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Different types of human gene mutation vary dramatically in 
size, from gross structural variants (SVs) to subtle single base-pair 
substitutions. What they all have in common, however, is that their 
nature, location and frequency are often determined either by specific 
characteristics of the local DNA sequence environment or by higher-
order features of the genomic architecture. It is now recognized that 
the human genome contains ‘pervasive architectural flaws’ [1] in 
that certain DNA sequences are inherently mutation-prone by virtue 
of their base composition, sequence repetitivity and/or epigenetic 
modification [2,3]. The mutability of a given gene or genomic region 
may also be influenced indirectly by a variety of non-canonical (non-B) 
secondary structures whose formation is facilitated by the underlying 
DNA sequence [4,5]. Since these non-B DNA structures can interfere 
with subsequent DNA replication and repair, and may serve to increase 
mutation frequencies in generalized fashion (i.e. both in the context of 
subtle mutations and SVs), they have the potential to serve as a unifying 
concept in studies of mutational mechanisms underlying human 
inherited disease [6]. Our task is to come to understand the ground 
rules that characterize the different mechanisms of mutagenesis in 
order to apply this knowledge in the context not only of the analysis 
and diagnosis of human genetic disease, but also eventually perhaps, in 
the cause of its therapeutic correction.

To these ends, we have, over the last 20 years, compiled a 
comprehensive core collection of data on germ-line mutations in 
nuclear genes underlying or associated with human inherited disease in 
order to study the nature and underlying mechanisms of human gene 
mutation. This resource, the Human Gene Mutation Database (HGMD; 
[7]) has been made publicly available since 1996 (http://www.hgmd.
org). Data catalogued include single base-pair substitutions in coding, 
regulatory, and splicing-relevant regions, micro-deletions and micro-
insertions, indels and triplet repeat expansions, as well as gross gene 
deletions, insertions, duplications and complex rearrangements. Each 
mutation is entered into HGMD only once, in order to avoid confusion 
between recurrent and identical-by-descent lesions. By October 2012, 
the database contained in excess of 130,000 different lesions (HGMD 
Professional release 2012.3; http://www.biobase-international.com/
product/hgmd) detected in ~5,000 different nuclear genes, with new 
entries currently accumulating at a rate in excess of 10,000 per annum; 
~6,000 of these entries constitute disease-associated and functional 
polymorphisms. 

HGMD data have been used by its curators and their collaborators 
to perform an extensive series of meta-analyses of different types of 
gene mutation causing human inherited disease [3]. In particular, 
HGMD data have been utilized to study the role that repetitive 
sequence elements, sequence homologies, and specific motifs play 
in promoting mutagenesis, and to explore in detail the underlying 
mutational mechanisms [8-14]. New insights have been obtained into 
the phenotypic/clinical consequences of several entirely novel types of 
human gene mutation viz. mutations giving rise to gains of glycosylation 
[15] mutations which disrupt predicted exon splice enhancers [16,17]

and closely spaced multiple mutations that may constitute signatures 
of transient hypermutability in human genes [18].

The recognition that certain DNA sequences are inherently 
hypermutable has been accompanied by an emerging understanding of 
how DNA sequence influences (and indeed often underpins) secondary 
structure formation, how certain local DNA structures can themselves 
be mutagenic, and how the type and frequency of the resulting mutations 
can in turn help to explain the nature and prevalence of specific human 
genetic diseases [19,20]. Studies of hypermutable sequences have also 
provided important insights into the endogenous nature of many of 
the known mechanisms of mutagenesis, for example CpG deamination 
[21,22] or slipped mispairing at the DNA replication fork [23], that 
are responsible for quite different types of recurring micro-lesion. 
Recurrent mutation ensures that some missense mutations and micro-
deletions/micro-insertions are shared between the germ-line and the 
soma: these lesions are characterized by higher mutability rates, greater 
physicochemical differences between wild-type and mutant residues, 
and a tendency to occur in evolutionarily conserved residues and 
within CpG/CpHpG oligonucleotides [24].

HGMD data made possible the identification of potential 
disease-causing variants in the first two human diploid genomes ever 
sequenced [25,26]. In collaboration with the 1000 Genomes Project, 
we have contributed HGMD data to aid (i) the construction of a map 
of the location, allele frequency and local haplotype structure of ~15 
million human single nucleotide polymorphisms, allowing direct 
estimation of the rate of de novo germ-line base substitution [27], (ii) 
the definition of the functional spectrum of human low-frequency 
coding variation [28] and (iii) the identification of putative loss of 
function variants in 185 human genomes thereby demonstrating 
that human genomes typically contain ~100 genuine loss of function 
variants with ~20 genes completely inactivated [29]. More recently, 
we have assessed the numbers of potentially deleterious variants in the 
genomes of apparently healthy humans by cross-comparing whole-
genome sequence data from 179 individuals in the 1000 Genomes Pilot 
Project with HGMD data [30]. Each individual was found to harbour 
between 40 and 110 variants classified by the HGMD as disease-causing 
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mutations (DMs), 3-24 in the homozygous state, as well as many 
polymorphisms putatively associated with disease [30]. Whereas many 
of these DMs could represent disease annotation errors, between 0 and 
8 DMs per individual (0-1 homozygous) are predicted to be highly 
damaging and could provide information of direct medical relevance 
to the individuals concerned.

The sequencing of the human genome was completed some time 
ago and its structural and functional annotation is now well underway. 
Considerable numbers of human genome sequences are now 
becoming publicly available almost by the week. It is in this context 
that personalized genomic medicine is beginning to come to the fore, 
and human gene mutation data are assuming ever greater importance. 
Indeed, the availability of HGMD data has facilitated the study of gene 
mutation by making possible:

1. A first description of the spectrum of genetic variation
underlying human inherited disease;

2. The identification of the factors that determine the propensity
of certain DNA sequences to undergo germ-line mutation;

3. An improved understanding of the mechanisms underlying
the different types of human gene mutation and the reasons
why different types of mutational lesion occur with different
frequencies in different genes;

4. The identification of disease states that exhibit incomplete
mutational spectra, prompting the search for novel gene lesions
associated with different clinical phenotypes;

5. The optimization of mutational screening strategies;
6. The meaningful comparison between the potentially different

mechanisms of mutagenesis underlying inherited and somatic
disease;

7. Studies of human genetic disease in the context of the
evolutionary conservation of the affected nucleotide sequences
or encoded amino acid residues;

8. Extrapolation towards the genetic basis of other, more complex
traits and diseases.

9. A source of data for clinical interpretive use in next generation
sequencing/exome screening studies.

For all these reasons, we should endeavor to follow the advice of 
the founder of modern human genetics, William Bateson, who, in 
the context of collecting plant mutants, exhorted us to “treasure our 
exceptions.”
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