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Abstract

Metabolic engineering has the potential to produce chemicals, fuels, drugs and more at industrial levels in a cost
effective manner by manipulation of enzymatic, transport and regulatory function within cells. Small regulatory RNAs
(sRNAs) play a key role in up and down regulation of genes associated with biosynthetic pathway for increasing
production level. Therefore, sRNA is a rapid, sensitive and versatile tool for microbial engineering.
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Editorial
Whilst microbes are an attractive chemical factory they are however

often hampered by the inability to efficiently produce expected
quantities of desired products. Therefore, the capability of natural
microbes can be improved by the modification of the genome or
changed by integration of foreign genes, which through expression of
proteins in organism would lead to the production of desired
compounds [1,2]. In many desired hosts either single gene or few
genes are absent in the biosynthetic pathways of interest, and the
bacteria cannot produce desired products. In this regard, metabolic
engineering is the practice of designing of new biosynthetic pathways,
entire synthetic genome [3], or improving the cellular activities of
hosts by manipulation of enzymatic, transport and regulatory
functions within cells to increase the cellular production of a desired
product. Metabolic engineering has the potential to produce industrial
levels of chemicals, fuels and drugs in a cost effective manner [2,4].

Escherichia coli is the most widely
studied prokaryotic model organism and used in metabolic
engineering and synthetic biology. It is a good choice due to its ease of
culture, short life cycle, well-known genetics and accessible tools. In
recent years, a number of synthetic parts that include promoters [5,6],
regulatory proteins and RNAs [7-9], devices and circuits such as
riboregulators [7], riboswitches [10,11], biologic gates [12,13], and
oscillators [14-16] have been designed and characterized in a wide
range of hosts. These synthetic networks have been implemented for
rewiring [17-20], the coupling [21] of intracellular networks, or
manipulating the cellular functions at certain scales that can be further
useful for tight, tunable or periodic biological production.

In recent years, small regulatory RNAs (sRNAs) have become of
greater scientific interest and they play a major role in gene regulation.
The sRNAs can positively regulate translation of target mRNAs by
binding to an upstream part of mRNA 5’ untranslated regions and
prevents formation of a translation-inhibitory hairpin structure. It
opens the cis-repressed UTR and makes free RBS where ribosome
binds and starts translation process (Figure 1a). Negative regulation by

sRNAs typically involves base pairing interactions that occlude the
ribosome binding sites (RBS) of mRNAs. This prevents translation
either by mRNA repression or mRNA degradation (Figure 1b)
[7,22,23]. Riboswitches are one of the most important sRNA forms
that regulate gene expression in a ligand-dependent fashion. It works
as a cis regulatory element which composes of an aptamer domain
(recognizing the ligand) and an expression platform that couples
ligand binding to a change in gene expression [24]. Riboregulators are
also a form of sRNA that plays a pivotal role in up or down-regulating
gene function. It controls the expression of target gene in trans at the
post-transcriptional level [7,23,25,26].

Figure 1: Schematic representation for the mode of action of sRNA.
(a) Small RNAs can positively regulate translation of target mRNAs
by binding to an upstream part of the mRNA 5’ untranslated region
thus preventing formation of a translation-inhibitory hairpin
structure. (b) Negative regulation by sRNAs typically involves base
pairing interactions that occlude the ribosome binding sites of
mRNAs. This prevents translation either by mRNA repression or
mRNA degradation.

This sRNA plays a number of regulatory functions in the cell
including synthesizing proteins, splicing and editing RNA, modifying
rRNA and catalyzing biochemical reactions. It belongs to a subset of
non-coding RNAs that have emerged as important regulators in both
prokaryotes and eukaryotes [7]. A number of studies have been
focused on the identification, design, and characterization of sRNA for
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better understanding of basic mechanism, gene regulation, enhanced
tolerance and adaptation. The RNA chaperone Hfq helps sRNA
efficiently binds to target mRNA genes in trans by base-pair
complementation [23,27,28]. In studies of Hfq, the sRNAs were
produced through plasmid-based expression to regulate the
chromosomal gene expression, without direct modification of the
chromosome sequence. This yields transient knock-down of gene
regulation [23,26]. Recent reports on sRNA indicated that they may
act as environmental sensors of vitamin cofactors and temperature,
enabling them to transduce signals to regulate gene expression [24,29].
Regulatory RNAs operate by sensing environmental signals or other
RNA molecules to either repress or activate translation [30].

Lease and Belfort [31] demonstrated that 87-nucleotide DsrA is a
regulatory RNA of E. coli that acts in trans by RNA–RNA interactions
with two different mRNAs, hns and rpoS. DsrA shows opposite effects
on these transcriptional regulators and H-NS levels decrease, whereas
RpoS (ss) levels increase. DsrA enhances hns mRNA turnover yet
stabilizes rpoS mRNA, either directly or via effects on translation. In
another study, Repoila et al. [32] reported the regulation of RpoS (σ38)
translation as a function of the sRNA-mediated response to
environmental conditions; rpoS is a gene known to be regulated post-
transcriptionally by at least three sRNAs. DsrA and RprA stimulate
RpoS translation in response to low temperature and cell surface
stress, whereas OxyS represses RpoS translation in response to
oxidative shock.

The sRNA Spot42 controls the synthesis of galactokinase (GalK) in
response to the availability of glucose. SgrS sRNA represses the
synthesis of glucose transporter EIIGlc and prevents the uptake of
glucose when G6P accumulates towards toxic levels [33]. In recent
years, phenol has become an industrially versatile chemical and is
currently produced from fossil resources. A current total 18 E. coli
strains have been engineered for the production of phenol using
sRNAs. The sRNA used for knocking-down of the two regulators and
for overexpression of the genes associated with the tyrosine
biosynthetic pathway acts together with tyrosine phenol-lyase for the
production of phenol from glucose [34]. The use of sRNAs could be
useful for completely or transiently control the host genes and to
enhance tolerance and/or high production levels. An urgent need is
arising to identify and implement more sRNA that can be used in
microbial engineering for high-level biological production. Na et al.
[26] designed a library of small RNAs and employed them for
increasing the production of tyrosine and the nylon precursor
cadaverine. Considering these published applications, sRNA is
considered as a rapid, sensitive and versatile tool for microbial
engineering that can be useful for sufficient and cost effective
biological production in the future to meet market demands at
competitive prices.
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