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The aureolic acids are a family of polyglycosylated aromatic 
polyketides bearing a tricyclic core that includes mithramycin A, 
chromomycin A3, olivomycin A, UCH9 and durhamycin A (Figure 
1) [1]. They are all antineoplastic antibiotics against Gram-positive
bacteria and also stop the proliferation of tumor cells. Several
studies have pointed out that the basis for the antitumor properties
of mithramycin and its analogs (Mithralogs) is the inhibition of
replication and transcription processes during macromolecular
biosynthesis by interacting, in the presence of Mg2+, with GC-rich
nucleotide sequences, especially the site of union of Sp1 transcription
factor [2-4]. Mithramycin A (MTM) and chromomycin A3 (CRM) are
the most representative members of the family, MTM being approved
as an anticancer drug in 1970, and used originally for the treatment of
several types of cancer, Paget’s bone disease and hypercalcemia [5-7].
However, the use of mithramycin in humans has been limited because
its side effects, to the point commercial clinical batches have not been
reported since 2000. Regarding CRM, despite being 10 times more
active than MTM against several tumor cell lines, it has been limited
clinically due to severe toxicity [8].

Not withstanding, in recent years has been a renewed interest in 
aureolic acids, as new uses and activities has been described to MTM, 
including inhibition of apoptosis or antiangiogenic activity, in both 
cancer and noncancer related processes [9,10]. For example, MTM 
selectively blocks expression of cell proliferation and transforming 
growth factor β (TGF-β) signaling clusters in human gingival 
fibroblasts, and in glioma cells it was found to suppress and delay tumor 
cell migration [11]. On the other hand, the combination of MTM and 
betulinic acid has led to a novel antiangiogenic therapy for pancreatic 
cancer [12] and has also revealed to be a neuroprotective drug with 
potential application as neurological therapeutics [13]. Likewise, CRM 
was identified through in silico analysis of the publicly available drug 
profiles from the NIH (National Cancer Institute) as an agent suitable 
to selectively targeting the loss of the von Hippel-Lindau (VHL) tumor 
suppressor gene in clear cell renal carcinoma [14].

More recently, MTM has just been identified as the top candidate 
from a high-throughput screening of over 50,000 compounds to inhibit 

the aberrant EWS-FLI1 fusion transcription factor, associated to the 
malignant transformation and progression of Ewing sarcoma family of 
tumors (ESFTs) [15]. Similarly, it has been shown that MTM is able 
to downregulate ABCG2, a xenobiotic pump, a knockdown effect that 
inhibits proliferation and migration in lung and esophageal cancer cells 
[16]. Importantly, both findings have provided the basis for starting 
clinical trials of MTM in cancer for the first time in decades [17,18].

These promising applications have triggered the development of 
several synthetic approaches in order to discover novel aureolic acid 
analogs with an improved therapeutic index [1,19,20]. In the field 
of combinatorial biosynthesis, modifications achieved by genetic 
engineering have allowed to modify the MTM molecule in the 3-side 
chain (aglycone), the sugar profile or both. Particularly, the mithralogs 
SK (MTM-SK), and SDK (MTM-SDK) [21], which bear a shorter side 
chain, showed higher antitumor activities and lower toxicity than the 
parental compound and were particularly effective in treating ovarian 
and advanced prostate cancers [22-24]. Likewise, the gene cluster 
involved in the biosynthesis of CRM has been cloned and characterized, 
showing that the CmmA gene encodes the acetyltransferase responsible 
for transferring both acetyl groups to the sugar moiety. Further 
employment of the CmmA acetyl transferase as a biosynthetic enzyme 
enabled to prepare novel mono-, di- and triacetyl derivatives of aureolic 
acids with improved antitumor activities [25]. Moreover, a biocatalytic 
approach based on a lipase-catalyzed regioselective acylation led to a 
plethora of mono- and diacetyl derivatives of MTM and CRM [26,27]. 
Recently the complexation of aureolic acids with metal ions has been 
studied as well as the activity of the resulting complexes. All the MTM 
and CRM complexes with divalent metal ions exhibited a 2:1 drug-
metal complex stoichiometry. The antitumor activity of the CRM-
complexes with Ni(II), Fe(II) and Co(II) were significantly higher than 
the uncomplexed drug due to higher DNA-acting affinity meanwhile 
the association with Cu(II) disfavored DNA binding [28]. Similarly, 
the dimer complex of MTM with Ni(II) exhibited a greater cytotoxicity 
than free MTM in several cancer cell lines [29].

One major problem to address with the aureolic acid family of 
drugs is the low bioavailability, short plasma retention time and low 
tumor accumulation. Previous attempts to address this issue with 
liposomal formulations as controlled delivery systems turned out 
to be not effective. Recently, two nanoparticle formulations of MTM 
analogs, poly(ethylene glycol)-poly(aspartatehydrazide) self-assembled 
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Figure 1: Chemical structures of selected aureolic acids.
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and cross-linked polymer micelles have been developed in order to 
achieve a pH-dependent release of the drug. To a pH of 7.4 both self-
assembled and cross-linked micelles retained 40-50% of the drug after 
24 hours meanwhile drug release was accelerated at pH 5.0, especially 
in the cross-linked micelles. Interestingly, both formulations retained 
the antitumor activity of the mithralogs, the cross-linked micelles being 
even more potent against the A549 human non-small cell lung cancer 
cell line [30].

Olivomycin A was discovered more than forty years ago at the 
Gause Institute of New Antibiotics [31]. Despite having shown great 
activity in clinical trials as anticancer drug, its use was also limited due 
to the high toxicity. Regarding synthetic approaches, the Roush’s group 
accomplished after ten years of impressive work the total synthesis 
of olivomycin A by preparing the aglycone unit (olivin), the di- and 
trisaccharide appendages and final assembly [32]. More recently, some 
synthetic analogs has been prepared by chemical modification of the 
aglycone moiety. For example, the attachment of amide groups to the 
2’-keto group of the side chain led to a novel derivative with higher 
antitumor activity in in vivo experiments on mice bearing leukemia 
P-388 and lower toxicity than the parent drug as well as a marked 
inhibitory activity against topoisomerase I (Topo-I) [33]. Similarly, the 
shortening of the side chain of olivomycin to a methoxyacetic residue 
and further functionalization as an amide provided a novel derivative 
with improved DNA binding constant and antitumor effect against 
lymphoma and melanoma [34]. Durhamycin A was discovered in 1966 
as an antifungal antibiotic from Streptomyces durhamensis sp. [35]. 
Although by far much less studied, in contrast to the well-established 
antitumor activity of all the other aureolic acids, durhamycin A 
exhibited excellent activity as a potent inhibitor (IC50=4.8 nM) of Tat, a 
small protein essential for both viral replication and progression of HIV 
disease [36]. Recently, the tetra- and trisaccharide units of the sugar 
moiety as well as an advanced precursor for the aglycone core have 
been synthesized which opens the door to new analogs [37]. Similarly, 
UCH9 with a structure close related durhamycin A, was isolated from 
Streptomyces sp. from a soil sample collected in Iwakuni city (Japan) 
in 1998. UCH9 showed cytotoxic activity against HeLa S3 cells with 
an IC50 value of 13 nM and significant antitumor activity in a murine 
syngenic model [38].

In the immediate future, and in light of the promising applications 
highlighted above, it is almost certainly that novel aureolic acid analogs 
will be developed, especially taking advantage of the combinatorial 
biosynthesis and biocatalysis, as well as chemical synthesis. The 
launch of new clinical trials with MTM is re-opening the clinical 
interest in mithralogs. The viability of new analogs will be enabled by 
improvements in therapeutic window, a critical issue in many cancer 
therapeutics, especially those of natural origin. Overall, it is likely 
we will see new opportunities to this neglected class of compounds, 
long stigmatized since they address the activity of generally regarded 
undruggable targets.
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