparing with the unadjusted α-level. Either
procedure guarantees an FWER of α.

A less strict error rate is the FDR, which is defined as the
portion of false positives among all positive test decisions.
For controlling the FDR, p-values can be adjusted by the
procedure of Benjamini and Yekuteli (Benjamini and Yekuteli,
2001), which should particularly be used if a correlation
between variables is obvious. This procedure starts by
sorting the raw p-values in an ascending order:

. The adjusted p-values are than
given by

(5)

(Dudoit et al., 2003). Assume now that k proteins have an
adjusted p-value pBY smaller than α. Instead of using these
adjusted p-values one can also compare the raw p-values
against an adjusted α-level αBY = α ⋅ k / c, where

, for making a test decision.

The adjustment of the confidence intervals in equation
(2) with respect to the FWER or the FDR is simply given
by exchanging the raw α-level by αBonf  or by αBY.

Results

Automatic image analysis of our gels, without user
interferences, carried out by the DeCyder software, results
in 3359 protein spots on the master gel. Because not all
spots from the master gel were detected in all gels, different
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available samples sizes for the 3359 proteins were obtained
(Figure 1). For the further analyses we included only those
3149 spots that have a sample size of at least five
observations.

For detecting differentially regulated proteins we first
performed a two-sample t-test for each spot using individual
α-levels of 0.05 resulting in a total of 1916 differentially
regulated proteins. According to their fold change, 948 of
them are up-regulated and 968 are down-regulated. In order
to reduce the number of false positives we adjusted the raw
p-values according the method of Benjamini and Yekuteli to
obtain an FDR of 5%, yielding 1447 differentially regulated
proteins, 679 of them up-regulated and 668 down-regulated.
The stricter FWER-adjustment yields 388 up-regulated and
359 down-regulated proteins.

Next, instead of using the p-values for making a test
decision, we derived the unadjusted and adjusted confidence
intervals, detailed in the method section, and called a protein
significantly up-regulated if the respective lower confidence
limit exceeded one, and called it down-regulated if the
respective upper confidence limit fell below one. Due to the

duality of test and confidence interval, these procedures, in
the unadjusted and in the two adjusted cases, yield the same
sets of up- and down-regulated proteins as the p-value-
based test decisions. i.e., the lower limit of an up-regulated
protein exceeds one exactly when the related t-test p-value
falls below 0.05 (Figure 2). Reversed, the upper limit of a down-
regulated protein falls below one, when the related p-value
falls below 0.05. Thus a test decision can also be made
based on the confidence intervals instead of using the p-
values. It is a fact that many non-statisticians do not realy
know how to interpret the p-value. It is however very easy
to understand that a spot is up-regulated if the lower limit of
a confidence interval for the fold change exceeds one.

The lengths of confidence intervals naturally depend on
the sample size (Figure 3) and on the variance of the data. In
particular, the lengths of the intervals decrease when the
sample sizes increase. In our case the lengths also depends
on the adjustment method. The smallest intervals were the
unadjusted ones, whereas the FWER-adjusted intervals
were the largest. The largest confidence interval (reaching
from 0.0015 to 1045.49) in our study was obtained when
using the Bonferroni-adjustment, where the samples size

Figure 1: Distribution of the available samples sizes of the altogether 3359 detected protein spots. 325 spots have been
detected in all 20 gels of the experiment, 317 have been detected in 19 of these gels, and so on. About 28% of all spots have
been detected in only 10 or less gels, about 8% in 5 or less.
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Figure 2: t-Test p-values versus lower and upper limits of the confidence intervals. a) Significantly down-regulated proteins:
the upper limits fall below one exactly when the p-values are below 0.05. b) Significantly up-regulated proteins: the lower
limits exceed one exactly when the p-values are below 0.05, too. Both plots show the unadjusted case, but the same concordance
was observed in the adjusted cases.

Figure 3: Distribution of the lengths of all confidence intervals (unadjusted case) versus available sample sizes. Confidence
intervals for spots wich are detected in many gels are smaller and give thus a more precise quantification, than for those spots
which are detected in only some few gels.
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for the associated protein was m
j
 = 5. The largest confidence

interval when using the Benjamini-Yekuteli-adjustment
reaches from 0.31 to 24.66 (associated sample size: m

j
 = 7).

Discussion

We proposed to use adjusted confidence intervals, instead
of p-value based test decisions, for the detection of
differentially regulated proteins observed in 2-D DIGE
experiments. Test decisions based on confidence intervals
and those based on p-values are naturally equivalent, so
that the same sets of up- and down-regulated proteins are
obtained. Adjustments can control typical error rates used

in multiple hypotheses testing like the FWER or the FDR.
Other typical adjustments of multiple hypotheses testing, that
were not considered in this study are possible, as for example
the FDR-procedure of Benjamini and Hochberg (1995),
which is based on stronger assumptions with regard to the
correlation structure between the single tests. The confidence
interval method was more intuitive for non-statisticians and
allows easier biological interpretations. It is a fact that many
proteome scientists overestimate the relevance of proteins
with a high fold change without considering the statistical
significance of an expression change. However, proteins
with the same fold change can have a completely different

Figure 5: 2D-DIGE analysis of cell lysates of TGFß treated and untreated A549 cells. A) Overlay of Cy3 (green, TGFß
treated) and Cy5 (red, untreated) channel images. Comparable spot intensities appear in yellow. B) Singel channel image of
proteins harvested from TGFß-treated A549 cells. C) Singel channel image of proteins harvested from untreated A549 cells.
D) 3-D view of a protein spot found to be differential between the two analysed groups, E) 3-D view of the spot with rank
2067 (see Table 1). The spot shape looks more like a stripe or smear resulting from a non-optimal spot focussing. We can
exclude this ‘spot’ by our statistical analysis because even it exhibits a fold change reasonable for highly differential expression
(fold change 2.79) the differentially expression lacks statistical significance.
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significance. Table 1 presents two proteins with a fold change
of about 1.5. The corresponding confidence intervals showed
that the protein with rank 1363, depending on the type of
adjustment, can not necessarily be seen as differentially
expressed. In particular, that protein with the largest positive
fold change (R

j
 = 2.79) in our experiment is not statistically

significant (raw p-value = 0.09, see also Figure 5).

The length of a confidence interval depends always on
the available sample size. Therefore, this method can also
be used for sample size decisions for upcoming studies, by
choosing an appropriate degree of precision for the
quantification of the expression changes. Especially for the
most significant proteins, the length is rather small, and
therefore the expression change unambiguous (Table 1).

Before calculating t-tests and confidence intervals,
expression levels were normalized, standardized and log-
transformed. Normalization is usually done for removing
dye-specific gains in the raw expression levels. This can
for example be done by normalization methods used in DNA
microarray experiments (Bolstad et al., 2003).
Standardization is performed by dividing all values from the
treatment and control group by the corresponding values of
the internal standard. This pre-processing step is needed
for making the distinct gels comparable. The last step in

pre-processing is usually a log- or asinh-transformation for
stabilizing the variance, which has been found to depend on
the mean value of a spot (Kreil et al., 2004).

A lack of our analysis is the normality assumption that is
made by the t-tests and the confidence intervals.
Furthermore, we assume that there is still a bias between
detected and true fold change. Bolstad (2004) detected such
a bias in the analysis of gene expression data recorded by
DNA microarrays.

At the end of this article we want to give a short biological
discussion of our experiment. We detected a large number
of differentially expressed proteins, even when using the
strict Bonferroni adjustment. This can be traced back to the
fact that TGFβ induced changes affect many different
groups of proteins (Derynck and Akhurst, 2007). The cells
change their morphology and their growing characteristics.
So proteins of the cytoskeleton, energy and metabolic
pathways as well as proteins of different signalling networks
are affected which present a huge part of the cells’ total
proteome. Indeed, a high portion of differences in untreated
and TGFβ-treated A549-cells was also detected on the RNA
level by Keating et al. (2006). Additionally, many of the
differentially regulated proteins show only a small expression
change and are not necessarily biologically relevant. The

Rank 

(According t-

tests) 

Raw 

p-Value

Fold 

Change 

Confidence 

Interval 

(Unadjusted) 

Confidence 

Interval (FDR) 

Confidence 

Interval (FWER) 

Sample 

Size 

1 9.7 * 10-24 0.59 [0.57, 0.62] [0.55, 0.64] [0.53, 0.66] 20 

2 2.7 * 10-23 1.93 [1.82, 2.05] [1.75, 2.12] [1.66, 2.23] 20 

3 4.7 * 10-23 0.58 [0.55, 0.61] [0.53, 0.63] [0.51, 0.66] 20 

47 8.3 * 10-15 1.51 [1.43, 1.59] [1.38, 1.64] [1.31, 1.73] 19 

1363 2.7 * 10-03 1.51 [1.17, 1.95] [0.99, 2.30] [0.78, 2.95] 13 

2067 9.1 * 10-02 2.79 [0.79, 5.19] [0.36, 11.30] [0.07, 62.35] 8 

Table 1: Fold changes as well as unadjusted and adjusted confidence intervals for a selection of proteins. Ranks are assigned
with respect to statistical significance. If a confidence interval for the fold change includes the 1, there is no statistical
evidence that the associated spot is differentially regulated. Adjustments according to the FDR (false discovery rate) or the
FWER (family-wise error rate) reduce the number of false positive findings, where the FWER is even more strict than the
FDR.
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distribution of their fold changes is displayed in Figure 4.
551 of the 747 protein found with the Bonferroni adjustment
have an absolute fold change higher than 1.3, 251 an absolute
fold change higher than 1.5 and only 35 of them have an
absolute fold change higher than 2.0.

Currently a software, called Statistical DIGE Analyzer,
for the analysis of data from 2-D DIGE experiments is being
developed at the Medizinisches Proteom-Center. This
software will include the methods proposed in this article.
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