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Introduction
The emergence of pathogenic multiple drug resistant (MDRs) 

microorganisms have become a critical problem in modern 
medicine, particularly because of the concomitant increase in 
immunocompromised patients due to transplantation, autoimmune 
disorders and various viral infections, particularly HIV-1 [1].

Bacterial predators, i.e. bacteriophages (phages)–viruses that infect 
and rapidly destroy bacteria, were discovered almost a century ago 
and there have been many attempts to apply phages to treat bacterial 
infections [2]. While phage treatment has been successfully used in 
Russia, Georgia and Poland, it has been largely ignored in the West. The 
emerging crisis of antibiotic resistance and the uncertain outlook for 
development in new antibiotics have dramatically altered landscape of 
MDRs, generating renewed interest in phages as a means of eradicating 
drug-resistant microorganisms. 

Lytic phages are very specific and only attack and lyse specific 
bacterial species, disrupt bacterial metabolism and cause the bacterium 
to lyse. In addition, phage therapy is the therapeutic use of lytic 
bacteriophages to treat pathogenic bacteria. The therapeutic phages 
have some theoretical advantages over antibiotics due to their rapid 
bacteriolytic activity and phages have been reported to be more 
effective than antibiotics in treating certain infections in humans [3-5], 
and experimentally infected animals [6]. However, the target species of 
bacteria can develop resistant to a particular type of phage and some 
patient may experience diarrhea. 

From a clinical standpoint, phages appear to be innocuous. During 
the long history of phages utility as therapeutic agents in Eastern 
Europe and the former Soviet Union (and, before the antibiotic era, 
in the United States), phages have been administered to humans (i) 
orally, in tablet or liquid formulations (105 to 1011 PFU/dose), (ii) 
rectally, (iii) locally (skin, eye, ear, nasal mucosa, etc.), in tampons, 
saline rinses, and creams, (iv) as nasal aerosols or intrapleural 

injections and (v) intravenously, [7-11], albeit to a lesser extent than 
the first four methods, and there have been virtually no reports of 
serious complications associated with phage-therapy [12,13]. In the 
United States, phi X174, apparently a harmless phage, has been used to 
monitor humoral immune function in adenosine deaminase-deficient 
patients [8], and to determine the importance of cell surface-associated 
molecules in modulating the human immune response [14,15]. In 
this study, we evaluate the potential use of lytic phage on wound 
contraction. Extensive study need to be done to determine if there is 
any effect of enhancement of epithelization by phage therapy. 

Materials and Methods
Isolation and purification of MDR microbes

Bacterial cultures of the putative MDRs Pseudomonas aeruginosa 
were isolated from a clinical specimen from a local hospital (clinical 
isolates and Lab collection). The specimens were streaked on Luria-
Bertan (LB) agar (Sigma Co.-USA), and after 48 hours, individual 
colonies were picked and their purity were determined by Gram-
staining, morphological characteristics and specific biochemical 
analyses [16].

Determination of Minimal Inhibitory Concentrations (MIC)

The MDRs microbe’s antibiotic plates were prepared by adding the 
following antibiotics at final concentrations of 5-200 μg/ml from the 
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Abstract
With the rising prevalence of multiple-antibiotic resistant-bacteria (MDRs) and the lack of development of new 

antibiotics by the pharmaceutical industries, there is an urgent need to develop novel approaches to combat MDRs, 
especially Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus. Bacteriophage therapy has 
been applied for decades as a means of treating bacterial infections in some parts of the world and numerous 
encouraging results have been documented. Here, we present evidence in murine models that animals infected with 
MDRs P. aeruginosa can be successfully treated with specific bacteriophages that target these MDRs microbes. We 
utilized three different forms of bacterial infections on Stage II and III wound on deep lower back of animals; deep 
wound infection and chronic infection treated the each of the infections by respective dermal application of phages. 
Furthermore, we successfully tested phage therapy for both acute and chronic infections. We evaluate the potential 
use of lytic phage on wound contraction; we observed drastic changes on the wounds after 24-hours of phage 
application. Pros and cons of phage therapy to treat human MDRs are discussed. 
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stock solutions of Ciproflaxin, Nalidixic Acid, Ampicilin, Gentamycin, 
Methicillin, Vancomycin and Minomycin in sterilized LB agar. The 
purified P. aeruginosa were re-plated to verify the purity of culture. 
Minimum inhibitory concentration (MIC) of various colonies of this 
MDRs strain was done by standard MIC method [16].

Isolation and purification of bacteriophage

Lytic Bacteriophages were isolated from clinical specimen (Urine 
sample from patients) with urinary tract infections (UTI) by plaque 
assay and spot assay techniques [16].

Isolation of phage from clinical specimen

Urine sample from a patient (24 years old female athlete) suffering 
from severe UTI, was centrifuged at 6000 rpm to remove solid matters 
and the supernatant was then passed through a sterile 0.45 μm pore size 
nitrocellulose filter (EMD Millipore Co.). 50 μl of filtrate and 100 μl of 
early exponential phase, P. aeruginosa were mixed in 3 ml of melted L.B 
soft agar and plated at 37°C overnight. 

Phage isolation, purification and quantifications

Phages were purified by successive single plaque and propagation 
method, as described previously [16,17]. Briefly, a single plaque was 
picked from a plate using a sterile capillary tube and added to a mid-
log-phase P. aeruginosa culture (108 CFU/ml) supplemented with 0.1M 
CaCl2. 10 μl of culture mixture and phage mixture were incubated at 
37°C overnight. The lysate was filtered through a 0.45 μm-pore-size 
sterile filter (EMD Millipore Co.). For quantification and titration, 
serial dilutions of the phage containing filtrates were made, and plaques 
were allowed to develop on a lawn of the same host bacterial culture. 
Single plaques were purified through 3 successive rounds of plaquing 
and repeated three additional times, after which purified phages were 
obtained. All lysates were stored at 4°C.

Determination of phage interaction with bacteria

A. Plaque assay by double layer method: 100 μl of early exponential 
phase bacterial culture and 50 μl of respective lysates were mixed with 
CaCl2 and MgSO4 (0.1 M final concentrations) into 3 ml of melted LB 
soft agar tube. It was then poured on LB agar plate and incubated at 
37°C overnight. Negative control contained no lysates [13,18].

B. Spot assay by double agar layer method: 100 μl of the early 
exponential phase culture of bacterial culture was mixed into 3 ml of 
melted LB soft agar and plated on a LB agar plate. After solidification, 
10 μl of phage lysate were applied on the bacterial lawn and incubated 
at 37°C, overnight. 

Transmission electron microscopy

Phage morphology was studied by precipitating of 500 μl lysate 
with PEG 6000 (Promega Co. USA) and NaCl to a final concentration 
of 8% and 4%, respectively, and incubated at 4°C, overnight. The pellet 
was re-suspended in 100 μl of double deionized distilled water. Four 
hundred mesh carbon coated grids were negatively stained with 2% 
uranyl acetate for 30 seconds and examined by transmission electron 
microscope (GOEL-JEM-1200 EX II).

Phage DNA extraction

DNA from the phage was extracted from phage PS5 lysate using 
DNA extraction kit (Promega Co.-USA).

Polymerase Chain Reaction (PCR) amplification

The phage DNA was used as PCR templates. PCR products were 
generated by using F: 5′-CCC GGG ATC CGA T-3′ and R: 5′-ATG CCA 
TCC CGG G-3′ primers. The amplification was carried by denaturation 
at 94°C for 4 min, followed by 35 cycles of denaturation at 94°C for 
30 seconds, annealing temperature 60°C for 30 seconds and extension 
at 72°C for 2 min. Amplified products were sized by 2% agarose gel 
electrophoresis and documented by photography.

DNA sequencing and computer analysis

Sequencing reaction was performed by using ABI 3130 (Applied 
Biosystems, Foster City, CA, USA). For alignment and comparison of 
similar new sequences, ClustalW.2 was used. The similarity between 
our data sequence and the sequence database was assessed by the use 
of BLAST-NCBI. 

Establishing of MDRs P. aeruginosa infection in mouse model 

Pathogen free 7 week’s old BALB/c male mice (in groups of two) 
were used for infection experiments. MDRs P. aeruginosa culture was 
grown in LB medium at 37°C. Log–phase culture of MDR P. aeruginosa 
to optical density at 600 nm of 1.1 (5×108 CFU/ml), followed by 
centrifugation at 3000 rpm was used. Pellet was washed and re-
suspended in PBS and was stored at 4°C. This suspension was used as 
infectious agent on Stage II and III wound on deep lower back of the 
animals. Wound model were either Stage II or Stage III. The Stage II 
was caused by surficial scratches, mainly to epidermis layer and perhaps 
and dermis layer at some places, whereas the stage III involved deep 
wound penetrating the dermis and subcutaneous tissue [19]. The Stage 
III models were treated with low concentration of phage application 
Animals were maintained in strict sterile condition, according to 
guidelines for the housing of rodent in scientific institutions [19]. 
Bedding (single type), cage, cage shelter, bars, cage lid, water container 
were autoclaved and changed every day. Food was stored in a clean, 
dry, vermin-free, well-ventilated sterile area to reduce any possible 
contamination. Water delivery system was monitored during study to 
ensure proper function.

Phage application as therapeutic agent for treatment of mice 
infected with MDRs P. aeruginosa

The efficacy of phage therapy was evaluated in five groups of mice, 
using MDRs P. aeruginosa as pathogen. Three groups were evaluated 
for the effect of phage dose on established infected wound, for this 
purpose, first group of the animals were challenged by local infection 
of MDR P. aeruginosa; 3×108, second group; 3×106, third group; 3×104 
CFU. Whereas, the forth group served as positive control without phage 
therapy, but infected P. aeruginosa and the The fifth group served as 
the negative control, which only received 3×104 CFU of phage without 
bacterial infection.Each animal in these groups were treated with a two 
injections of lytic phage PS5 of the appropriate dose of phage (~9×108 

PFU), administered i.p 30 min after bacterial challenge. 24 hours after 
the first injection, the animals were administered a second injection of 
phage and then given a daily dose of phage orally (~3×108). The positive 
control group was not treated with phage. Infected animals and 
controls were observed under sterile condition for one week and the 
status of the wounds were monitored and recorded by photography.

Phage therapy on chronic MDRs infection

One week after infections with MDRs P. aeruginosa (positive 
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control group). The chronically infected mice were treated with two 
doses of lytic phage PS5, first via intraperitoneal (i.p) injection (~9×108 

PFU) and a second dose of phage, 24 hours after the first infection, and 
were given a daily dose of phage orally (~3×108). Infected mice were 
observed for one week and photographed.

Results and Discussion
In this study, Pseudomonas lytic phage was isolated from a clinical 

specimen. The phage was further characterized by utilizing the local 
isolated MDRs strain of P. aeruginosa as a bacterial lawn for detection 
of the host-phage interaction. Plaque assay of filtered sterilized phage 
lysates on the lawn of P. aeruginosa (Figure 1A) exhibited clear plaques 
suggesting a highly lytic activity of both types of phages. These phages 
were propagated as virulent phages in MDRs P. aeruginosa (PS5) 
(Figure 1B). The electron microscopic examination indicated that these 
phages belong to Myoviridea phage based on morphology (Figure 2).

BLAST analysis of PCR products highlighted by designed primers 
[20] for phage PS5 showed homology with SAM domain (accession 
number: KC351753) (Figure 3). Sterile alpha motif (SAM) domains 
are known to exhibit diverse protein-protein interaction modes. SAM 
domain is a putative protein interaction motif present in a wide variety 
of proteins involved in diverse biological processes. The SAM domain 
that is evolutionarily conserved from lower to higher eukaryotes is a ~ 
70-amino acid protein sequence that participates in protein-protein, 
protein-lipid and protein-RNA interactions. They can form multiple 
self-association folds and also bind to various non-SAM domain-
containing proteins [21]. The SAM domain can potentially function as 
a protein interaction module through the ability to homo- and hetero-
oligome with other SAM domains [21]. The SAM domain is involved 
in the regulation of multiple-processes among prokaryotes and diverse 
eukaryotes. Another interesting feature was presence of radical SAM 
domain proteins phage PS5 [21].

Our analyses of the SAM domain of P. aeruginosa LESB58 
(GeneID: XM_001276480) and phage PS5 PCR product by BLAST-
NCBI, exhibited 99% similarity with P. aeruginosa LESB58.

In addition to demonstrating that the radical SAM domain contains 
essential motifs to coordinate the [4Fe-4S] cluster and cofactor SAM, is 
essential for the antiviral activity of viperin [20], which mediated by 
interferon gamma (IFNγ), Viperin has been shown to be induced by 
other viruses, such as vesicular stomatitis virus, dengue virus, yellow 
fever virus, human polyomavirus JC and hepatitis C virus (HCV), in 
cultured cells and in vivo [22]. 

It has been known that P. aeruginosa is a common agent of serious 
infections in severe burn patients. Acute burn wounds cause a breach in 
the protective skin barrier and suppress the immune system, rendering 
the patients highly susceptible to bacterial infections. P. aeruginosa 
colonization in the severe burn wounds and its rapid replication within 
the damaged tissues often leads to disseminated infections, resulting in 
bacteremia and septic shock and high rates of mortality and morbidity 
[23,24]. Treatment of such infections is confounded by the MDRs P. 
aeruginosa [25]. Multiple studies have demonstrated the benefits of 
phage therapy for a variety of bacterial infections in animal model 
systems [26].

In our investigation, the efficacy of phage treatment in murine 
model, after superficial infection with MDRs P. aeruginosa, showed 
that administration of lytic phage PS5 in the infected animal animal 
resolved the infection (Figures 4-6). Concerning the timing of phage 

treatment, our results showed that administration of phage 30-45 
minutes after the bacterial challenge was very effective. The scientific 
literature shows, simultaneous injection is the easiest method for 
examination of the antibacterial effects of phage or drug in vivo [27]. 
Furthermore, the bacteria and the phage immediately transferred into 
blood, as this is assumed to be the most suitable in vivo situation for the 
phage–bacterium interaction [27]. 

We also tested the efficacy of phage PS5 on chronic bacterial skin 
infection (6 days old infection) (Figures 7A, 8A and 9A). In these 
animals, the lesion was not cleared by the immune system of the 
animals, but healing was apparent by the lytic phages. We demonstrated 
complete recovery in chronically MDRs-infected animals post phage-
treatment (Figures 7-9).

Recovery of the animals was achieved by administering two doses 
of phage daily for one week and maintaining a continuous infusion 
of phage via the drinking water. The effectiveness of lytic phage PS5 

Figure 1: Plaque assay of lytic phage.

Plaque assay of lytic phage on the lawn of different strains of multiple drug 
resistance P. aeruginosa. (A) Plaque assay of phage PS5 on the lawn of multi 
drug resistant Ps. aeruginosa. (B) Spot assay of phage PS5 on the lawn of 
multi drug resistant P. aeruginosa.

Figure 2: Electron Micrograph of Phage PS5.

Figure 3: 3D structure of phage PS5 “Sterile alpha motif” (SAM) protein 
(accession number: KC351753).

http://msx.claflin.edu/owa/?ae=Folder&t=IPF.Note&id=LgAAAAADqja%2b7auJTo7pSi8yWBaxAQCwV9QFWgedRLWxqmznoA%2bXABfJlKayAAAB&slUsng=0&pg=1
http://msx.claflin.edu/owa/?ae=Folder&t=IPF.Note&id=LgAAAAADqja%2b7auJTo7pSi8yWBaxAQCwV9QFWgedRLWxqmznoA%2bXABfJlKayAAAB&slUsng=0&pg=1


Citation: Golkar Z, Bagasra O, Jamil N (2013) Experimental Phage Therapy on Multiple Drug Resistant Pseudomonas aeruginosa Infection in Mice. 
J Antivir Antiretrovir S10- 005. doi:10.4172/jaa.S10-005

Page 4 of 6

J Antivir Antiretrovir                                               ISSN: 1948-5964 JAA, an open access journalAntiretroviral Drug Development for HIV: 
Challenges and Perspectives

Figure 4: Phage therapy of MDR P. aeruginosa acute infection.

Pseudomonas Phage PS5, application (3×108) after 30 minutes on Lesion of 
mice infected with MDR P. aeruginosa. (A) Phage application and time needed 
to heal the lesion on the animal back.
(B) Control animals infected with MDR Pseudomonas aeruginosa 

Figure 5: Phage therapy of MDR P. aeruginosa acute infection.

Pseudomonas Phage PS5, application (3×106) after 30 minutes on Lesion of 
mice infected with MDR P. aeruginosa. (A) Phage application and time needed 
to heal the lesion on the animal back.
(B) Control animals infected with MDR Pseudomonas aeruginosa 

Figure 6: Phage therapy of MDR P. aeruginosa acute infection.

Pseudomonas Phage PS5, application (3×104) after 30 minutes on Lesion of 
mice infected with MDR P. aeruginosa. (A) Phage application and time needed 
to heal the lesion on the animal back.
(B) Control animals infected with MDR Pseudomonas aeruginosa 

in treatment of experimental infected murine model exhibited by 
MDRs P. aeruginosa in these animals strongly suggested that MDRs P. 
aeruginosa is susceptible for both oral and i.p applications of the lytic 

phage PS5. Effectiveness of phage treatment was apparent in the chronic 
lesions (within 6 days) after treatment as determined by complete 
recovery of the infected rodents. Of note, the chronic infection model 
would closely mimic the real like human condition, when an infected 
patient who was diagnosed with MDRs infection would be a candidate 
for phage therapy. 

Figure 7: Phage therapy of MDR P. aeruginosa chronic Infection.

(A) Pseudomonas Phage PS5 (3×108), application after 30 minutes on infected 
lesion of mice infected with MDR Pseudomonas.
(B) Control: Lesion on mice skin infected with MDR Pseudomonas without 
Phage therapy.

Figure 8: Phage therapy of MDR P. aeruginosa chronic Infection.

(A) Pseudomonas Phage PS5 (3×106), application after 30 minutes on infected 
lesion of mice infected with MDR Pseudomonas
(B) Control: Lesion on mice skin infected with MDR Pseudomonas without 
Phage therapy

Figure 9: Phage therapy of MDR chronic infection.

(A) Healing of chronically infected burned lesion of Pseudomonas by Phage 
PS5 Therapy (3×104).
(B) Control: Experimentally infected burned mice with MDR P. aeruginosa.
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The possibility of bacterial resistance to phage may be an obstacle in 
the development of an effective phage therapy system [28]. Data from 
the literature help to understand that even if the bacteria develop phage 
resistance new phage that may have lytic activity against that particular 
bacteria can be utilized. It is also possible to prepare a mixture of 
different strains of phages that can attach to different receptors and 
may prevent the emergence of a bacterial-phage resistant during 
phage treatment. This will be similar to current treatment of HIV-1 
with multiple drug cocktails, known as highly active antiretroviral 
therapy (HAART) or three drug cocktail for tuberculosis (i.e. isoniazid, 
rifampin and ethmbutol) [28,29].

We believe that some of the reasons that phage therapy has not 
been globally recognized and applied may be due to three major 
concerns described in the literature [9]. First, the rapid lyses of a 
large numbers of microbes, especially Gram negative that may release 
endotoxin (i.e. LPS). In our study, we did not observe any so called 
the Jarisch-Herxheimer reaction, in any of our experimental animals. 
Such results are also reported by others when mass bacteriolyses 
occurred after antibiotic treatment [30]. Therefore, in all experiments, 
the animals recovered due to rapid bacterial lysis do not appear to be a 
serious situation. Phage-treated mice, in fact, remained healthy weeks 
after treatment. The above results become more convincing in light of 
numerous reports documenting phage efficacy in vivo against several 
bacterial species [31], including S. aureus [18], E. coli [32], P. aeruginosa 
[33] methicillin-resistant Staphylococcus aureus (also known as meat-
eating bacteria) and vancomycin-resistant Enterococcus faecium [33]. 

The second important concern is the “by-standard effect”, where 
phages may destroy other non-target microbes and disturb the normal 
flora. This is not real concern since phages are highly receptor-specific 
and no such data has been reported elsewhere. And the retrospective 
history of using phage administration by different routes in several 
countries has reported no such outcome. There have been almost no 
report of serious complication related to their use [34], as phages are 
common entities in the environment and regularly consumed in foods, 
the development of neutralizing antibodies should not be a significant 
obstacle during the initial treatment of acute infection, because the 
kinetics of phage action or lytic enzymes is much faster than immune 
recognition and antigen processing system by the adoptive immunity. 
However, even if antibodies are generated by a host against a particular 
host’s immune system, it is unlikely that the same host will be receiving 
the exact same phage therapy twice [35-39].

Thirdly, there is a possibility that phage preparations may contain 
residual bacterial antigens or endotoxins [32]. To address this, 
bacteriophage production for clinical trials have to follow specific Good 
Manufacturing Practice (GMP) guidelines with appropriate quality 
controls [40], and to meet specific standards for purity and sterility.

In summary, our study provides clear evidence that not only for 
superficial infection lytic phage can be locally applied, but also it may 
be used in systematic infections. Our studied on MDRs Ps aeruginosa 
phages, to control bacterial infection shows therapeutic promise. Since 
the treatment of ever increasing worldwide incidence of the MDRs 
bacteria is a challenge, use of the specific well-characterized phages 
can be an alternative strategy to combat this problem. However, it is 
quite clear that the safe use of these phages as therapeutic modality will 
require complete target characterizations to avoid any potential side 
effects.

Finally, our experimental phage therapy and bioinformatics analysis 

suggested that phage treatment is a useful tool for the treatment of 
Pseudomonas infections. Given the encouraging results of this study, it 
may be useful to develop more precise experiments that may allow the 
use of these phages, in case of serious human clinical infections with 
MDRs, where all known antibiotics have failed to treat the infection.
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