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Introduction
Public health concerns surrounding the use of pesticides have been 

a major focus of the United States Environmental Protection Agency 
(EPA) and the United States Food and Drug Administration (FDA) for 
decades. On a global scale, approximately $39 billion dollars were spent 
on pesticides in 2007, with $12.5 billion dollars spent in the Unites 
States (US) alone [1]. This equates to the use of 5.2 billion pounds of 
pesticide’s active ingredients globally, with 1.1 billion pounds used in 
the US [1]. These active ingredients are used to create the more than 
20,000 EPA registered pesticides currently available in the US [2].

Agricultural workers, exterminators and pesticide manufacturing 
employees encounter high exposures to pesticides due to their trade 
and, thus, are at the highest risk for a biologically significant pesticide 
overexposure in the workplace [3-5]. It is estimated that approximately 
2-2.5 million workers come in contact with pesticides annually as a result
of their employment [6,7]. The National Institute for Occupational
Safety and Health (NIOSH) Sentinel Event Notification System for
Occupational Risk (SENSOR) program monitors occupational illnesses
and injury in participating states [5,8]. SENSOR data analyzed by
Calvert et al. [5] indicated that, between 1998 and 2005, approximately
3,200 acute occupationally exposed pesticide related illnesses were
reported in 10 states [3]. Geer et al. [9] reported that the EPA estimates
in 1992 suggested that ~10,000-20,000 acute occupational excessive
exposures occur annually.

Individuals that are exposed to pesticides outside of an 
occupational setting are considered general population exposures. 
Exposures in the general population can be indirect and are generally 
orders of magnitude lower than occupational exposures [10]. In 2007, 
domestic use of pesticides accounted for 8 percent of the conventional 
pesticides used in the United States [1]. Widespread pesticide use in the 
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Abstract
Pesticide use in the United States continues to raise controversy over potential effects on human health. 

This investigation examined biomarkers of exposure levels in a sample of the United States population from the 
2001-2002 NHANES dataset. The detection frequency of urinary biomarkers of exposure and the geometric mean 
were determined from 3,152 individual samples with stratified analysis for relevant subgroups. The association 
between the detection of a biomarker of exposure and differences in height and weight of children aged 6-11 was 
analyzed. Of the 18 specific pesticide biomarkers sampled, three were detected in more than 50% of the population 
sample: 79% had a detectable level of 3,5,6-trichloropyridinol, a biomarker of chlorpyrifos, with a geometric mean 
of 2.07 μg/L (C.I: 1.98-2.17); 53% had a detectable level of paranitrophenol, a biomarker of methyl parathion, with 
a geometric mean of 0.367 μg/L (C.I.: 0.346-0.389); and 77% had a detectable level of 3-phenoxybenzoic acid, a 
biomarker of permethrin, with a geometric mean of 0.336 μg/L (C.I.: 0.320-0.352). No clear trend emerged when 
evaluating associations between height and biomarker detection in children, with the absence of significant results 
for trichloropyridinol; heavier children associated with 3-phenoxybenzoic acid at age 7 [Detect=28.61 kg and Non-
Detect=25.26 kg (p=0.009)]; and paranitrophenol being associated with shorter children at age 8 [Non-Detect=134.3 
cm and Detect: 130.9 cm (p=0.046)] and taller children at age 11 [Detect=153.7 cm and Non-Detect=149.9 cm 
(p=0.022)]. A comparative analysis with extant epidemiological and biomonitoring literature is consistent with the 
findings reported here and suggests that there is insufficient evidence for a relationship between background 
exposure levels to these common pesticides and measured developmental health effects.

United States has equated to ~94,000 acute pesticide exposures in 2008, 
according to the American Association of Poison Control Centers’ 
National Poison Data System’s 26th annual report [11]. 

Residential exposures occur through a variety of sources: handling 
and application of pesticides in home and garden settings, residues 
remaining on surfaces in the home following residential application 
of pesticide products, food and drinking water that contain pesticide 
residues, aerosol drift, and take-home exposure from either pesticide 
applications in close proximity to the home or from family members 
transporting residues home on soiled or contaminated clothing [10,12-
18]. It has been suggested that ingestion of food products containing 
pesticides is the primary route of exposure for the general population 
[19-22].

While the effects from acute overexposures to organophosphate 
(OP) pesticides and other pesticides that affect the nervous system 
(such as pyrethroids) have been well established, there appears to be 
no consensus on the potential health effects from chronic, low-level 
exposures [23]. It has been observed that physiological differences in 
young animals (low detoxification rate by CYP and PON1 enzyme 
systems) may make them more sensitive to a cholinergic crisis than 
adult animals [24]. With this increased focus on the young, new 
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concerns arise regarding whether exposures to pesticides could 
result in teratogenic effects or alter pediatric development. In recent 
years, this research has focused on the potential effects that chronic, 
low-level pesticides may have, especially on children and various 
sub-populations, attempting to correlate adverse health effects with 
detections of pesticide biomarkers in biological media.

In order to evaluate potential health risk in adult and pediatric 
populations due to pesticide exposure, it is imperative to characterize 
the background exposure that is experienced in the population, which 
can be achieved with national health monitoring data. National health 
monitoring in the U.S. dates back to the National Health Survey Act 
of 1956 that gave authorization for the creation of a continuing survey 
that would give statistical data on the amount, distribution and types of 
illness and disability in the US [25]. The National Health Examination 
Survey’s of the 1960’s (NHES I-III) were multi-year studies that 
evaluated select chronic diseases and growth and development in a 
variety of age groups. The impact of nutrition and its relationship to 
health status was added to the study design in the 1970, thus creating 
the National Health and Nutrition Examination Survey and resulted 
in multi-year studies (NHANES I-III and HHANES), with a different 
focus for each study event. Beginning in 1999, NHANES became a 
continuous, annual survey event in the US [25]. Sampling for the 
2001-2002 NHANES collected data from 11,039 participants aged 
6-85+ years within the U.S. and included a subset of urinary pesticide 
biomarker measurements.

The objective of the current investigation is to use the 2001-2002 
NHANES urinary pesticide biomarker measurements to characterize 
the background exposure burden for common pesticides used within 
the United States. As well, the association between pediatric growth and 
the detection of urinary pesticide biomarkers are evaluated to examine 
potential effects of pesticide exposure on childhood development. A 
comparative analysis with extant epidemiological literature is presented 
to interpret the exposure characterization produced in this analysis.

Methods and Materials
Data source

The data evaluated in this research originated from the 2001-2002 
NHANES sampling event. Sampling for the 2001-2002 NHANES 
collected data from 11,039 participants aged 6-85+ years in 30 Primary 
Sampling Units (PSU) across the US. A PSU is defined as a county or a 
group of contiguous counties [26]. The PSU can be further divided into 
blocks or groups of blocks within one of those counties and households 
on the blocks. The Centers for Disease Control and Prevention (CDC) 
does not supply specific information on the locations of PSU in order 
to protect the confidentiality of participants [27]. Demographic 
information gathered from the examination including participant’s 
age, gender, ethnicity, education level, marital status and household 
income was assigned to each participant. 

Priority non-persistent pesticides and their biomarkers as well as 
organophosphate pesticide data were supplied in a separate data file. 
This dataset included information from a subset of 3,152 individuals 
from the main sampling event and included information for 18 
biomarkers. Analysis of spot urine (random) samples to evaluate for 
the presence of pesticide biomarkers was conducted for a randomly 
selected sample from the overall NHANES sample population [28]. 
Detailed laboratory analytical information is available in the NHANES 
pesticide documentation and NHANES laboratory procedures 
manual. For each specific biomarker, the dataset indicated whether 
or not the biomarker was detected and, if detected, the urinary level 

in micrograms/liter (μg/L). If the biomarker was not detected in the 
sample, a value of the detection limit (DL) divided by the square root of 
two (DL/√2) was reported [28]. Also included in this data file was the 
urinary concentration of creatinine in the sampled individual, reported 
in mg/dL. Information from this subset was matched using a common 
numerical identifier to the information in the demographic data file.

Data analysis

The frequency of detection was determined for each biomarker in the 
pesticide dataset. Biomarkers selected for inclusion in this analysis were 
limited to biomarkers that could be related to a parent compound and 
those detected in more than 50% of the samples, a criterion commonly 
used for population biomarker analysis [29]. Three biomarkers met the 
requirement for inclusion in this research: 3,5,6- trichloropyridinol 
(TCPy), paranitrophenol (PNP) and 3-phenoxybenzoic acid (3-PBA). 

Results for biomarker concentrations were log-transformed to 
determine the geometric mean. This transformation corrects for the 
non-normal distribution found in the sample due to the large amount of 
concentrations below or close to the Limit of Detection (LOD) [30,31]. 
The overall geometric and arithmetic means for each biomarker were 
determined and the confidence intervals and quartiles were calculated. 
Students t-tests were performed to evaluate differences in the geometric 
means determined for overall biomarker concentrations, the gender 
subgroups, and height and weight of each of the biomarker detect 
and non-detect groups for children aged 6-11. Analysis of Variance 
(ANOVA) was performed for the geometric means determined for 
the age and ethnicity subgroups for each biomarker; Tukey post-
hoc analysis was used to determine which means were significantly 
different. To account for dilution of urine in the sample, the creatinine-
adjusted geometric mean values (in microgram/g creatinine, μg/g) 
were determined.

Logistic regression was performed to model the relationship 
between the predictive independent variables (gender, age, and 
ethnicity) and the dichotomous, dependent outcome (a yes or no 
detection of the biomarker in the urine sample). The group with the 
largest amount of individuals was used as the reference group for 
gender and ethnicity (females and Non-Hispanic Whites). All statistical 
analysis was performed using SAS (Version 9.2).

Results
Biomarker detection

As indicated in Figure 1, TCPy and 3-PBA were detected in more 
than 75% of the sample. PNP met inclusion criteria by a small margin 
(53%). The remaining specific biomarkers were detected in much lower 
amounts in the sample. The geometric mean was determined for 78.6% 
of the individuals that had a detectable level of biomarker TCPy in their 
urine sample (Figure 2). Based on this analysis, the geometric mean for 
only detectable levels of the biomarker was 1.49 μg/L higher than that 
of the overall geometric mean.

Stratified analysis

In the TCPy analysis, males had a statistically significant higher 
geometric mean (GM) when compared to females, but only when using 
the unadjusted biomarker concentration in urine (μg/L). Adjusting 
for creatinine negates any significant difference (Table 1). Similar 
results were observed for concentrations of PNP (Table 2); however 
in the analysis of 3-PBA (Table 3), creatinine adjusted samples were 
significantly different by gender while unadjusted samples were not.
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When stratified by ethnicity for TCPy analysis, the unadjusted 
biomarker concentration in urine (μg/L) for non-Hispanic Blacks 
had a significantly elevated GM as compared with the other ethnic 
groups. However, when adjusting for creatinine, there were no 
significant findings (Table 4). Similar results were observed for PNP 
analysis (Table 5), Mexican Americans, Non-Hispanic Blacks and 
Non-Hispanic Whites are significantly different compared to each 
other when using the unadjusted biomarker concentration (µg/L), but 
no significant difference was observed when adjusting for creatinine. 
3-PBA analysis (Table 6) demonstrated that Non-Hispanic blacks have 
a significantly elevated geometric mean when compared to the other 
ethnic groups when evaluating the unadjusted urinary concentration 
of the biomarker (µg/L). When adjusting for creatinine (µg/g), only 
Mexican American and Non-Hispanic Blacks were significantly 
different.

When stratified by age groups (children of 6-11 years of age, 
adolescents of 12-18 years of age, and adults > 19 years of age), in the 
TCPy analysis (Table 7) significant differences are present for both 
the biomarker concentration in urine (μg/L) and when adjusting for 
creatinine (μg/g). For the unadjusted urinary biomarker concentration, 
children and adolescents are significantly elevated when compared to 
adults; however, there is no significant difference between children and 
adolescents within the same group. All three groups had a significant 
difference when adjusting for creatinine. In the PNP analysis (Table 
8), significant differences exist for both the urinary concentration of 
the biomarker and when adjusting for creatinine. For the unadjusted 
biomarker in urine, children and adolescents were significantly different 
from the adult group, but were not significantly different from each 
other. Children in the creatinine-adjusted analysis were significantly 
different from adolescents and adults, but adolescents not significantly 
different from adults. In the 3-PBA analysis (Table 9), significant 
differences were present between all three age groups when adjusting 

for creatinine (µg/g); however there is no significance when evaluating 
the unadjusted urinary concentration of the biomarker (µg/L).

Evaluation of weight and height

Children of the same year of age where compared by students t-test 
for the ages of 6-11 for the parameters of weight and height based on 
the dichotomous outcomes of detectable pesticide biomarker vs non-
detectable biomarker. This yielded 36 total comparisons, 6 comparisons 
of height and 6 comparisons of weight for each of 3 evaluated 
biomarkers. Of these 36 comparisons, only 3 statistically significant 
results were produced. A statistically significant result for 3-PBA was 
found, in that heavier children were associated with 3-PBA at age 7 
[Detect=28.61 kg and Non-Detect=25.26 kg (p=0.0009)]. As well, PNP 
produced two statistically significant results, being associated with 
shorter children at age 8 [Non-Detect=134.3 cm and Detect: 130.9 cm 
(p=0.046)] and taller children at age 11 [Detect=153.7 cm and (Non-
Detect=149.9 cm p=0.022)]. No significant differences were produced 
for weight or height related to TCPy detects vs. non-detects.

Logistic regression

In TCPy analysis (Figure 5), the overall model fit was significant, 
with the Likelihood χ2= 119.4, p <0.0001 and the R2 Max = 0.0602. The 
Hosmer and Lemeshow goodness-of-fit test resulted in a χ2= 12.2, p= 
0.144, indicating that the data from the independent variables fit the 

Figure 1: Detection Frequency of Urinary Pesticide Biomarkers.
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Figure 2: Comparison of Means for 3,5,6- Trichloropyridinol. 
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if using the concentration of the TCPy biomarker in urine (µg/L) alone. Limit of 
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Figure 3: Comparison of Means for Paranitrophenol.
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Figure 4: Comparison of Means for 3-Phenoxybenzoic Acid.
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model moderately well. When stratifying for individual groups, age 
does not seem to have an effect on the detection of a biomarker (β=-
0.0145 and OR=0.986, p< 0.0001). Mexican Americans (β=0.221 and 
OR=1.31, p=0.0275) and Other Hispanics (β=0.272 and OR= 1.38, 
p=0.007) had a slightly higher change in the regression coefficient and 
higher odds of having a detectable level of the biomarker than Non-
Hispanic Whites (reference group). Males had a higher change in the 
regression coefficient and higher odds of having a detectable level of 
biomarker than females (β=0.28 and OR= 1.75, p< 0.0001).

For PNP analysis (Figure 6), the overall model fit was also 
significant, with Likelihood χ2= 71.3, p <0.0001 and the R2 Max =0.0316. 
The Hosmer and Lemeshow goodness-of-fit test resulted in a χ2= 16.01, 
p= 0.0414, indicating that the data from the independent variables did 
not fit the model well. When stratifying for individual groups, age does 
not seem to have an effect on the detection of a biomarker (β=-0.005 

and OR=0.995, p=0.003). Other Hispanics (β=0.183 and OR= 1.45, p= 
0.026) had a slightly higher change in the regression coefficient and 
a higher odds of having a detectable level of biomarker than Non-
Hispanic Whites (reference group). Males had a higher change in the 
regression coefficient and a higher odds of having a detectable level of 
biomarker than females (β=0.227 and OR= 1.57, p< 0.0001).

Similar to previously evaluated biomarkers, in the 3-PBA analysis 
the overall model fit was significant, with Likelihood χ2= 84.8, p <0.0001 
and the R2 Max =0.0418. The Hosmer and Lemeshow goodness-of-
fit test resulted in a χ2= 7.59, p= 0.475, indicating that the data from 
the independent variables fit the model well. When stratifying for 
individual groups, age does not seem to have an effect on the detection 
of a biomarker (β=-0.006 and OR=0.994, p= 0.001). Other Hispanics 
(β=0.630 and OR= 2.43, p< 0.0001) had a higher change in the 
regression coefficient and a higher odds of having a detectable level of 

Biomarker (µg/L)a

 GMb LCLc UCLd SDe Median nf (D/ND)g Ph

Male 2.45 2.29 2.61 3.56 3.05 1416 (1180/236)
<0.0001Female 1.78 1.67 1.90 3.75 2.27 1595 (1188/407)

Total 3011

Creatinine Adjusted (µg/g)i

 GM LCL UCL SD Median n P
Male 1.98 1.87 2.10 2.97 2.20 1416

0.9423Female 1.99 1.88 2.10 2.99 2.27 1593
Total 3009

a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number in 
Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram

Table 1: Student’s t-test Comparing Geometric Means of Males Versus Females for 3,5,6- Trichloropyridinol.

a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number 
in Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) Level of Significance at p= 0.05 Level (Highlighted in Bold); i(LOD) = Limit of Detection, at 0.1 µg/L; 
j(µg/g) = Micrograms per Gram

Table 2: Student’s t-test Comparing Geometric Means of Males Versus Females for Paranitrophenol.

Biomarker (µg/L)a

GMb LCLc UCLd SDe Median nf (D/ND)g Ph

Male 0.447 0.410 0.487 5.14 0.830 1395 (823/572)
<0.0001

Female 0.308 0.284 0.333 4.99 < LODi 1580 (757/823)
Total 2975

Creatinine Adjusted (µg/g)j

 GM LCL UCL SD Median n P
Male 0.363 0.336 0.392 4.27 0.519 1395

0.276
Female 0.343 0.320 0.368 4.35 0.333 1578
Total 2973

a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number in 
Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram

Table 3: Student’s t-test Comparing Geometric Means of Males Versus Females for 3-Phenoxybenzoic Acid.

Biomarker (µg/L)a

GMb LCLc UCLd SDe Median nf (D/ND)g pH
Male 0.341 0.319 0.365 3.58 0.320 1429 (1131/298)

0.514
Female 0.331 0.310 0.353 3.81 0.290 1619 (1228/391)
Total 3048

Creatinine Adjusted (µg/g)i

GM LCL UCL SD Median n P
Male 0.278 0.261 0.296 3.38 0.250 1429

<0.0001
Female 0.370 0.349 0.392 3.31 0.325 1617
Total 3046
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a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number 
in Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram. *all 
indicates that this group is significantly different than all other ethnic groups.

Table 4: One-Way ANOVA and Tukey Analysis Comparing Geometric Means of Ethnic Groups for 3,5,6- Trichloropyridinol.

Biomarker (µg/L)a

GMb LCLc UCLd SDe nf (D/ND) g pH
Mexican American 2.12 1.88 2.37 3.36 744 (611/133)

<0.0001
Non-Hispanic Black *all 2.60 2.35 2.85 3.52 762 (635/127)
Non-Hispanic White 1.84 1.62 2.05 3.88 1255 (936/319)
Other Hispanic 1.77 1.09 2.45 3.96 129 (94/35)
Other 1.70 0.99 2.41 3.97 121 (92/29)
Total 3011

Creatinine Adjusted (µg/g)i

GM LCL UCL SD n P
Mexican American 2.10 1.91 2.30 2.74 744

0.1847

Non-Hispanic Black 1.94 1.73 2.15 2.94 761
Non-Hispanic White 1.99 1.82 2.16 3.10 1254
Other Hispanic 1.66 1.09 2.23 3.30 129
Other 1.86 1.32 2.41 3.06 121
Total 3009

a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number in 
Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram.
*Indicates groups that are significantly different from each other

Table 5: One-Way ANOVA and Tukey Analysis Comparing Geometric Means of Ethnic Groups for Paranitrophenol.

Biomarker (µg/L)a

GMb LCLc UCLd SDe nf (D/ND)g pH
Mexican American* 0.353 0.012 0.695 4.75 744 (402/342)

<0.0001
Non-Hispanic Black* 0.486 0.095 0.877 5.42 738 (439/299)
Non-Hispanic White* 0.319 0.034 0.603 5.12 1247 (605/642)
Other Hispanic 0.306 -0.537 1.15 4.83 126 (62/64)
Other 0.424 -0.418 1.27 4.71 120 (72/48)
Total 2975

Creatinine Adjusted (µg/g)i

GM LCL UCL SD n p
Mexican American 0.350 0.066 0.634 3.95 744

0.131
Non-Hispanic Black 0.364 0.036 0.692 4.54 737
Non-Hispanic White 0.344 0.113 0.576 4.16 1246
Other Hispanic 0.292 -0.443 1.03 4.21 126
Other 0.461 -0.161 1.08 3.48 120
Total 2973

biomarker than Non-Hispanic Whites (reference group). Males had 
a change in the regression coefficient and a higher odds of having a 
detectable level of biomarker than females (β=0.0927 and OR= 1.2, p= 
0.036).

Comparative analysis
A PubMED/Medline literature search was conducted to aggregate 

extant literature evaluating the presence of the three salient pesticide 
biomarkers evaluated in this investigation. Results of the literature 
search are summarized in Table 10. The unadjusted and, when available, 
adjusted creatinine values for measured urinary concentrations of TCPy, 
PNP, and 3-PBA were aggregated and compared to the biomarkers 
measured in the current study. While the frequency of detection of 
other investigations was typically higher in other published findings, 
the nominal background levels were consistent with means reported 
here. In some cases, where populations with suspected exposures 
were sampled, measures of central tendency were higher than those 
observed in the current study.

Discussion
As demonstrated by the analysis of the NHANES 2001-2002 

dataset containing urinary pesticide biomarkers, there is evidence 
of a nominal background pesticide exposure the sample of the U.S. 
general population. However, significant differences among subgroups 
varied when examining the biomarker concentrations in urine versus 
correcting for dilution with creatinine. Metabolism rates and intake of 
water can vary among individuals [32,33]. Dilution of urine may have 
an effect on the concentration of the biomarker. Creatinine adjustment 
has been used to normalize analyte concentrations due to the relatively 
constant excretion rate of creatinine, reporting the result as a weight 
of analyte per gram of creatinine. Barr et al. [34] suggests that there 
may be urine dilution variability between groups based on gender, 
ethnicity and age, and suggests establishing and using reference ranges 
for creatinine concentrations for the individual being investigated, 
as those values may be a more appropriate comparison. Analysis of 
both urinary biomarker level and creatinine-adjusted levels should be 
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a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number 
in Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram.   *all 

Indicates that group is significantly different than all other groups. 
*Indicates that groups are significantly different from each other

Table 6: One-Way ANOVA and Tukey Analysis Comparing Geometric Means of Ethnic Groups for 3-Phenoxybenzoic Acid.

Biomarker (µg/L)a

GMb LCLc UCLd SDe nf (D/ND)g pH
Mexican American 0.284 0.047 0.520 3.34 767 (580/187)

<0.0001
Non-Hispanic Black*all 0.489 0.251 0.727 3.35 762 (667/95)
Non-Hispanic White 0.298 0.083 0.513 3.91 1269 (920/349)
Other Hispanic 0.320 -0.339 0.980 3.82 129 (103/26)
Other 0.335 -0.434 1.10 4.32 121 (89/32)
Total 3048

Creatinine Adjusted (µg/g)i

GM LCL UCL SD n p
Mexican American* 0.283 0.068 0.497 3.03 767

0.0007
Non-Hispanic Black* 0.367 0.148 0.585 3.08 761
Non-Hispanic White 0.323 0.123 0.524 3.64 1268
Other Hispanic 0.301 -0.339 0.942 3.71 129
Other 0.367 -0.341 1.08 3.98 121
Total 3046

a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number 
in Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram.   * 
Indicates group is significantly different from Adults.
** Indicates that group is significantly different from Adolescents and Children.
***Indicates that all groups are significantly different from each other

Table 7: One-Way ANOVA and Tukey Analysis Comparing Geometric Means of Age Groups for 3,5,6- Trichloropyridinol.

 Biomarker (µg/L)a

 GMb LCLc UCLd SDe nf (D/ND)g pH
Children* 2.72 2.44 2.99 3.39 573 (491/82)

<0.0001Adolescent* 2.84 2.59 3.08 3.38 741 (643/98)
Adult** 1.65 1.47 1.83 3.77 1697 (1234/463)
Total 3011

Creatinine Adjusted (µg/g)i

 GM LCL UCL SD n p
Children*** 3.26 3.03 3.49 2.78 573

<0.0001Adolescent*** 2.09 1.90 2.28 2.66 740
Adult*** 1.76 1.61 1.90 3.02 1696
Total 3009

a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number 
in Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram.     * 
Indicates group is significantly different from Adults.
**Indicates that group is significantly different from Adolescents and Children.
***Indicates that Children were significantly different from Adolescents and Adults

Table 8: One-Way ANOVA and Tukey Analysis Comparing Geometric Means of Age Groups for Paranitrophenol.

Biomarker (µg/L)a 
GMb LCLc UCLd SDe nf (D/ND)g pH

Children* 0.455 0.038 0.873 5.06 565 (338/227)
<0.0001Adolescent* 0.399 0.043 0.755 4.91 732 (414/318)

Adult** 0.329 0.081 0.576 5.18 1678 (828/850)
Total 2975

Creatinine Adjusted (µg/g)i

GM LCL UCL SD n p
Children*** 0.549 0.210 0.887 4.10 565

<0.0001Adolescent 0.295 0.004 0.586 4.02 731
Adult 0.328 0.129 0.527 4.16 1677
Total 2973
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a(µg/L) = Micrograms per Liter; b(GM) = Geometric Mean; c(LCL) = Lower Confidence Limit; d(UCL) = Upper Confidence Limit; e(SD) = Standard Deviation; f(n) = Number 
in Sample; g(D/ND) = Number of Detects/Number of Non-Detects; h(p) = Level of Significance at p= 0.05 Level (Highlighted in Bold); i(µg/g) = Micrograms per Gram. *** 
Indicates that all three groups are significantly different from each other.

Table 9: One-Way ANOVA and Tukey Analysis Comparing Geometric Means of Age Groups for 3-Phenoxybenzoic Acid.

Biomarker (µg/L)a

GMb LCLc UCLd SDe nf (D/ND)g pH
Children 0.349 0.047 0.650 3.71 580 (453/127)

0.0742Adolescent 0.363 0.169 0.556 3.40 749 (613/136)
Adult 0.321 0.140 0.501 3.17 1719 (1293/426)
Total 3048

Creatinine Adjusted (µg/g)i

GM LCL UCL SD n p
Children*** 0.418 0.139 0.697 3.43 580

<0.0001Adolescent*** 0.269 0.049 0.490 3.08 748
Adult*** 0.321 0.159 0.483 3.43 1718
Total 3046

a(n) = Number in Sample; b(DF) = Detection Frequency; c(GM) = Geometric Mean; d(µg/L) = Micrograms per Liter; e(AM) = Arithmetic Mean; f(CAM) = Creatinine-Adjusted 
Mean; g(µg/g) = Micrograms per Gram; h(CAGM) = Creatinine-Adjusted GM; i(NA) = Not Available; j(CAAM) = Creatinine-Adjusted AM

Table 10: Summary of Results from Other Biomarker Studies.

Author na Sample Source Metabolite DFb Central Tendency
Adgate (2001) [16] 102 Minnesota  Child TCPy 93% GMc=6.4 µg/Ld; AMe= 9.2 µg/L
Aprea (1999) [55] 42 General Population Italy TCPy 88% CAMf=3.5 µg/gg

Arcury (2007) [56]
60 Latino Age 1-6 TCPy 83.3% GM=1.92µg/L; CAGMh=2.38 µg/g

PNP 90% GM=1.0 µg/L; CAGM= 1.25 µg/g
3-PBA 40% NAi

Barr (2005) [53] 1994 All TCPy 91% (weighted) GM=1.77µg/L; CAGM=1.58 µg/g

Barr (2010) [19] 3048 
(3046 for CA) NHANES 1999-2002 3-PBA 75.4% (weighted) GM=0.318µg/L; CAGM=0.324 µg/g

Berger-Preiss (2002) [57] 145 Adults and Children 3-PBA 28% Mean=0.25 µg/L
Berkowitz (2004) [37] 404 Pregnant Females TCPy NA Median=7.6µg/L; CA Median= 11.5 µg/g

Eskenazi (2004)
[45]

488 Pregnant Females TCPy 76.3% Median=3.3 µg/L
in Agricultural Community PNP 54.4% Median= 0.5 µg/L

Hill (1995) [55]
993 USA NHANES III TCPy 82% Mean=4.5 µg/L; CAM=3.1 µg/g
980 PNP 41% Mean=1.6 µg/L, CAM=1.2 µg/g

Macintosh (2001) [44] 80 NHEXAS- Maryland TCPy 96% GM=5.1 µg/L; CAGM= 4.5 µg/g

Morgan 2005 [58]
128 Children TCP NA GM=5.2 ng/ml; Mean=7.3 ng/ml
110 (Creatinine) CAGM 8 ng/mg; CAM= 10.5 ng/mg

Naeher (2010) [59] 203 Children      Age 4-6 3-PBA 99.5% Mean=5.0 µg/L
Olsson (2003) [60] 140 NA TCPy 56% GM= 9.7 µg/L

PNP 99% GM= 2.1 µg/L

Panuwet (2008) [61]
136 Thailand General Population PNP 99.3% GM= 2.8 µg/L; CAGM=2.1 µg/g
104 TCPy 76.5% GM=1.7 µg/L; CAGM=1.3 µg/g
118 3-PBA 86.8% GM=1.1 µg/L; CAGM=0.86 µg/g

Panuwet (2009) [62]

207 Thailand Age 12-13 PNP 98% GM=2.68  ng/ML; CAGM=3.07 µg/g
AM=4.07 ng/ml; CAAMj=3.81 µg/g

TCPy 92% GM=2.35 ng/ml; CAGM=2.7 mg/g
AM=4.02 ng/ml; CAAM=3.74 mg/g

3-PBA 47% GM=0.2 ng/ml; CAGM=0.23 µg/g
AM=1.0 ng/ml; CAAM=0.95 µg/g

Steenland (2000) [63]
65 Termiticide Applicator (Recent App) TCPy NA Mean=629.5 µg/L; CAM= 331 µg/g
40 Termiticide Applicator TCPy NA Mean= 119.0 µg/L; CAM= 55 µg/g
52 Non-Exposed Control TCPy Mean=6.2 µg/L; CAM=3µg/g

Ueyama (2009) [64]

448 Japanese General Population 3-PBA GM=0.29 µg/L; CAGM=0.4 µg/g
AM=0.63 µg/L; CAAM= 0.73 µg/g

87 Japanese Farmers GM=0.38 µg/L; CAGM=0.45 µg/g
AM=0.76 µg/L; CAAM=0.81 µg/g

Ye (2008) [65] 9778 Mothers TCPy 100% GM=1.2 µg/L; CAGM=1.9 µg/g
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conducted to determine if significance is eliminated or elucidated due 
to the correction with creatinine, as observed with some groups in this 
study.

For instance, variations in the mean concentrations for gender 
depended on whether or not the biomarker concentration in urine 
(μg/L) was used or whether it was corrected for dilution with creatinine 
(μg/g). Mean concentrations of biomarkers among ethnicity groups 
were consistently significantly varied. Non-Hispanic Blacks, followed 
by Mexican Americans, appeared to have significantly higher means 
than the other members of the group. Children and, in some cases, 
adolescents had significantly higher mean values as compared to adults. 
These variations could be due to the biological differences between 
children and adults, as children may metabolize xenobiotics at a slower 
rate than adults [35,36]. As well, increased instances of hand-to-mouth 
contact and pica in children may also result in an increase in exposure 
and explain the findings in this research [37,38,22].

Some of the statistically significant outcomes reported in this 
analysis could also be due to the oversampling of minorities by 
NHANES as certain subgroups that were the target of a specific health 
interest were oversampled to ensure their inclusion into the dataset 
[39]. This oversampling of certain minority or at-risk groups can 
overestimate the true nominal background exposure that exists in the 
general population. 

Based on the analysis in this study, there were no consistent results 
to suggest that exposed individuals had an increased risk of an adverse 
health outcome. When comparing the weight and height of study 
participants ages 6-11 among those with a recorded detect versus 
non-detect of urinary biomarkers, most of the comparisons were 
not statistically significant, indicating that there was no appreciable 
difference between the exposed versus non-exposed. Even among 
results that yielded statistically significant differences, no clear trend 
emerged with heavier children associated with 3-phenoxybenzoic acid 
detection at age 7 (Figure 4) [Detect=28.61 kg and Non-Detect=25.26 
kg (p=0.0009)]; and paranitrophenol being associated with shorter 
children at age 8 ( Figure 3) [Non-Detect=134.3 cm and Detect: 130.9 
cm (p=0.046)] and taller children at age 11 [Detect=153.7 cm and 
(Non-Detect=149.9 cm p=0.022)]. Out of the 36 height and weight 
comparisons made between detectable levels of biomarker and non-
detectable levels, 33 did not have significant findings at the p ≤  0.05 
level. It appears that exposure in this group of children does not have 
an overall association with childhood growth development. It should 
be noted that other indicators for developmental outcomes not 
present in the NHANES data may provide additional insight into the 
broader characterization of background levels of pesticide exposure 
and developmental effects. However, the pre-adolescent measures of 
height and weight provided in the current study provide important 
indicator data to assess any potential relationship that might have 
existed between background level pesticide exposure and prominent 
childhood development outcomes.

The logistic regression performed in this study allowed for 
modeling to determine how the independent variables (age, ethnicity 
and gender) had an effect on the detection of the biomarkers in the 
sample. This was then used to determine, based on the detection, which 
groups had a higher odds of having a detectable biomarker when 
compared to a reference group. All models were significant; however, 
only 3,5,6- trichloropyridinol and 3-phenoxybenzoic acid (Figure 
7) demonstrated acceptable model fit. The independent variables for 
ethnicity and gender in the 3,5,6- trichloropyridinol model confirmed 
the significant differences observed when comparing the geometric 

means of biomarker concentrations. Gender was the only significant 
predictor of 3-phenoxybenzoic acid.

When compared to extant epidemiological literature using similar 
markers in biological media, the mean biomarker levels from this study 
fall within the ranges of other investigations. Whyatt et al. [40], used 
data obtained from the Columbia Center for Children’s Environmental 
Health in New York to determine the association of exposure of African 
American or Dominican pregnant women to pesticides. Women in 
this study participated in biomonitoring at the time of birth. Blood 
samples were collected from the umbilical cord at birth and from the 
mother within two days after giving birth [40]. Plasma chlorpyrifos 
levels were determined and a negative association was found between 
detection of TCPy and birth weight and length [40]. These data were 
further analyzed to determine the impact of chlorpyrifos exposure on 
neurodevelopment. Rauh et al. [41] determined that “highly exposed” 

a(Detect) = Detectable Level of Biomarker in the Urine Sample, used as a 
reference category in the Model; b(DF)= Degree of Freedom. Significant 
differences are highlight in Bold.

Figure 5: Logistic Regression for 3,5,6- Trichloropyridinol.

Detecta
(DFb=1)

Detect, Non-Hispanic 
White (DF=1)

Detect, Female 
(DF=1)

Age

β=-0.0145
Wald χ 2=53.74
p<0.0001
OR=0.986

Mexican American

β=0.221
Wald χ 2=4.86
p=0.0275
OR=1.31

Non-Hispanic Black

β=-0.317
Wald χ 2=3.50
p=0.062
OR=0.765

Other Hispanic

β=0.272
Wald χ 2=7.20
p=0.007
OR=1.38

Other

β=-0.128
Wald χ 2=0.500
p=0.479
OR=0.924

Male

β=0.28
Wald χ 2=36.28
p<0.0001
OR=1.75

a(Detect) = Detectable Level of Biomarker in the Urine Sample, used as a 
reference category in the Model; b(DF)= Degree of Freedom. Significant 
differences are highlight in Bold.

Figure 6: Logistic Regression for Paranitrophenol.

Detecta
(DFb=1)

Detect, Non-Hispanic 
White (DF=1)

Detect, Female 
(DF=1)

Age

β=-0.005
Wald χ2=8.78
p=0.003
OR=0.995

Mexican American

β=-0.0239
Wald χ2=0.0863
p=0.77
OR=1.18

Non-Hispanic Black

β=-0.213
Wald χ2=2.00
p=0.158
OR=0.976

Other Hispanic

β=0.183
Wald χ2=4.96
p=0.026
OR=1.45

Other

β=0.242
Wald χ2=2.39
p=0.122
OR-1.54

Male

β=0.227
Wald χ2=36.82
p<0.0001
OR=1.57
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(chlorpyrifos >6.17 pg/g plasma) children 3 years of age scored lower on 
the Bayley Psychomotor Developmental Index and the Bayley Mental 
Development Index when compared to those exposed to a lower level 
(<6.17 pg/g). These levels are based on the chlorpyrifos detected in the 
umbilical cord plasma collected at the time of birth. A follow-up study 
by Rauh et al. [42] re-assessed these children at age 7. This study, using 
the original biomarker level at birth, reported that children exposed to 
chlorpyrifos in utero show deficits in the working memory index and 
the full scale IQ test [42].

Eaton et al. [24], in a review of these studies, observed that other 
environmental factors, including tobacco and alcohol consumption, 
have been associated with negative birth outcomes in other studies. 
These exposures could have resulted in the negative outcomes 
discovered in the Columbia study. While the cotinine levels of 
participants in the study were evaluated, the short half-life of the 
biomarker and the time of sample collection (after admission to the 
hospital) could have resulted in cotinine levels that underestimated 
actual exposure [24]. Additionally, alcohol consumption was self 
reported at the time of the interview and, while they were used as a 
covariate in the analysis in some part, underreporting of alcohol use 
could introduce bias into the evaluations. Another limitation of these 
studies is the use of TCPy as the specific biomarker for chlorpyrifos. 
It has been determined that chlorpyrifos-methyl is also a parent of 
this biomarker [24]. Degradation of the parent compound can also 
lead to environmental TCPy exposure [43]. Because of the multiple 
sources of TCPy, the exposure to AChE inhibiting chlorpyrifos may 
be overestimated in certain instances. With regard to adverse health 
effects from prenatal exposure, Eaton points out that scientific evidence 
does not suggest adverse neurodevelopment effects in infants from 
in utero dietary exposures to chlorpyrifos, if the neurodevelopment 
effects are from inhibition of AChE [24]. The article does point out 
that the results from studies finding associations cannot be ignored and 
further epidemiological investigation is warranted to fully elucidate the 
associations.

The studies evaluating developmental effects from prenatal 
pesticide exposure attempted to associate low-level exposures with 
the risk of a negative health outcome. The results are determined by 

a cross-sectional examination with simultaneous evaluation of both 
exposure and outcome. While this method may produce associations, 
these associations cannot be viewed as causal. No studies were 
identified that attempted to characterize exposure over a period of time 
(none more than a few days or multiple sampling events over a period 
of time) with negative health effects. A longitudinal prospective study 
may allow urinary biomarker concentrations to be better characterized. 
However, because other chemicals are capable of causing teratogenic 
and neurotoxic outcomes, controlling for the many covariates that are 
involved in everyday life may be difficult.

In recent evaluations of exposures to pesticides, an increased 
amount of consideration has been placed on the small number of 
human studies that found associations between prenatal pesticide 
exposures and negative birth outcomes, including those studies 
associating chlorpyrifos exposure and reductions in birth outcomes 
and cognitive abilities later in life. While chlorpyrifos is still applied 
on a limited number of agricultural commodities, no recent studies 
were identified that attempted to re-evaluate current chlorpyrifos 
exposures and negative health effects. Recently published articles 
appear to be based on original, decade-old cross-sectional data and 
use various analytical techniques and different covariates to determine 
if any associations can be found. Because chlorpyrifos is no longer 
registered for residential application, the current primary exposure 
route of exposure is oral. Previous studies included evaluation of 
cumulative exposures. If inhalation is no longer a viable exposure route 
for residential application (except for certain populations residing in 
close proximity to applications in agricultural scenarios), it would 
be expected that the current exposure is lower than those previously 
documented.

Eskenazi et al. [44] investigated chlorpyrifos exposure and negative 
birth outcomes in the Center for the Health Assessment of Mothers 
and Children of Salinas Study (CHAMACOS). After sampling and 
analyzing maternal urine for chlorpyrifos biomarkers, no significant 
association was found between TCPy detection in urine and negative 
birth outcomes (birth weight, length, head circumference and length 
of gestation) [44]. Berkowitz et al. [37] investigated the relationship 
between pesticide exposure and negative birth outcomes in the 
Children’s Environmental Cohort Study at Mount Sinai Hospital, New 
York. Races were mixed in this study with approximately 50% of the 
participants identified as Hispanic [37]. Evaluation of urinary TCPy 
concentration was not found to have a significant association with 
reductions in birth weight and length; however, this study did find a 
slight decrease in head circumference when TCPy and PON1 activity 
were considered jointly [37].

In the 1990’s, MP was illegally applied in residences in at least nine 
Midwestern and Southern states [45]. The target population of one of 
the studies investigating MP exposure was children who were 6 years of 
age or younger at the time of MP application. Exposure was established 
based on either wipe samples from the home (in Ohio and Mississippi) 
or the detection of paranitrophenol in a urine sample (Ohio only). The 
study evaluated whether exposed children had an adverse neurological 
outcome. Based on the results of tests used to evaluate neurobehavior 
and general intelligence, the exposures were not associated with 
negative outcomes on most neurobehavioral tests [45]. The findings 
do suggest that those children exposed may have alterations in short 
term memory, but the authors note that the findings are not conclusive 
because the effects are not consistent across both study sites [45]. The 
delay in time between the application of MP and neurobehavioral 
testing (2.5 years in Mississippi and 4.5 years in Ohio) and the age of 
the children at the time of the neurobehavioral assessment may have 
affected the findings [45].

a(Detect) = Detectable Level of Biomarker in the Urine Sample, used as a 
reference category in the Model; b(DF)= Degree of Freedom. Significant 
differences are highlight in Bold.

Figure 7: Logistic Regression for 3-Phenoxybenzoic Acid.

Detecta
(DFb=1)

Detect, Non-Hispanic 
White (DF=1)

Detect, Female
(DF=1)

Age

β=-0.006
Wald χ 2=10.2
p=0.001
OR=0.994

Mexican American

β=-0.175
Wald χ 2=3.44
p=0.064
OR=1.09

Non-Hispanic Black

β=0.076
Wald χ 2=0.171
p=0.679
OR=1.4

Other Hispanic

β=0.630
Wald χ 2=33.5
p<0.0001
OR=2.43

Other

β=-0.273
Wald χ 2=2.46
p=0.117
OR=0.986

Male

β=0.0927
Wald χ 2=4.40
p=0.036
OR=1.2
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The reported effects of chronic, low-level exposure to pyrethroids, 
if any, are limited in the literature. However, because of the rapid 
metabolism of the compounds, pyrethroids are not believed to result 
in neurological signs from chronic, low-level exposures [46]. There has 
also been an attempt to correlate pyrethroids exposure to reduction in 
semen and hormone levels in adult men [20,47].

Biological Exposure Indices published by the ACGIH established 
thresholds for biomarkers in occupational settings [48]. However, 
there are no regulatory health-related thresholds for pesticide 
biomarkers of exposure in the general population. An attempt has been 
made by the German Human Biomonitoring Commission to establish 
a reference value (RV95) from biomonitoring data [49]. Heudorf 
[50] reports on the use of biomonitoring data from a sample of the 
German population for non-specific OP biomarkers and biomarkers 
for pyrethroids. A value was established for 3-PBA and was set at 2 
μg/L (for children age 3-14). The RV95 were statistically derived from 
the 95% percentile within the 95% CI, are not based on toxicological 
data and are not related to risk assessment [50]. Because these levels 
are statistically derived, they should not be used to evaluate adverse 
health effects from biomonitoring data [49,50]. The RV95 is suggested 
to be used to determine if any one group or population is exposed to a 
higher degree than another population and to highlight populations for 
further evaluations where the biomarker levels are elevated. The mean 
values for children age 6-11 in this study fall below this value.

While various biomonitoring studies have evaluated the presence 
of biomarkers in biological media, most are unable to assess risk and 
suggest that the results serve as a reference range and can be used to 
evaluate trends in public health [51-53]. However, previously mentioned 
studies have used biomonitoring data to form associations between 
low-level pesticides and adverse birth outcomes. Statistically significant 
associations were observed in the reviewed epidemiological studies as 
well as in the current research. While associations may warrant further 
investigation, there are no known exposures in extant epidemiological 
biomonitoring studies that demonstrate adverse health effects to 
exposures related to the range of biomarkers described in this study. 
This research, like other cross-sectional research studies, evaluated the 
exposure and the outcome simultaneously. Without knowing all of 
the covariates involved in the exposure, it remains difficult to relate 
the biomarker concentration to a risk factor. As well, there is always 
some potential for discordance when extrapolating biomonitoring 
measurements to exposure. For instance Morgan et al. [54] 2011 found 
that there are potentially other intake sources that can affect TCPy 
levels in children, and Sudakin 2006 [55] indicated similar issues of 
specificity regarding 3-PBO for pyrethroid biomonitoring. However, 
in the absence of a known confounding factor that differentially 
modulates biomonitoring outcomes between developmental outcome 
groups, these issues of specificity would not be expected to alter the 
conclusions reached in the current research [54,55].

Conclusion
This study used urinary biomarker of exposure levels from the 

2001-2002 National Health and Nutrition Examination Survey 
(NHANES) to characterize the nominal background exposure to three 
common pesticides and determine if chronic, low-level exposure to 
pesticides can be associated with an appreciable increase in risk of 
adverse developmental growth in children. The results demonstrated 
that there were detectable levels of pesticide biomarkers in the urine 
of individuals that participated in the study, and, depending on the 
dilution of the analyte concentration in urine, certain subgroups 
had significantly higher means than others. Analysis of phenotypic 

variations in children in the study revealed significant differences, 
but the differences were not consistent across the biomarkers or age 
groups. Out of the 36 height and weight comparisons made between 
detectable levels of biomarker and non-detectable levels, 33 did not 
have significant findings, and two of the associations indicated that 
detection of a biomarker in urine was positively associated with the 
height and weight of children. Mean overall biomarker levels were 
consistent with other studies evaluating background levels of pesticides 
and the mean levels were lower than those in research that associated 
adverse health outcomes from exposure. 
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