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Exercise: Great for Heart Health, Just as Great for Cardiac Preconditioning 
Research
John C. Quindry*

Cardioprotection Laboratory, Department of Kinesiology, Auburn University, Auburn, AL, USA

Ischemic heart disease remains a leading cause of morbidity and 
mortality in the United States and other industrialized countries [1]. 
Ongoing research efforts within the biomedical science community 
seek to discover counter therapies that will mitigate ischemic damage 
in those with coronary artery disease. Candidate therapies are 
intended to invoke cardioprotection by pharmacologic activation of 
endogenous mechanisms of cellular protection [2]. In concept the 
process of pharmacologic development is fundamentally simple: 
a cardioprotective pathway against ischemic injury is discovered, 
animal-based experiments provide proof of concept for pharmacologic 
induction of cardioprotection, and then clinical trials are undertaken. 
The reality, however, is somewhat more complicated. Within the 
context of discovery at different organizational levels (isolated cells, 
isolated organs, whole animal), numerous cellular pathways that 
elicit robust cardioprotection against ischemic injury are now well 
characterized [3]. Translation of this knowledge into clinical practice 
has proven far more difficult than expected. The point is famously 
articulated in a 2004 position paper by preeminent physicians and 
scientists is Circulation Research, “over the past 30 years, hundreds of 
experimental interventions (both pharmacologic and nonpharmacologic) 
have been reported to protect the ischemic myocardium in experimental 
animals; however, with the exception of early reperfusion, none has been 
translated into clinical practice” [4]. Given the collective effort to date, 
this is the central question: What scientific breakthrough is needed to 
translate our understanding of cardiac preconditioning into clinical 
practice? The underlying premise of this editorial is that the major 
limitation of cardiac preconditioning research is the nature of the 
stimulus, which traditionally has been derived from ischemia-induced 
adaptations.

Ischemic preconditioning research is historically founded on the 
classic 1986 Murry study, which was the first to demonstrate that 
brief intervals of sub-lethal ischemia conferred a subsequent window 
of protection against an ischemic insult of longer duration [5]. 
Twenty five years later, the ischemic preconditioning phenotype is 
well characterized as a polygenic response with redundant protective 
mediators including up-regulation of myocardial inducible nitric 
oxide synthase (iNOS), heat shock proteins (HSP) including HSP-
72, cyclooxygenase-2 (COX-2), and the sarcolemmal ATP-sensitive 
potassium channel (KATP) (reviewed in [6]). Activation of these and 
other protective mediators appear to converge upon the mitochondrial 
KATP channel, often heralded as the ‘holy grail’ of protective mediators 
[3]. Experimental evidence clearly demonstrates that pharmacologic 
agonists for these various mechanisms elicit transient cardioprotection 
(reviewed in [7]). It’s the transient nature of this protection that 
may best explain why an ischemic stimulus has proved so difficult to 
translate clinically.

The fundamental hindrances to translating ischemic 
preconditioning research into clinically viable solutions are evident 
by multiple caveats. First, heart attacks, even in high risk individuals, 
are currently impossible to predict accurately. Common sense might 
suggest that prophylactic use of cardioprotective agonists in high risk 
individuals is the obvious answer to the unpredictable nature of cardiac 

events. However, another hurdle preventing the translation of ischemic 
preconditioning research is the fact that pharmacologic induction of 
cardioprotection is itself transient. The initially protected myocardium 
is rapidly adaptable and quickly habituates to the pharmacologic 
stimulus within a matter of days, and comparatively “sustainable” 
cardioprotection dissipates after a maximum of 7 days [8]. Perhaps 
most importantly, the canonical cellular mediators of cardioprotection 
are inflammatory in nature. Thus, activated by the signaling molecules 
NFkB and TNFα, hormetic up-regulation of iNOS and COX-2 
is not “biologically intended” as a sustainable solution to cellular 
dyshomeostasis [9]. Given this rationale, we have sought to investigate 
the mechanisms of cardioprotection against ischemic insults using a 
scientific model of exercise preconditioning.

Whereas ischemic preconditioning has been invaluable in 
understanding the fundamental principles of ischemic injury and 
cardioprotection, exercise preconditioning may prove essential in 
discovering therapeutic translation. From a clinical perspective 
the differences between ischemic and exercise stimuli are obvious. 
Cardioprotective exercise is a long established lifestyle intervention 
for improved heart health, while sustained exposure to periodic 
ischemia promotes heart failure in clinical populations [10]. Recent 
animal-based research reveals important differences between ischemic 
and exercise models of cardiac preconditioning. One of the first key 
discoveries was that a few days of moderate intensity exercise elicits 
profound ischemic protection in rats, and longer duration (months) 
exercise regimens confer no additional protection [11-13].

Chronic exercise, in the longitudinal context of a lifestyle, is among 
the most well established interventions for improved heart health. 
However, a few consecutive days of moderate intensity exercise is 
insufficient to remodel the cardiac vasculature or architecture. The 
observed infarct resistance must then be attributed to short term up-
regulation of protective biochemical factors in the exercised heart. 
Ample evidence from multiple labs now indicates that the exercise 
and ischemic stimuli exhibit several important differences. In contrast 
to ischemic preconditioning that confers a 3-4 day window of 
cardioprotection [3], Three days of exercise elicits an ischemic injury 
resistant phenotype that persists for at least nine days following exercise 
cessation [14]. The mechanisms responsible for exercise-induced 
cardioprotection have been described through a series of reductionist 

Journal of Clinical & Experimental 
CardiologyJo

ur
na

l o
f C

lin
ica

l & Experimental Cardiology

ISSN: 2155-9880



Citation: Quindry JC (2013) Exercise: Great for Heart Health, Just as Great for Cardiac Preconditioning Research. J Clin Exp Cardiolog 4:e119. 
doi:10.4172/2155-9880.1000e119

Page 2 of 2

Volume 4 • Issue 2 • 1000e119
J Clin Exp Cardiolog

ISSN:2155-9880 JCEC, an open access journal 

studies conducted over the last decade. Key biochemical mediators 
of exercise induced cardioprotection include manganese superoxide 
dismutase (MnSOD) [12,15-17], calcium handling proteins [15,18], 
endogenous opioids [19], and sarcolemmal and mitochondrial KATP 
channels [20-23]. It is a notable fact that the identified mechanisms of 
exercise preconditioning are not central to ischemic-based protection. 
Moreover, the aforementioned mechanisms responsible for ischemic 
preconditioning, including iNOS, COX-2 and HSP-72 have been ruled 
out as mediators of exercise-induced cardioprotection [24-27]. The 
clinical relevance of these animal-based studies is punctuated by the fact 
that both ischemic and pharmacologic approaches to cardioprotection 
are ineffective in aged rodents [28]. In contrast, several investigations 
clearly demonstrate that the aged heart is thoroughly cardioprotected 
against ischemic insults by a few days of moderate intensity exercise 
[26,29,30].

Medical advances over the last 40 years have yielded incremental 
improvements in treating and preventing ischemic heart disease, and 
yet the clinical, financial, and personal burdens of heart disease remain 
[1]. Exercise is cardioprotective in that regular exercise participation 
reduces the incidence and severity of heart disease, modifies risk factors 
for cardiovascular disease, and beneficially remodels the heart [10]. In 
contrast to these ‘exercise for improved heart health’ points of interest, 
the current editorial presents a rationale whereby exercise is employed 
as a novel scientific model for understanding cardioprotection within 
the biomedical sciences. The proposed exercise-based approach 
is pragmatic, sustainable, and cost effective. Given the increased 
competition for federal research dollars, exercise-based research 
studies offer a high potential return. This editorial focus on exercise-
induced preconditioning against ischemia reperfusion injury serves 
as a prime example why additional funds from federal source should 
be directed to high quality investigations designed to understand 
protective mechanisms and translational potential of exercise.
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