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Abstract
Biological effects of monochromatic lights on cells have aroused interest regarding an active and non-innocuous 

effect on human skin. The aim of this work was to evaluate DNA damage induced by low-level red laser at doses 
and frequencies used in therapeutic protocols. For this purpose, E. coli cultures and bacterial plasmids were used to 
assess bacterial survival, filamentation, DNA lesions and in vitro DNA repair induced by low-level red laser exposure 
at low doses in continuous wave and pulsed emission mode. Data indicate that low-level red laser does not affect the 
survival of E. coli cultures, topological forms of DNA, and does not induce DNA lesions targeted by endonuclease IV, 
formamidopyrimidine DNA glycosylase and endonuclease III, but rather that it induces bacterial filamentation in wild 
type and DNA repair-deficient E. coli cultures and DNA lesions targeted by exonuclease III. Monochromatic red light 
could activate survival and/or adaptive mechanisms against harmful radiations.
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Introduction
Photobiological effects of low-level lasers, in continuous wave and 

pulsed emission mode, are considered to occur following absorption 
of light energy and production of a photosignal, which is subsequently 
transduced into the cell [1]. For red lasers, the laser light chromophores 
are related to mitochondrial respiratory chain (as cytichrome c, for 
example), which could generate singlet oxygen and, in turn, stimulate 
processes such as synthesis of RNA and DNA [2]. This biostimulative 
effect sustains some clinical protocols, as those suggested for treatment 
of inflammations [3], pain [4] and wound healing [5]. In fact, low-level 
lasers have been reported to increase both the speed and quality of 
the healing process of wounds in humans [6-8]. Although the exact 
mechanisms by which low-level lasers exert their effects on skin have 
not been clarified, some studies have demonstrated increasing of skin 
cell mitotic activity [9,10], as well as collagen deposition, angiogenesis 
and alteration on cytokine expression [11,12].

However, there is still some skepticism whether the biological 
effects of low-level lasers are measurable or even if they are of relevant 
importance to disease treatments. Therefore, performing experimental 
studies to verify the presence and absence of effects in biological systems 
exposed to low-level lasers at different conditions (dose, emission 
mode, power, and wavelength) is justified. On the other hand, there are 
examples whereby these lasers are capable of altering some biochemical 
process, changing cellular metabolism [1] and photobiological side-
effects by the production of reactive oxygen and nitrogen species 
with subsequent free radical reactions with biomolecules and cellular 
function modifications [13,14]. Adverse effects on cells and data about 
DNA damage after exposure to these lights have been reported in 
eukaryotic [15,16] and prokaryotic cells [17-21] but experimental data 
about effects on DNA are scarce considering commercially-available 
low-level laser devices (with different powers, wavelengths and 
emission modes). Moreover, the biological effects of monochromatic 
red and near-infrared light on human skin have interest and this solar 
spectrum range could not be non-active or innocuous but rather to 
induce protective/adaptive mechanisms, with important participation 

on the effects of polychromatic solar radiation on human skin [22].

E. coli cultures both proficient and deficient in DNA repair
mechanisms is used to evaluate the effects of physical and chemical 
[18,23] agents on DNA [19,20,24]. There is no eukaryotic cell line 
with genetic characteristics similar to these E. coli strains, and studies 
based on these cells permit evaluating the participation of each gene-
coding enzymes and proteins related to DNA repair on a biological 
effect of interest. For a long time, E. coli survival both proficient and 
deficient in mechanisms of DNA repair has been used as a valuable 
and practical experimental model for studying biological effects of 
ionizing and non ionizing radiations [25]. Bacterial filamentation is 
part of SOS response, which is a global response induced in cells upon 
DNA damage [25]. Bacterial cells undergoing filamentation present an 
anomalous growth and they continue to elongate but there is not septa 
formation [26]. This bacterial morphological change is used to evaluate 
actions of environmental agents, both natural and man-made, which 
induce DNA lesions [19,20,27]. Topological forms of plasmid DNA 
are evaluated by electrophoretic profile into alkaline agarose gels [28] 
and this technique is used to evaluate the ability of genotoxic agents 
to induce alkali-labile DNA lesions by direct and indirect mechanisms 
[19]. In addition, the action of specific DNA repair enzymes on DNA 
is evaluated in vitro by an electrophoretic profile of plasmid DNA into 
agarose gels, and it is used to study DNA lesions induced by genotoxic 
agents [21].

Journal of Clinical & Experimental
Dermatology ResearchJourna

l o
f C

lin
ic

al 
&

Experimental Derm
atology Research

ISSN: 2155-9554



Citation: da Silva Sergio LP, da Silva Marciano R, Castanheira Polignano GA, Guimarães OR, Geller M, et al. (2012) Evaluation of DNA Damage 
Induced by Therapeutic Low-Level Red Laser. J Clin Exp Dermatol Res 3:166. doi:10.4172/2155-9554.1000166

Page 2 of 8

Volume 3 • Issue 5 • 1000166
J Clin Exp Dermatol Res
ISSN:2155-9554 JCEDR, an open access journal 

[21]. Plasmids were exposed to low-level red laser as described in 
the bacterial assays. Immediately afterwards, plasmids (200 ng, 
approximately) were mixed with appropriated enzyme buffer, enzyme 
(2 units for each enzyme) and incubated (37°C, 30 minutes). After 
that, plasmid samples were mixed with loading buffer, applied in 
agarose horizontal gel electrophoresis, stained with ethidium bromide, 
visualized under ultraviolet trans-illumination system and plasmid 
forms were semiquantified as in the electrophoretic profile assay.

Statistical analysis

Data are reported as mean and standard deviation (mean ± SD) of 
the survival fraction, percentage of bacterial filaments and a percentage 
of plasmid forms. The one-way variance test analysis was performed to 
verify possible statistical differences followed by Bonferroni post-test 
with p<0.05 as a less significant level. InStat Graphpad software was 
used to perform statistical analysis (GraphPad InStat version 3.00 for 
Windows XP, GraphPad Software, San Diego, California, USA).

Results

Survival of E. coli cultures exposed to laser

Survival fractions of E. Coli AB1157, BW527, BW9091, BH20 and 
BW375, cultures in exponential growth phase exposed to low-level red 
laser at different doses in different emission modes are shown in Table 
1. There is no alteration of survival fractions of these E. coli cultures 
when exposed to laser. To verify whether the growth phase interferes 
on laser-induced biological effects, survival of E. coli cultures in the 
stationary growth phase were evaluated. Table 2 shows the survival 
fractions of E. coli AB1157, BW527, BW9091, BH20 and BW375 
cultures in the stationary growth phase exposed to low-level red laser 
at different doses in different emission modes. Similar to data shown 
on Table 1, no survival fraction alteration was observed in these E. coli 
cultures exposed to laser. 

As the effectiveness and potential side-effects on biological systems 
are still unclear and of interest, as well as safety and clinical applications 
of non-ionizing monochromatic lights are increasing, effects of low-
level red laser on E. coli cultures, plasmids and DNA repair were 
studied at doses and frequencies used in therapeutic protocols.

Material and Methods

Low-level red laser

A therapeutic low-level red laser (Laser HTM Compact model, 
AlGaInP, 10 mW), with emission in 658 nm, was purchased from 
HTM Eletrônica (São Paulo, Brazil). 

E. coli survival assay

Survival of E. coli AB1157 (wild type), BW527 (endonuclease 
IV deficient), BW9091 (exonuclease III deficient), BH20 
(formamidopyrimidine DNA glycosylase deficient) and BW375 
(endonuclease III deficient) cultures exposed to low-level red laser was 
evaluated in exponential and stationary growth phase. Aliquots (50 
µL, five aliquots for each dose and frequency) of E. coli suspensions 
(1-2 × 108 cells/mL, in 0.9% NaCl solution) were exposed to low-level 
red laser (658 nm, spot size of 12.566 mm2) at different doses (0.13, 
0.52 and 1.04 J), in continuous wave (power output of 10mW, power 
density of 79.6 mW/cm2) and in pulsed emission mode (2.5, 250 and 
2500 Hz, 50% duty cycle). E. coli suspensions not exposed to laser were 
used as controls. Aliquots of E. coli suspensions were diluted in sterile 
saline (0.9% NaCl), spread onto Petri dishes containing solidified rich 
medium (1.5% agar). Colonies formed after overnight incubation 
at 37°C were counted and the survival fractions were calculated as 
described elsewhere [18].

E. coli filamentation assay

E. coli AB1157, BW527, BW9091, BH20 and BW375 cultures in 
exponential and stationary growth phase were exposed to low-level red 
laser as described in the E. coli survival assay, aliquots (20 µL) were 
spread onto microscope slides and stained by Gram method [29]. E. 
coli suspensions not exposed to laser were used as controls. E. coli cells 
were visualized by light microscopy (40x magnification), photographed 
and E. coli filamentation were quantified by Image ProPlus software 
to determine the percentage of bacterial filamentation as described 
elsewhere [20].

Plasmid exposure to laser and alkaline electrophoretic profile 
assay

pBSK plasmids were obtained from DH5αF’Iq (recA-) strain hosting 
this plasmid by a standard procedure [30]. Plasmids were exposed to 
low-level red laser as described to E. coli suspensions and plasmids not 
exposed to laser were used as controls. After that, each sample was mixed 
with loading buffer and applied in 0.8% alkaline agarose gels into a 
horizontal electrophoresis chamber containing alkaline electrophoresis 
buffer [30]. After electrophoresis, gels were neutralized, stained with 
ethidium bromide (0.5 µg/mL) and the plasmids forms were viewed 
under fluorescence using an ultraviolet trans-illumination system. Gels 
were digitalized and the plasmid forms were semiquantified using the 
Image J for Windows computer program.

DNA repair enzyme assay

Endonuclease IV, exonuclease III, formamidopyrimidine DNA 
glycosylase and endonuclease III were used to evaluate DNA repair 
of lesions induced by low-level red laser exposure in DNA molecules 

Survival Fractions
Dose (J) Continuous 2.5 Hz 250 Hz 2500 Hz
AB1157
0.13 1.1 ± 0.12 1.2 ± 0.20 1.2 ± 0.18 0.9 ± 0.23
0.52 0.9 ± 0.14 0.9 ± 0.08 0.9 ± 0.09 0.8 ± 0.03
1.04 0.9 ± 0.22 1.3 ± 0.08 1.1 ± 0.30 0.8 ± 0.24
BW527
0.13 0.8 ± 0.11 0.8 ± 0.24 0.8 ± 0.10 0.9 ± 0.12
0.52 0.8 ± 0.10 0.8 ± 0.19 0.7 ± 0.12 0.7 ± 0.13
1.04 0.7 ± 0.13 0.9 ± 0.15 1.0 ± 0.02 0.8 ± 0.08
BW9091
0.13 1.0 ± 0.22 1.2 ± 0.28 1.3 ± 0.08 1.0 ± 0.08
0.52 1.0 ± 0.02 1.1 ± 0.14 1.1 ± 0.20 1.1 ± 0.03
1.04 1.1 ± 0.23 1.0 ± 0.12 1.2 ± 0.24 0.9 ± 0.06
BH20
0.13 0.9 ± 0.10 1.1 ± 0.24 1.0 ± 0.22 1.4 ± 0.40
0.52 1.0 ± 0.22 1.6 ± 0.18 1.0 ± 0.13 1.2 ± 0.29
1.04 1.1 ± 0.27 1.5 ± 0.34 1.4 ± 0.35 1.2 ± 0.33
BW375
0.13 0.8 ± 0.14 0.8 ± 0.15 0.8 ± 0.13 0.8 ± 0.16
0.52 0.9 ± 0.11 0.7 ± 0.16 0.8 ± 0.12 0.6 ± 0.14
1.04 0.9 ± 0.14 0.6 ± 0.20 0.8 ± 0.09 0.7 ± 0.10

Table 1: Survival fractions of E. coli cultures exposed to low-level red laser in 
exponential growth phase.
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Filamentation in E. coli cultures exposed to laser

Table 3 shows the percentage of filamentation in E. coli AB1157, 
BW527, BW9091, BH20 and BW375 cultures in exponential growth 
phase exposed to low-level red laser at different doses in different 
emission modes. The data in this table indicate that laser exposure 
induces filamentation in exponential E. coli AB1157, BW527, BH20, 
BW375 and BW9091 cultures at all emission modes evaluated 
(continuous wave and pulsed). Also, E. coli cultures in stationary 
growth phase were exposed to low-level red laser to verify whether 
laser-induced E. coli filamentation depends on E. coli growth phase. 
Similar to that obtained with E. coli cultures in exponential growth 
phase, data in the Table 4 shows that red laser induces filamentation 
in E. coli AB1157, BW527, BW9091, BH20 and BW375 cultures in 
stationary growth phase in emission mode.

Electrophoretic profile of plasmids in alkaline gels 

Alkaline agarose gel electrophoresis of bacterial plasmids exposed 
to low-level red laser at different doses in continuous and pulsed 
(2.5 Hz) emission modes are shown on Figures 1b and 2b. These 
photographs indicate that laser exposure induces no alterations on the 
electrophoretic profile of plasmids (lanes 2, 3 and 4) when compared 
with control (lane 1). These findings were confirmed by quantifications 
of plasmid forms (Figures 1a and 2a) indicating no alteration on 
electrophoretic profile. Similar electrophoretic profiles were obtained 
when bacterial plasmids were exposed to laser in pulsed mode emission 
at 250 and 2500 Hz (data not shown).

DNA repair enzyme assay

Figures 3b and 4b shows photographs of agarose gel electrophoresis 
of plasmids after low-level laser exposure in continuous and pulsed (2.5 
Hz) emission mode, respectively, and incubation with endonuclease 
IV. Analysis of these figures suggests no action of endonuclease IV on 
plasmid DNA exposed or not exposed (control) to low-level red laser. 
Quantification of plasmid forms (supercoiled and open circle form) 

confirms this qualitative analysis (Figure 3a and 4a). Similar results 
were obtained with formamidopyrimidine DNA glycosylase (Figures 

Table 2: Survival fractions of E. coli cultures exposed to low-level red laser in 
stationary growth phase.

Survival Fractions
Dose (J) Continuous 2.5 Hz 250 Hz 2500 Hz
AB1157
0.13 1.1 ± 0.05 1.3 ± 0.17 1.0 ± 0.26 1.2 ± 0.18
0.52 1.0 ± 0.26 0.9 ± 0.23 1.1 ± 0.19 1.1 ± 0.16
1.04 1.2 ± 0.05 1.1 ± 0.22 0.9 ± 0.20 1.1 ± 0.17
BW527
0.13 0.9 ± 0.21 1.0 ± 0.10 0.8 ± 0.17 1.1 ± 0.18
0.52 0.9 ± 0.25 1.1 ± 0.21 0.9 ± 0.15 1.1 ± 0.10
1.04 0.9 ± 0.14 1.1 ± 0.10 1.3 ± 0.09 1.1±0.21
BW9091
0.13 1.0 ± 0.23 1.2 ± 0.23 1.3 ± 0.24 1.0 ± 0.22
0.52 1.1 ± 0.20 1.1 ± 0.30 1.2 ± 0.32 1.1 ± 0.21
1.04 1.0 ± 0.31 0.8 ± 0.31 1.2 ± 0.26 1.0 ± 0.17
BH20
0.13 1.0 ± 0.15 1.0 ± 0.14 1.1 ± 0.20 0.9 ±0.19
0.52 1.1 ± 0.10 1.1 ± 0.11 1.3 ± 0.11 1.1 ± 0.25
1.04 1.3 ± 0.17 1.1 ± 0.14 1.0 ± 0.21 0.9 ± 0.14
BW375
0.13 0.8 ± 0.20 0.8 ± 0.18 0.8 ± 0.06 1.0 ± 0.18
0.52 0.8 ± 0.04 0.7 ± 0.21 0.8 ± 0.10 0.8 ± 0.08
1.04 0.8 ± 0.08 0.8 ± 0.06 0.8 ± 0.07 0.8 ± 0.19

Controls: 0.2 ± 0.03 for AB1157, 4.7 ± 0.60 for BW527, 10.7 ± 2.08 for BW9091, 
1.7 ± 0.58 for BH20, 6.7 ± 1.54 for BW375. (*) p<0.05 when compared with control 
group. Error bars indicate the standard deviation of the mean for n=2 independent 
experiments

Table 3: Percentage of filamentation in E. coli cultures exposed to low-level red 
laser in exponential growth phase.

Percentage of filamentation
Dose (J) Continuous 2.5 Hz 250 Hz 2500 Hz
AB1157
0.13 1.0 ± 0.50 2.3 ± 0.58* 1.0 ± 0.40 1.7 ± 0.48
0.52 2.0 ± 0.82* 3.0 ± 1.00* 1.7 ± 0.59 2.7 ± 0.55*
1.04 5.0 ± 1.00* 7.3 ± 1.58* 7.0 ± 1.00* 2.0 ± 0.37*
BW527
0.13 8.7 ± 1.15* 8.0 ± 1.00* 6.7 ± 1.10* 6.0 ± 1.01
0.52 4.0 ± 1.00 4.4 ± 1.15 7.3 ± 0.59* 4.7 ± 0.54
1.04 4.3 ± 0.53 5.0 ± 1.02 3.3 ± 0.56 4.6 ± 1.52
BW9091
0.13 18.3 ± 1.25* 14.0 ± 2.60 22.3 ± 2.64* 11.3 ± 1.50
0.52 28.0 ± 2.65* 18.3 ± 2.08* 18.7 ± 1.53* 19.0 ± 1.73*
1.04 39.7 ± 2.52* 30.7 ± 2.10* 39.3 ± 2.11* 15.3 ± 1.52*
BH20
0.13 6.0 ± 1.00* 7.3 ± 1.15* 7.0 ± 0.04* 3.3 ± 0.59
0.52 6.3 ± 0.58* 4.7 ± 0.60* 6.3 ± 1.11* 4.3 ± 1.20*
1.04 9.7 ± 1.53* 5.0 ± 1.10* 8.3 ± 2.08* 4.3 ± 1.50*
BW375
0.13 7.7 ± 2.08 11.7 ± 1.50* 11.0 ± 1.73* 19.0 ± 2.65*
0.52 19.3 ± 2.10* 19.7 ± 0.53* 12.3 ± 3.06* 19.0 ± 1.00*
1.04 23.3 ± 1.43* 22.7 ± 2.52* 27.3 ± 2.50* 23.0 ± 2.55*

Controls: 0.1 ± 0.04 for AB1157, 2.7 ± 0.58 for BW527, 14.0 ± 3.61 for BW9091, 
3.7 ± 0.58 for BH20, 4.7 ± 0.49 for BW375. (*) p<0.05 when compared with control 
group. Error bars indicate the standard deviation of the mean for n=2 independent 
experiments

Table 4: Percentage of filamentation in E. coli cultures exposed to low-level red 
laser in stationary growth phase.

Percentage of filamentation
Dose (J) Continuous 2.5 Hz 250 Hz 2500 Hz
AB1157
0.13 1.7 ± 0.58* 1.0 ± 0.08* 4.7 ± 0.58* 1.7 ± 0.48*
0.52 2.0 ± 1.05* 1.0 ± 0.52* 4.0 ± 1.00* 2.0 ± 0.50*
1.04 3.7 ± 1.53* 11.0 ± 1.00* 12.7 ± 2.08* 6.0 ± 1.00*
BW527
0.13 5.7 ± 0.58* 4.7 ± 1.15* 5.7 ±1.43* 6.0 ± 1.00*
0.52 3.3 ± 0.48 3.7 ± 0.57 3.7 ± 0.59 5.3 ± 0.54*
1.04 5.3 ± 1.53* 6.3 ± 1.50* 7.3 ± 0.60* 5.3 ± 0.55*
BW9091
0.13 63.3 ± 4.16* 54.3 ± 4.51* 64.3 ± 5.12* 24.3 ± 4.93*
0.52 86.7 ± 4.93* 90.3 ± 4.41* 94.7 ± 2.52* 32.7 ± 3.79*
1.04 78.3 ± 3.06* 85.7 ± 5.13* 54.7 ± 4.73* 81.7 ± 7.09*
BH20
0.13 5.3 ± 0.60 1.7 ± 0.57 3.3 ± 0.54 3.0 ± 0.99
0.52 4.3 ± 0.58 4.0 ± 1.04 2.0 ± 1.00 3.3 ± 0.59
1.04 4.0 ± 1.00 2.3 ± 1.58 2.7 ± 0.68 4.0 ± 0.02
BW375
0.13 8.0 ± 2.00* 5.0 ± 1.00 6.7 ± 1.14 6.0 ±1.00
0.52 7.3 ± 0.60* 7.0 ± 1.01* 6.0 ± 1.98* 8.3 ± 0.48*
1.04 12.0 ± 2.00* 8.7 ± 1.15* 8.0 ± 1.02* 8.0 ± 2.05*
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5b and 6b) and endonuclease III (Figures 7b and 8b). No action of these 
enzymes on plasmids exposed to laser was confirmed by quantification 
of plasmid forms (Figures 5a,6a,7a and 8a). However, exonuclease III 
presented action on plasmid DNA exposed to low-level red laser in 
continuous and pulsed (2.5 Hz) emission mode (Figures 9b and 10b). 
The action of exonuclease III on plasmids exposed to the laser was 
confirmed by quantitative analysis of plasmid forms (Figures 9a and 
10a).

Discussion 
Our research shows that low-level red laser in continuous wave and 

pulsed emission mode was not lethal to E. coli cultures in exponential 
(Table 1) and stationary growth phase (Table 2) when therapeutic 
doses were used on wild type (AB1157), endonuclease IV deficient 
(BW527), exonuclease III deficient (BW9091), formamidopyrimidine 
DNA glycosylase deficient (BH20) or endonuclease III deficient 

(BW375) cells. Our results are important to justify the safety of low-
level lasers in clinical protocols as those are carried out to treat wounds, 
inflammation processes and pain. Low-level infrared (810 nm) laser was 
also incapable of modifying B14 cell viability [31]. However, low-level 
red lasers have been suggested to induce free radical production [31,32] 
and antioxidants eliminate the light effect of laser-induced increase of 
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Figure 1: Percentage of bacterial plasmid forms (a) and photograph (b) of 
alkaline agarose gel after electrophoresis of pBSK plasmids exposed to 
low-level red laser in continuous wave mode. Lanes: (1) pBSK (control); (2) 
pBSK+continuous wave laser 0.13 J; (3) pBSK+continuous wave laser 0.52 
J; (4) pBSK+continuous wave laser 1.04 J. Error bars indicate the standard 
deviation of the mean for n=3 independent experiments.
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Figure 2  : Percentage of bacterial plasmid forms (a) and photograph (b) of 
alkaline agarose gel after electrophoresis of pBSK plasmids exposed to low-
level red laser in 2.5 Hz pulsed emission mode. Lanes: (1) pBSK (control); (2) 
pBSK+continuous wave laser 0.13 J; (3) pBSK+continuous wave laser 0.52 
J; (4) pBSK+continuous wave laser 1.04 J. Error bars indicate the standard 
deviation of the mean for n=3 independent experiments.
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Figure 3: Percentage of bacterial plasmid forms (a) and photograph (b) of 
neutral agarose gel after electrophoresis of pBSK plasmids exposed to low-
level red laser in continuous wave mode and incubated with endonuclease IV. 
Lanes: (1) pBSK; (2) pBSK+endonuclease IV; (3) pBSK+pulsed laser 0.13 J; 
(4) pBSK+pulsed laser 0.13 J+endonuclease IV; (5) pBSK+pulsed laser 0.52 
J; (6) pBSK+pulsed laser 0.52 J+endonuclease IV; (7) pBSK+pulsed laser 1.04 
J; (8) pBSK+pulsed laser 1.04 J+endonuclease IV. (□) SC (supercoiled); (■) 
OC (open circle). Numbers (1) through (8) for the histogram refer to gel lanes. 
Error bars indicate the standard deviation of the mean for n=3 independent 
experiments.
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Figure 4: Percentage of bacterial plasmid forms (a) and photograph (b) 
of neutral agarose gel after electrophoresis of pBSK plasmids exposed 
to low-level red laser in 2.5 Hz pulsed emission mode and incubated 
with endonuclease IV. Lanes: (1) pBSK; (2) pBSK+endonuclease IV; (3) 
pBSK+pulsed laser 0.13 J; (4) pBSK+pulsed laser 0.13 J+endonuclease IV; 
(5) pBSK+pulsed laser 0.52 J; (6) pBSK+pulsed laser 0.52 J+endonuclease 
IV; (7) pBSK+pulsed laser 1.04 J; (8) pBSK+pulsed laser 1.04 J+endonuclease 
IV. (□) SC (supercoiled); (■) OC (open circle). Numbers (1) through (8) for the 
histogram refer to gel lanes. Error bars indicate the standard deviation of the 
mean for n=3 independent experiments.
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cell attachment [33]. Different exposure conditions, cells (E. coli), as 
well as presence of other DNA repair mechanisms in these cells, such 
as error prone mechanisms (SOS responses), could explain the absence 
of toxicity of low-level red laser on E. coli cultures evaluated.

E. coli filamentation assay was performed to verify whether low-
level red laser effects on DNA could induce SOS responses. In fact, 
low-level red laser exposure at therapeutic doses induces filamentous 
phenotype in E. coli AB1157, BW527, BW9091, BH20 and BW375 
cultures in exponential (Table 3) growth phase. These data are in 
accordance with previous results obtained by low-level infrared laser 
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Figure 5: Percentage of bacterial plasmid forms (a) and photograph (b) 
of neutral agarose gel after electrophoresis of pBSK plasmids exposed 
to low-level red laser in continuous wave mode and incubated with 
formamidopyrimidine DNA glycosylase/MutM protein (fpg). Lanes: (1) pBSK; 
(2) pBSK+fpg; (3) pBSK+pulsed laser 0.13 J; (4) pBSK+pulsed laser 0.13 
J+fpg; (5) pBSK+pulsed laser 0.52 J; (6) pBSK+pulsed laser 0.52 J+fpg; 
(7) pBSK+pulsed laser 1.04 J; (8) pBSK+pulsed laser 1.04 J+fpg. (□) SC 
(supercoiled); (■) OC (open circle). Numbers (1) through (8) for the histogram 
refer to gel lanes. Error bars indicate the standard deviation of the mean for 
n=3 independent experiments.
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Figure 6: Percentage of bacterial plasmid forms (a) and photograph (b) of 
neutral agarose gel after electrophoresis of pBSK plasmids exposed to 
low-level red laser in 2.5 Hz pulsed emission mode and incubated with 
formamidopyrimidine DNA glycosylase/MutM protein (fpg). Lanes: (1) pBSK; 
(2) pBSK+fpg; (3) pBSK+pulsed laser 0.13 J; (4) pBSK+pulsed laser 0.13 
J+fpg; (5) pBSK+pulsed laser 0.52 J; (6) pBSK+pulsed laser 0.52 J+fpg; 
(7) pBSK+pulsed laser 1.04 J; (8) pBSK+pulsed laser 1.04 J+fpg. (□) SC 
(supercoiled); (■) OC (open circle). Numbers (1) through (8) for the histogram 
refer to gel lanes. Error bars indicate the standard deviation of the mean for 
n=3 independent experiments.
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Figure 7: Percentage of bacterial plasmid forms (a) and photograph (b) of 
neutral agarose gel after electrophoresis of pBSK plasmids exposed to low-
level red laser in continuous wave mode and incubated with endonuclease III. 
Lanes: (1) pBSK; (2) pBSK+endonuclease III; (3) pBSK+pulsed laser 0.13 J; 
(4) pBSK+pulsed laser 0.13 J+endonuclease III; (5) pBSK+pulsed laser 0.52 
J; (6) pBSK+pulsed laser 0.52 J+endonuclease III; (7) pBSK+pulsed laser 1.04 
J; (8) pBSK+pulsed laser 1.04 J+endonuclease III. (□) SC (supercoiled); (■) 
OC (open circle). Numbers (1) through (8) for the histogram refer to gel lanes. 
Error bars indicate the standard deviation of the mean for n=3 independent.
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Figure 8: Percentage of bacterial plasmid forms (a) and photograph (b) of 
neutral agarose gel after electrophoresis of pBSK plasmids exposed to low-level 
red laser in 2.5 Hz pulsed emission mode and incubated with endonuclease III. 
Lanes: (1) pBSK; (2) pBSK+endonuclease III; (3) pBSK+pulsed laser 0.13 J; 
(4) pBSK+pulsed laser 0.13 J+endonuclease III; (5) pBSK+pulsed laser 0.52 
J; (6) pBSK+pulsed laser 0.52 J+endonuclease III; (7) pBSK+pulsed laser 1.04 
J; (8) pBSK+pulsed laser 1.04 J+endonuclease III. (□) SC (supercoiled); (■) 
OC (open circle). Numbers (1) through (8) for the histogram refer to gel lanes. 
Error bars indicate the standard deviation of the mean for n=3 independent 
experiments.
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Figure 9: Percentage of bacterial plasmid forms (a) and photograph (b) of 
neutral agarose gel after electrophoresis of pBSK plasmids exposed to low-
level red laser in continuous wave mode and incubated with exonuclease III. 
Lanes: (1) pBSK; (2) pBSK+exonuclease III; (3) pBSK+pulsed laser 0.13 J; 
(4) pBSK+pulsed laser 0.13 J+exonuclease III; (5) pBSK+pulsed laser 0.52 J; 
(6) pBSK+pulsed laser 0.52 J+exonuclease III; (7) pBSK+pulsed laser 1.04 J; 
(8) pBSK+pulsed laser 1.04 J+exonuclease III. (□) SC (supercoiled); (■) OC 
(open circle). Numbers (1) through (8) for the histogram refer to gel lanes. 
Error bars indicate the standard deviation of the mean for n=3 independent 
experiments.
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Figure 10: Percentage of bacterial plasmid forms (a) and photograph (b) of 
neutral agarose gel after electrophoresis of pBSK plasmids exposed to low-
level red laser in 2.5 Hz pulsed emission mode and incubated with exonuclease 
III. Lanes: (1) pBSK; (2) pBSK+exonuclease III; (3) pBSK+pulsed laser 0.13 
J; (4) pBSK+pulsed laser 0.13 J+exonuclease III; (5) pBSK+pulsed laser 0.52 
J; (6) pBSK+pulsed laser 0.52 J+exonuclease III; (7) pBSK+pulsed laser 1.04 
J; (8) pBSK+pulsed laser 1.04 J+exonuclease III. (□) SC (supercoiled); (■) 
OC (open circle). Numbers (1) through (8) for the histogram refer to gel lanes. 
Error bars indicate the standard deviation of the mean for n=3 independent 
experiments.

[20]. Filamentous phenotype occurs in over-stressed, sick and dying 
members of a bacterial population, as a vital survival strategy for 
bacterial survival [34] and following ultraviolet radiation exposure [35]. 
Laser-induced stimulation of cell replication in E. coli cultures depends 
on the culture conditions, determining the particular metabolic state 
necessary for the division [36]. Then, filamentation in E. Coli cultures 
in the stationary growth phase were also evaluated. Table 4 shows 
that the percentage of filamentation induced by low-level red laser in 
E. Coli cultures in the stationary growth phase are significant to all E. 
coli strains evaluated. Comparison between Tables 3 and 4 shows that 

E. coli filamentation is dependent on the culture growth phase for E. 
coli BW9091 and BW375 suggesting that low-level red effects depend 
on the physiological conditions. These E. coli mutants present highest 
filamentation percentages, mainly in continuous wave and in pulsed 
emission mode at the higher frequency (2500 Hz). It was demonstrated 
that low-level lasers present different effects on Escherichia coli cultures 
in continuous wave and pulsed emission mode [37]. At least in part, 
these differences could explain highest filamentation inductions in E. 
coli mutants exposed to laser in continuous wave and pulsed emission 
mode at the higher frequency evaluated. On the other hand, data from 
the filamentation assay reinforce that non-functional genes related to 
DNA repair could be important to laser-induced effects at doses used 
in therapy [19]. Also, these data suggest that functional gene products, 
in special these related to DNA repair of oxidative lesions, could be 
important to laser effects on cells because E. coli BW9091 cultures in the 
stationary growth phase presented highest filamentation percentages. E. 
coli BW375 presented highest filamentation percentages in exponential 
growth phase, while other E. coli strains (AB1157, BW527 and BH20) 
presented similar filamentation percentages in both growth phases. 
nth, nfo and xthA fpg gene products play role key in repair pathway 
involved in repair of DNA lesions induced by oxidizing agents [38]. 
Hydrogen peroxide [39], oxidative stress conditions [40] and low-
level infrared laser induce filamentation in E. coli cultures [20]. Laser 
exposure at therapeutic doses has been demonstrated to induce DNA 
damage repair genes, in particular, those involved in the repair of lesions 
induced by free radicals [41,42]. In fact, redox status in mitochondria 
is regulated after low-level laser exposure and some components of 
respiratory chain components (flavine dehydrogenases, cytochromes 
and cytochrome oxidase) could be associated with this process [32]. 
In bacterial cells, citochrome bd is considered the chromophore 
to red near infrared light [37]. Thus, our data demonstrate highest 
filamentation inductions in E. coli cells deficient on repair of oxidative 
DNA lesions reinforce that low-level red laser could induce DNA 
lesions by free radical generation.

Low-level red laser in continuous and pulsed mode emission at the 
lower frequency evaluated (2.5 Hz) is not capable to induce  single- and 
double-strand breaks, alkali labile sites and abasic sites in DNA (lanes 
2, 3 and 4 compared with lane 1 in Figures 1 and 2. These results are in 
accordance with previous data from a study with a laser at 658 nm [18] 
and with data reported in another study where infrared (810 nm) laser 
was incapable of inducing DNA lesions at fluences similar to those 
used in our study [31]. However, alterations in electrophoretic profile 
of plasmids exposed to infrared [19] were described. This discrepancy 
could be related to different wavelengths used. Analysis of Figures 
3-8 suggests that red laser exposure could induce DNA lesions not 
targeted by endonuclease IV, formamidopyrimidine DNA glycosylase 
or endonuclease III. However, Figures 9 and 10 are indicative that 
low-level intensity red laser could induce DNA lesions targeted by 
exonuclease III. This enzyme is involved in dark DNA repair [25], being 
an important mechanism in repairing DNA lesions, such as apurinic/
apyrimidic sites and 3’-oxidative damages induced by oxidant agents. 
Figures 9 and 10 suggest that low-level red laser induces DNA lesions 
by oxidative mechanisms. Although exonuclease III deficient cells are 
more sensitive to oxidative damage, these cells present endonuclease 
III, another enzyme involved in repair of oxidative lesions in DNA 
[25] and all other DNA mechanisms, including those related to SOS 
response. This could explain why low-level red laser is not capable 
of altering the survival of BW9091 (Tables 1 and 2) but inducing 
bacterial filamentation (Tables 3 and 4). Thus, these findings and data 
from other authors [13,31,32] are in accordance with the hypothesis 
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that some laser-induced biological effects could occur by free radical 
generation and reinforce the importance to consider low-level lasers 
capable of inducing, by direct or indirect pathways, DNA repair and 
changes in gene expression. On the other hand, pre-exposure to 
visible-to-near infrared light protects human dermal fibroblast against 
ultraviolet cytotoxity [43,44], sunburn [45] and gamma radiation. 
Thus, it is possible that pre-exposure to red and near-infrared light 
activate a protective/adaptive mechanism against non-ionizing and 
ionizing radiations.

Conclusion
Low-level red laser at therapeutic doses and in different emission 

modes has not effect on survival of E. coli wild type, endonuclease 
IV, exonuclease III, formamidopyrimidine DNA glycosylase and 
endonuclease III deficient cells but it induces filamentation in the 
cultures of these E. coli strains and DNA lesions targeted by exonuclease 
III. Thus, exposure to monochromatic red light could be important to 
active/induce survival mechanisms against harmful radiations.
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