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Introduction
LC-MS based quantitative shotgun proteomics has gradually 

replaced traditional two-dimensional gel electrophoresis to become 
a method of choice for profiling protein composition in a given 
biological system. There are two major LC-MS based shotgun 
proteomics approaches commonly employed: stable isotope labeled 
method and label-free method. (For review on these methods, please 
see America and Cordewener, 2008; Gevaert et al., 2008; Goshe and 
Smith, 2003; Ong et al., 2003; Pan and Aebersold, 2007; Wang et al., 
2008). With increased availability of high resolution and accuracy MS 
instruments, label-free shotgun quantitative proteomics has gained 
great popularity in recent years due to the capability of comparing a 
large number of samples without resource intensive and potentially 
biased labeling steps. Such a capability is particularly critical for 
clinical proteomics as inter-individual variation can be substantial 
and experiments with large sample sizes are required. In addition, 
the label free method has proven to provide a higher dynamic range 
for quantification and more analytical depth by saving all the machine 
cycles on fragmenting all forms of labeled peptides (Bantscheff et al., 
2007; Mueller et al., 2008).

The principle of label-free quantitative proteomics is based on 
comparison of precursor ion intensities across all experiments after 
all features (defined as isotopic clusters) are aligned according to their 
LC retention time, m/z and charge states. Here the aligned features 
across multiple runs and experiments are defined as consensus 
features. There are two crucial requirements in order to make this 
approach successful. First, as the retention time, precursor mass/
charge ratio and charge state are usually the only parameters by which 
a “feature” is defined, the requirements for reproducible LC retention 
time, high resolution and mass accuracy for mass spectrometers are 
critical to ensure that signals are well separated (Norbeck, et al., 2005) 
and the same peptides are compared across experiments. Recent 
advances in technology have made these requirements achievable. 

For example, with instruments such as the Orbitrap and the new 
generation of Q-TOF, the resolution and mass accuracy can reach 
up to 100,000 (FWHM) and <1 ppm. Similarly LC retention time has 
becoming increasingly reproducible with novel technologies such as 
Agilent’s HPLC-Chip (Vollmer and van de Goor, 2009). The other key 
requirement is good bioinformatics software that provides accurate 
computation since label-free proteomics experiments typically 
contain tens to hundreds of LC-MS runs, which yield tens of thousands 
of features in MS spectra and peptide information in MS/MS spectra, 
if available. In addition, the inherent biases and variations in MS data 
add another layer of complexity for computational tasks (Griffin et al., 
2009). Therefore the computational capability required for label-free 
proteomics is very demanding. Computational platforms have been 
developed in recent years to aid these processes(Jaffe et al., 2006; 
Li et al., 2005; May et al., 2007; Mueller et al., 2007; Sturm et al., 
2008). An assessment of software solutions for MS-based quantitative 
proteomics has been done by Mueller, et al (Mueller et al., 2008). 
However, general guidelines are missing for evaluating the software 
as a whole platform with respect to extracting information from raw 
data correctly and comprehensively. 

In general, the computational analysis of label-free proteomics 
dataset consists of two major steps: feature detection and alignment. 
Feature detection is to extract peptide induced signals from ion 
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chromatography and represent each feature by mass charge ratios, 
charge, retention time and intensity values. It is an essential step 
and it serves as the basis for all the later steps. Feature detection 
usually consists of three steps: smoothing, baseline correction and 
peak detection (Yang et al., 2009). There have been many methods 
of different natures being proposed for these steps. Combinations 
of these methods have been used in MS data analysis software 
packages. A detailed list of these methods can be referred in (Yang 
et al., 2009). Alignment is a procedure to search correspondences of 
retention times across multiple LC-MS experiments such that each 
feature from the same molecule across different experiments can 
be grouped together (see Lange et al., 2008; Vandenbogaert et al., 
2008for review).

Dozens of algorithms have been developed for feature detection 
and alignment (Reviews see. Vandenbogaert et al., 2008; Yang et al., 
2009). Efforts have been made to evaluate the feature detection and 
alignment methods as individual steps (Lange et al., 2008; Yang et al., 
2009), yet there has been no methods being proposed to evaluate 
computational platforms as a whole. For most of the MS analysis 
software packages, these two processes are highly interdependent 
and the effects of two processes are often convoluted together. It 
is very difficult to trace back problems to individual steps based on 
downstream analysis results. The methods employed in different 
steps are also very heterogeneous so that it is difficult to compare 
results from different software packages directly. Moreover, the 
general lacking of ground truth where characteristics such as the 
number of features in a data file are clearly defined makes the 
comparisons for these computational platforms even more difficult. 

Thus a systematic evaluation method by downstream analysis 
is critical because the computational methods are heterogeneous 
and the quality of result highly depends on the performance of 
these software packages. In many cases, especially for commercial 
software, details of algorithms and intermediate results are not 
always available. Instead of unraveling the effects of individual steps, 
we adopt a statistical view on evaluating the performance of the 
whole computational platform by downstream analysis. To evaluate a 
software/algorithm for label free proteomics, two essential elements 
are required: (a) a comprehensive evaluation method; (b) high quality 
datasets. It is desirable to develop an evaluation method that reflects 
the performance of computational platforms in different aspects from 
downstream results without going into the details of the algorithms 
or doing additional specifically designed experiments.

In this study, we proposed a comprehensive evaluation method 
for LC-MS label-free computational platforms and two high resolution 
datasets with effective experimental designs and carefully controlled 
procedures were provided as benchmarks for such evaluation 
purposes.

Materials and Methods

Datasets

Label-free evaluation DATASET 1 was derived from a study 
comparing the protein composition between fresh frozen femoral 
and carotid plaques from atherosclerotic patients (gender and age 
matched). The details of experimental conditions can be found in 
the supplementary material. In brief,  soluble proteins from human 
atherosclerotic plaque tissues were extracted followed by trypsin 
digestion. 400 ng peptides from each sample were subjected to nano-

LC-LTQ-Orbitrap. 25 samples in the femoral group and 29 samples 
in the carotid group were balanced randomized in the analysis. 11 
QC samples (a pool of all samples) were also periodically performed 
to ensure the consistency of the instrument. Mass accuracy in the 
experiment was estimated < 5 ppm in MS1 and < 0.8 a.m.u. in MS2. 
The resolution for Orbitrap was set at 30,000. Principle component 
analysis of all samples (including QCs) in the soluble fractions 
indicated that QCs were tightly clustered together, suggesting that 
the system derived variation over the experimental period were well 
controlled (see Supplementary Materials). 

Label-free DATASET 2 contains two samples: SSA001 and SSA002 
which contains different levels of 4 proteins (yeast enolase, yeast 
alcohol dehydrogenase (ADH), bovine serum albumin, and rabbit 
phosphorylase B) in the background of tryptic digested serum 
proteins. The human serum sample (from a pool of mixed gender) 
was purchased from Sera Lab and was collected in plain tubes (BD 
Biosciences). The clotting was performed at room temperature for 
30 minutes and the tube was centrifuged at 1,300g for 20 minutes at 
4 ºC before the storage at -80 ºC.  The two samples were analyzed 
with nano-LC-MS/MS in triplicates. The amount of proteins spiked-in 
for SSA001 were 50 pmol yeast enolase, 50 pmol yeast ADH, 50 pmol 
bovine serum albumin, 50 pmol rabbit phosphorylase B. The amount 
of proteins spiked-in for SSA002 were 100 pmol yeast enolase, 50 
pmol yeast ADH, 400 pmol bovine serum albumin, 25 pmol rabbit 
phosphorylase B. The final volume was 500 L. Mass accuracy in the 
experiment was estimated < 5 ppm in MS1 and < 0.8 a.m.u. in MS2. 
The resolution for the Oribtrap was set at 30,000.

Data processing

“Features”, clusters of monoisotopic peaks with distinct m/z, 
retention time and charge state, in raw data were processed using 
Elucidator Version 3.3 (Rosetta1), and Progenesis Version 2.1 (Non-
linear Dynamics). For Elucidator, the process started from the 
alignment of raw LC-MS images, followed by background removal 
and extraction and quantification of the peak regions. For Progenesis, 
features in all raw files were aligned against a pre-selected QC file 
based on the m/z, retention time and charge state of precursor ions. 
Intensity of each feature in each raw file was then calculated by the 
sum of area under curve of all monoisotopic peaks. To identify the 
spike-in proteins, database search on MS2 spectra were performed 
using Sequest through Biowork Version 3.3.1 SP1 against human IPI 
database version 3.3.8. The mass tolerance for precursor ions and 
fragment ions were 7.5 ppm and 0.8 a.m.u. The settings for static 
modifications were carboxyamidomethylation at cysteine residues 
and the dynamic modifications were oxidation at methionine residues. 
False discovery rates for protein identifications were controlled at 
1.0%. The search results were output as xml format or out files, which 
were subsequently imported into Progenesis. Dataset containing all 
essential information (all basic characteristics of features, intensity of 
features in all samples and peptide identification) were then output 
to an excel format. Intensities of features were normalized to total 
ion current prior to further analysis. Finally the calculations of all the 
measurements proposed in this paper were carried out in R version 
2.8.1.

Evaluation method

Given the consensus feature matrix, features are aligned across 
all the samples. All the following measurements are calculated based 
on the results by each of the software package.

1Acquired by Microsoft Corp. in 2009
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A. Obtain the number of features detected per run for all 11 QC
samples. Calculate the mean and the variance. A higher mean
indicates higher detection sensitivity and a small variance indicates 
high consistency.

B. Determine the number of missing values for each consensus
feature across all QC samples and group them in bins depending
on the number of missing values per feature. A small number of
features with missing values indicates a high consistency in feature 
detection and good performance in alignment.

C. Calculate the Coefficients of Variances (CV) for consensus features
with no missing values across 11 QC samples. Low CV indicates
the consistency in feature intensities.

D. Calculate the mean and variance of pairwise Pearson correlations
of feature intensity between each pair of QC samples. A high
correlation indicates consistency in feature intensities across the
samples.

E. If two computational platforms are to be compared, match the
consensus features from different software packages by their mass 
range as well as retention time. If there is an overlap between two
aligned features in both mass range and elution time range, these
are considered a matched feature pair. The unmatched features
are considered as unique to each platform. A random sampling
of 100 unmatched features is subject to manual validation. False
discovery rate is then estimated based on manual validation
results. Low false discovery rate indicates a high accuracy in
feature detection.

F. Perform t-test for each consensus feature between comparative
experiments, which were carotid and femoral plaque samples
in this dataset, to test if there is any significance change of
feature intensities between comparative samples. Obtain the
number of differentially expressed features with a predefined
p-value threshold. A high number of different expressed features
indicates that the computational method preserves and elucidates
differences between comparative samples effectively.

G. The quantification accuracy is evaluated on human blood serum
dataset, which contains 4 spike-in proteins with predefined ratios. 
Calculate ratios between comparative experiments based on the
average of the feature intensities of three replicates and then
rescaled so that Yeast ADH should have a ratio of 1 Compare the
calculated ratios with the predefined ratios. Small differences
indicate higher accuracy in quantification.

Results

Instead of breaking down the effects of processing steps, we 

take a global view on the performance of the whole computational 
platform. A series of measurements were proposed to evaluate key 
qualities of label-free proteomics computational platform based 
on the end result output (Table 1). We started our analysis at the 
downstream results of a list of consensus features. A consensus 
feature is composed of aligned features from all the samples, 
represented by its m/z, retention time and intensity. We evaluated 
the software packages by looking through the statistics of these 
consensus features on detection sensitivities (A), consistencies (B, 
C, D) and accuracies (E), quantification accuracies (G), and statistical 
potential in detecting differences between comparative samples (F).

Two commercial software packages:  Elucidator and Progenesis 
were used as a case study to illustrate the performance of the 
evaluation method, although this method can be applied generally to 
the comparison of any computational platforms. Only features with 
2-4 charge will be considered in the following analysis as the charge
state of most tryptic digested peptides are likely between +2 and
+4.

A. Number of features detected for each QC sample: In general, it
is expected that a high number of consensus features with few
false detections would suggest better, more sensitive feature
detection. The number of consensus features picked up by the
platform per experiment can be an indicator for sensitivity of
detection capability of the platform. Even with the same raw data
files analyzed, there were significant differences in the number
of features detected between the two software. Elucidator
detected on average 23851 features, which was 43.17% more than
Progenesis (Mean=16659.09). In addition, the data also showed
a higher consistency in the number of features detected across
all QC data using Elucidator (Elucidator, SD=2.9 vs. Progenesis,
SD=658.2, Figure 1).

B. Number of missing values of feature intensity across QC samples:
Missing values in a label-free proteomics dataset is very common.
For repetitive runs such as the QC data provided in this study,
we expected to have some missing values particularly in low
signal features due to subtle changes in LC-MS system over time.
However, as we used the same QC files for evaluating analytical
platforms, a higher number of missing values could indicate either
inconsistency of the feature detection or mis-alignment, or both.
The number of consensus features with such a number of missing

Table 1: Measurements for computational platform evaluation.
Figure 1: Number of features detected in the QC samples.

Measurement/Test Indications

A Number of features detected  for each QC 
sample Detection sensitivity

B Number of missing values of feature intensity 
across  QC samples Detection consistency 

C Coeffi cients of Variations of feature intensity 
for all QC samples

Intensity consistency & 
accuracy

D Correlations of features intensity between QC 
samples Intensity consistency 

E Manual curation of unmatched features from 
comparative platforms for all QC samples Detection accuracy

F T-test on features of comparative experiments 
(Carotid and Femoral) Statistical capability

G Quantifi cation of spiked-in proteins on the 
human serum dataset Quantifi cation accuracy
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values across the 11 QC samples from both software were listed 
in Table 2. Elucidator showed a significantly smaller number of 
features with missing values compared to Progenesis, indicating 
that Elucidator detected feature signal consistently across all the 
QC samples and was able to align them together.

C. Coefficients of Variations of feature intensity for all QC samples: 
Being able to produce results with a small number of consensus 
features with missing values is necessary for a good computational 

tool on label-free proteomics, but it is not sufficient because 
consensus features may be composed of bogus features, which 
could come from either random instrumental or chemical noise 
or peptides with similar retention time and m/z being clustered 
together by mistake.

Since our QC samples should be identical both in both 
composition and volume, correctly clustered consensus features 
which contain less bogus features are expected to have smaller 
variations in feature intensity across the QC samples. Coefficients 
of variation (CV) were used as a measure of the consistency of the 
consensus features. The CV, mean and standard deviation of all 
the consensus features for Elucidator and Progenesis are shown in 
(Figure 2). Lower CV with small deviation by Elucidator suggests 
high consistency in feature intensity as well as less bogus features 
or mis-alignment in the consensus matrix.

D. Correlations of feature intensities between QC samples: In addition 
to looking at the variations of consensus feature intensities, the 
quality of alignment can also be evaluated through the correlation 
of feature intensities between aligned experiments. The overall 
difference of feature intensities between aligned control 
experiments should be minimized. Pairwise Pearson correlations 
of feature intensities were calculated across QC samples in a one 
versus one fashion and yielded an 11 × 11 correlation matrix. The 
mean and standard deviation of the correlation values generated 
from the Elucidator and Progenesis software is shown in (Figure 
3).  The higher correlations (with smaller deviation) of the feature 
intensities aligned by Elucidator indicates the consistency of 
the software package, which agrees with the CV analysis results 
(Figure 2).

E. Manual curation of unmatched features: Since the consensus 
features found by two platforms are less likely to be false positives, 
we focused on the features which are unique to each platform 
for manual validation. We matched the consensus features 
from different software packages by their mass range as well as 
retention time. In this experiment, if there was an overlap between 
two aligned features in both mass range and elution time range 
(with a +/-2.5 mins tolerance), they were considered a matched 
feature pair. The unmatched features were considered as unique 
to each platform. A random sampling of 100 unmatched features 
from each of the software was subject to manual validation. False 
discovery rate was then estimated based on manual validation 
results. For progenesis, 76 out of 100 features were validated as 
correct detections, while 99 features picked by Elucidator were 
validated as correct, which yield a higher peak detection accuracy 
of 99%. A two-sided test of proportion was carried out and the null 
hypothesis of Progenesis has the same feature detection accuracy 
as Elucidator was rejected with p value 2.5E-06.

F. T-test on features of comparative experiments: In addition to 
achieving high consistency within QC samples, good software 
packages are also expected to preserve the differences between 
comparative experiments because features with significant 
expression level changes are often the most relevant biologically, 
which are of great interest for such experiments. Good 
computational methods should preserve such differences as 
much as possible while keeping the data among the replicates 
highly consistent. Thus in this dataset, t-tests were performed on 
the consensus feature intensities between femoral and carotid 
samples. Lists of differentially expressed features were generated 
and there were 7876 and 3595 features (p<0.01) differentially 

Table 2: Number of missing values across QC sample.

Number of missing values Elucidator Progenesis 
0 23824 13175
1 19 1191
2 10 784
3 0 570
4 2 502
5 0 520
6 0 506
7 0 478
8 1 536
9 0 617
10 0 881
11 0 1734

Figure 2: CV of feature intensities across QC samples.

Figure 3: Pearson correlation of feature intensities across QC samples.
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expressed from Elucidator and Progenesis individually. The result 
indicates that Elucidator was not only able to produce consistent 
results across the QC samples, but also to extract higher number 
of differences between comparative samples. 

H. Quantification of spiked-in proteins on the human serum dataset:
Finally the evaluation of quantification accuracy is based on the
human blood serum data set, which contains 4 spiked-in proteins
with pre-defined ratios. The ratios were calculated based on the
average of the feature intensities of three replicates, and then
linearly scaled so that Yeast ADH should have ratio of 1. The
quantification results by Elucidator and Progenesis are shown
in Table 3. The smaller error between the expected ratio and
the calculated ratio indicated Elucidator was more accurate in
quantification as well.

Discussion

Results interpretation

The evaluation method we used is based on the downstream 
analysis results, which can be influenced by any of the upstream 
procedures. Rather than dissecting the effects of individual steps, 
here we set out to interpret the evaluation result from a global view, 
which is more of interest when a decision on the choice of software 
needs to be made. Such a method is advantageous because often the 
computational methods are heterogeneous and the quality of result 
highly depends on the performance of these software packages. In 
many cases, details in algorithms and intermediate results are not 
always available. Thus a statistical evaluation the performance of the 
whole computational platform by downstream analysis is adopted. 
A table of measurements serving for these purposes and their 
indications are shown in Table 1.

When evaluating the performances of computational platforms, 
all the related measurements should be considered together. For 
example, Elucidator detected not only high number of features with 
few missing values but also with small intensity CVs across all the QC 
samples. It implies that higher number of features with less missing 
values by Elucidator was not attained by sacrificing the accuracy of 
feature detection and alignment. While the measurements on QC 
samples evaluate platform consistency, the t-test of comparative 
experiments helps to confirm the superior performances were not 
based on over-normalization of the datasets. Meanwhile, the manual 
validation results were also used to estimate the false discovery rates 
of identified features in order to rectify the detection of true signals.

Benchmark datasets

The availability of high quality benchmark datasets is one of 
critical parts for computational platform evaluations. Previous 
efforts have been made to set up common benchmark sets for such 
purposes (Lange et al., 2008). In this study, we have provided two 
high quality datasets generated by nano-LC-LTQ-Orbitrap where mass 
accuracy and retention time were well-controlled and the experiment 
was designed with great care as indicated by PCA (Supplementary 
Materials). The raw data are also included in the Supplementary 
Materials.

Ground truth definition

The evaluation of label-free proteomics computational software 
has always been a difficult task because of the general lack of 
ground truth on which this evaluation can be made. Two commonly 
used alternative methods are manual curation or using MS/MS 
identifications to evaluate associated features. However, it should 
be noted that: firstly MS/MS identification is not always available for 
label-free experiments. Secondly, MS/MS identifications show bias 
towards features with high intensity, while features derived from 
low intensities peaks are more likely to problematic for the software 
packages. Thirdly, assignment of MS/MS identifications to features 
is a potential biased process due to the low sampling rate and 
inconsistency of fragmentation precursor selection. Thus the manual 
curation was employed in this work. It enables a detailed look at 
the differences of comparative computational platforms and further 
identifying the origin of differences.

It should be noted that all the measurements that are compared 
between software packages are parameter dependent. The choice of 
parameters always influences the sensitivity and accuracy at the same 
time- higher sensitivity often leads to lower accuracy and vice versa. 
The selection of optimal parameter is to find the desired trade off 
between sensitivity and accuracy. The measurements proposed in the 
paper are also applicable to the optimization of parameters.

In summary, we have developed a simple method for evaluating 
computational platform and provided datasets for these evaluations. 
This method adopts a statistical view on evaluating the performance 
of the whole computational platform by downstream analysis. The 
proposed evaluation method can be applied for the comparison of 
computational platforms, for optimization of parameter settings and 
for understanding the performance of alignment in a given label-free 
dataset.  
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