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Abstract
Objective: The aim of the present study was to evaluate the digestive enzyme activity of the four  spp. 

and to optimize the physical parameters.

Methods: The enzymes were produced by submerged fermentation supplementing enzyme specific substrates. 
The fermentation broths were centrifuged and the supernatants were used as source of crude enzyme. Amylase 
activity was determined by 3, 5-dinitro salicylic acid method using starch as substrate while copper soap method 
was used to evaluate lipase activity. Further, protease activity was measured by Lowry’s method; whereas, phytase 
activity was assayed using sodium phytate as substrate. All the enzymes were optimized for pH, temperature and 
substrate concentration. The total protein content per one mL of the crude enzyme in the supernatant was quantified 
by Lowry’s method.

Results: All the four tested isolates B. subtilis GS 1, B. cereus GS 3, B. cereus GS 199 and B. subtilis GS 547 
showed high extracellular digestive enzyme activity at pH range 5 to 8 and temperature 20 to 50°C. 

Conclusion: The four tested B. subtilis GS 1, B. cereus GS 3, B. cereus GS 199 and B. subtilis GS 547 could 
be promising extracellular digestive enzyme producing isolates. Further, evaluation of in vivo efficacy and safety in 
animal models and clinical trials would be helpful in assisting digestive enzyme deficiencies using these extracellular 
enzyme preparations or whole cell bacteria.
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Introduction
Microbial enzymes are being increasingly used as therapeutics that 

play an important role in alleviating the burden of several digestive 
and malabsorption disorders. Use of microbial enzymes to substitute 
pancreatic enzymes has been considered safe with very less side effects 
and also proven economic [1]. Further, microbial derived digestive 
enzymes were proven to exert efficient digestive property at very low 
doses and also can possess a broader pH range of activity than animal 
and plant based counterparts [2]. Furthermore, GRAS (generally 
regarded as safe) strains of bacteria and probiotics with extracellular 
digestive enzyme activity were also extensively studied for their oral 
administration in order to improve digestion in the host [3]. 

Several studies showed that lipase producing probiotics can be 
used to reduce cholesterol levels, to overcome malabsorption, aid in 
the proper digestion of fats in the diet in addition to adjunct therapy in 
the management and prevention of mental depression [4-9]. Further, 
probiotics have proven to be useful in the management of colorectal 
cancer as evaluated in mice system and also possess anticancer 
properties [10-12]. Interestingly, the treatment of steatorrhea by 
lipase supplementation therapy has become more successful in the 
last decade [13]. To consider, in an in vivo study, acid resistant lipase 
from fungi was used to treat steatorrhea in dogs. In the study 4800 U 
of fungal lipase was used and a significant reduction in stool bulking 
and fat excretion was observed [14]. Further, microbial proteases are 
known for efficient proteolytic activity and are extensively used in food 
processing for gluten intolerance, cow’s milk allergy, soy allergy and 
also in other dietary protein intolerances [15,16]. Addition of microbial 
beta-galactosidases directly to milk represents a potential enzyme 
replacement therapy for primary lactase deficiency [17]. In addition, 
the use of probiotic fermented milk products also found beneficial in 
improving lactose digestion [18]. Further, biotechnological application 

of phytase in food is gaining importance, since phytate in the diet act 
as an anti-nutrient [19]. The addition of phytase or fermenting foods 
with phytase producing strains of GRAS and probiotics can improve 
nutritional value of plant based foods by improving protein digestion 
and also mineral bioavailability through phytate hydrolysis [20]. 

Compared to enzyme preparations, the use of whole microbial 
cells that secret extracellular digestive enzyme was found beneficial. 
Because, enzyme preparations must be supplemented at each meal time 
to ensure the digestion of ingested diet. In addition, there are several 
problems associated with the use of enzyme preparations that mainly 
includes in vivo efficacy, efficient delivery against gastric condition in 
the stomach, formulation and dosage [2,21,22].

Most of the commercially available digestive enzymes are from 
Aspergillus and Bacillus spp. Bacillus spp. continue to be dominant 
bacterial workhorses in microbial fermentations due to their stability 
in wide range of pH and temperature [23]. The GRAS strains of Bacillus 
mainly include Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, 
Bacillus pumilus, Bacillus clausii and Bacillus coagulans [24]. Given 
this, in the present study, the four isolates namely: Bacillus subtilis 
GS 1, B. cereus GS 3, B. cereus GS 199 and B. subtilis GS 547 isolated 
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from curd samples were evaluated and optimized for their extracellular 
digestive enzyme activity. 

Materials and Methods
Inoculum preparation

In the present study, the four isolates namely Bacillus subtilis GS 1, 
Bacillus cereus GS 3, Bacillus cereus GS 199, and Bacillus subtilis GS 547 
isolated from curd samples were tested for their extracellular hydrolytic 
enzyme activity. The isolates were grown overnight in nutrient broth 
at 37°C. After incubation, the cells were harvested by spinning at 7000 
rpm/10 min, washed thrice and resuspended in sterile distilled water to 
obtain OD 1.2 at A600 and used as inoculum.

Quantitative assay for amylase, protease, lipase and phytase 
from Bacillus spp.

Spectrophotometric assay of Amylase by DNS method: The 
amylase was produced by submerged fermentation in the medium 
containing lactose 40 gl-1, yeast extract 20 gl-1, KH2PO4 0.05 gl-1, 
MnCl2 .4H2O 0.015 gl-1, MgSO4.7H2O 0.25 gl-1, CaCl2.2H2O 0.05 
gl-1, FeSO4.7H2O 0.01 gl-l [25]. 100 mL of autoclaved production 
medium was inoculated with 2% inoculum and incubated at 37°C/24 
h with continuous shaking (200 rpm). After incubation, the broth 
was centrifuged at 7000 rpm/15 min in a cooling centrifuge. Then the 
supernatant obtained was used as source for estimation of amylase 
activity by DNS (3, 5-dinitro salicylic acid) method by monitoring the 
amount of reducing sugar liberated from starch. To the one milliliter 
of crude enzyme, 0.5 mL of 1% soluble starch (prepared in 0.1 M 
phosphate buffer of pH 6) was added and incubated at 37°C for 20 
min. Further, 1 mL of DNS reagent was added and boiled for 10 min 
to stop the reaction. Then, the final volume was made up to 5 mL by 
adding distilled water and absorbance was measured at 540 nm. One 
unit of amylase activity was defined as the amount of enzyme per mL 
of culture supernatant that released 1 μg of maltose per minute. In 
the assay, heat killed culture supernatant was served as control. The 
experiment was repeated in triplicates and results were expressed as 
mean ± standard deviation. 

Estimation of Bacillus spp. lipase activity using copper soap 
method: The lipase enzyme was produced by submerged fermentation 
and quantified using olive oil as a substrate according to Veerapagu. In 
brief, after 72 h of submerged fermentation, the broth was centrifuged at 
1000 rpm/20 min/4°C and supernatant was used as source of enzymes. 
To the 1 mL of culture supernatant, 2.5 mL of olive oil was added and 
incubated for 5 min at 37°C. Enzyme activity was arrested by adding 
1 mL of 6N HCl and 5 mL benzene. Further, 4 mL of upper layer was 
carefully collected and to which 1 mL of cupric acetate pyridine was 
added. In the assay, reaction mixture with heat inactivated supernatant 
served as control. The lipase activity was determined by measuring 
the absorbance of free fatty acids dissolved in benzene at 715 nm and 
compared with oleic acid standard curve. One unit of lipase activity is 
defined as the amount of enzyme that liberated 1 μmol FFA in 1 min 
at 37°C.

Spectrophotometric assay of extracellular protease activity of 
Bacillus spp: The submerged fermentation for protease production 
was carried out according to Ikram-Ul-Haq and Mukthar (2006) 
and protease activity was assayed by Lowry’s method. In brief, after 
24 h of incubation at 37°C with continuous shaking at 200 rpm, the 
fermentation broth was centrifuged at 5000 rpm for 10 min and 
supernatant was assayed for protease activity. The reaction mixture 
containing 1 mL of casein (1% solution in 0.1 M phosphate buffer of 

pH 6) and 1 mL of culture supernatant was incubated at 37°C/30 min. 
Control tubes contained supernatants boiled for 10 min. The enzyme 
activity was arrested by adding 5 mL of 5% trichloro acetic acid and 
further incubated at 37°C/10 min. Then the reaction mixture was 
centrifuged at 8000 rpm/10 min to remove insoluble particles and to 
which 1 mL of 1:1 Folin and Ciocalteau reagent and water was added. 
After 30 min of incubation, absorbance was measured at 700 nm. The 
amount of amino acids released was compared with tyrosine standard 
curve for the determination of protease activity.

Spectrophotometric assay of extracellular phytase activity of 
Bacillus spp: The extra cellular phytase was produced as described by 
Sreeramulu et al., with slight modification [26]. After fermentation 
for 72 h, the broth was centrifuged at 6000 rpm/30 min/4°C and 
supernatant was used for phytase assay. The assay mixture consisted of 
1 mL of acetate buffer (pH 5.5) containing 6.82 mM sodium phytate, 0.2 
mL of culture supernatant and 0.2 mL 100 mM MgSO4 and incubated at 
37°C for 30 min. Reaction mixture containing heat inactivated culture 
supernatant served as control. Immediately after stopping the reaction 
by adding 1 mL of 10% trichloroacetic acid, 1 mL of Taussky shorr 
color reagent solution prepared as described by Tungala was added and 
absorbance was measured at 660 nm. Then the absorption values were 
compared with the standard graph of potassium dihydrogen phosphate 
(0.1 to 0.5 mg/mL) to determine phytase activity. One unit of phytase 
activity was defined as the amount of enzyme required to liberate 1 
mole of phosphate per min under assay conditions. 

Total Protein Estimation
The total protein content was estimated by Lowry’s method. 

Optimisation of pH, temperature and substrate concentration 
for amylase, lipase, protease and phytase from Bacillus spp.

The optimum pH for all the four enzyme assay was determined 
by incubating the enzyme–substrate at various pH from 3 to 10 in 
the following buffers: 50 mM sodium acetate buffer (pH 3–5), 50 
mM potassium phosphate buffer (pH 5–7), 50 mM Tris–HCl buffer 
(pH 7–9), and 50 mM glycine–NaOH buffer (pH 9–10). Enzyme 
activity in each buffer was measured using the standard assays as 
described previously. Further, to determine the optimum temperature 
for the amylase, lipase, protease and phytase, the reaction mixtures 
were incubated at various temperature ranged from 10 to 60°C and 
then absorbance were measured according to the standard assays. 
Furthermore, to determine the effect of substrate concentration on 
enzyme activities, culture supernatants were incubated with various 
volumes of specific substrate solutions viz., starch, olive oil, casein and 
sodium phytate for amylase, lipase, protease and phytase respectively. 

Statistical Analyses
All the experiments were conducted in triplicates and results were 

expressed as mean ± standard deviation. The data were analyzed using 
two-tailed paired t-test and for all tests, the level of significance was 
set at p<0.05 (GraphPad Prism version 5.02 for Windows, GraphPad 
Software, San Diego, California, USA). 

Results and Discussion
In the present study the extracellular amylase, lipase, protease and 

phytase activity of four Bacillus spp. were evaluated and optimized. The 
total protein content and specific activity of all the four extracellular 
digestive enzymes evaluated (Table 1).

Amylases break down α-linked sugar units in the ingested diet to 
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glucose, maltose, and maltotriose which further undergo fermentation 
to produce various short chain fatty acids. In case of pancreatic 
insufficiency, microbial amylases are of best choice in improving the 
carbohydrate digestion. In the present study, the extracellular amylase 
activity of the four Bacillus spp. were studied and optimized for various 
physical parameters. As shown in the Figure 1, the amylolytic activity of 
the tested isolates were ranged between 87 and 128 U. Amongst, Bacillus 
subtilis GS 1 showed highest activity (127.66 ± 8.02U, p<0.05). Further, 
in optimization studies, the four Bacillus spp. tested showed optimum 
activity at 40°C ranging between 87 and 130 U/mL and subsequently 
decreased at 50°C with activity ranging from 50 to 73 U/mL. Whereas 
in another study, Bacillus amylase activity as 34 U/mL at 37°C/pH 7 
[25], however, Abd-Elhalem et al. reported that the amylase activity 
of B. amyloliquefaciens was 72.5 U/mL with an increased activity at 
50°C [27]. During optimization for pH, B. subtilis GS 1 and B. cereus 
GS 3 showed maximum activity at pH 6 while B. subtilis GS 547 and B. 
cereus GS 199 showed highest activity at pH 7. Further, the Vmax value 
for B. subtilis GS 1 was 149 ± 4.05 U/mL at a substrate concentration 
2 mg/mL/1 mL enzyme solution while for B. cereus GS 3 the Vmax was 
122 ± 3.87 U/mL at 1 mg/mL/ 1 mL enzyme solution. However, for B. 
subtilis GS 547 and B. cereus GS 199 Vmax values were 108 ± 5.32 and 95 
± 3.69 U/mL, respectively at a substrate concentration 1.5 mg/mL/ 1 
mL enzyme solution. In another study, Vmax for B. subtilis was 100 U/
mL which was in agreement with the present study [28] (Figures 1-4). 

Lipase hydrolyzes fats into fatty acids and glycerols. In the present 
study, the crude lipase activity of the four tested Bacillus spp. ranged 
between 27 and 40 U/mL using olive oil as substrate. Amongst, Bacillus 
subtilis GS 547 showed highest activity 40 ± 2.13 U/ml (p<0.05). 
However, Bacillus subtilis showed 6.921 U/mL in soyabean oil, while 
Bacillus amyloliquefaciens exhibited 6.506 U/mL using ground nut oil as 
substrate at optimum pH 7.5 and temperature 45°C [29]. On storage at 
temperature above 40°C, pancreatic lipases lose their activity, however, 
microbial lipases are more resistant to heat inactivation and therefore, 
thermal stability is one of their desirable characteristics and which was 
corroborated in the present study [30]. The maximum lipolytic activity 
was found to be 40°C for all the four isolates tested and indicating 
the thermal stability at a temperature range between 20 to 50°C and 
decreased beyond 60°C. Further, optimum pH was 6 for all the isolates 
except B. subtilis GS 2 (pH 7), however, lipase activity was stable at a 
pH range between 5 and 8 for all the four isolates tested. Further, the 
maximum rate of reaction Vmax for B. cereus 3 and B. subtilis 547 were 
found to be 31 ± 1.42 and 41 ± 2.36 U/mL respectively. Whereas for B. 
subtilis GS 1 and B. cereus GS 199 Vmax values were 32 ±3.4 and 34 ± 2.1 
U/mL respectively at a substrate concentration 0.5 mL/mL (v/v)/1 mL 
enzyme solution. However, Hasan et al. (2007) reported the Vmax value 
of B. subtilis as 0.416 U/mL/min which was quite lower the maximum 
rate of reaction of the four tested Bacillus spp. (Figures 5-7).

The enzyme protease breakdown protein into smaller fragments as 
peptides and further to amino acids. In the present study, the protease 
activity of four tested Bacillus spp. were ranged between 120 and 137 
U/mL. Amongst, B. subtilis GS 1 showed the highest enzyme activity 

157 ± 3.60 U/ml (p<0.05) at 37°C. Further, the optimum temperature 
was found to be 40°C and moreover, enzyme activity was stable in the 
temperature range 20 to 50°C for all the isolates and was in agreement 
with the report of Kotlar et al. [31]. Further, pH 8 was optimum and 
the activity was stabilized between pH 6 and 9 for all the tested isolates. 
Furthermore, the maximum rate of reaction Vmax were 160 ± 2.34, 
145 ± 1.45 and 130 ± 3.72 U/mL for B. subtilis GS 1, B. cereus GS 3 and 
GS 9 respectively at a substrate concentration 2 mg/mL/1 mL enzyme 
solution. However, Nadeem et al. reported Vmax value of 61.58 U/ml 
for B. licheniformis [32]. The stability at wide range of temperature and 
pH suggested that the protease from tested Bacillus spp. may function 

 Amylase Lipase Protease Phytase 
Isolates Protein mg/mL Specific activity 

(IU) 
Protein mg/mL Specific activity 

(IU)
Protein mg/mL Specific activity 

(IU)
Protein mg/mL Specific activity 

(IU)
B. subtilis GS 1 0.101 1262.04 0.05 653.2 0.098 1602.229 0.046 1337.064
B. cereus GS 3 0.106 1082.77 0.194 142.57 0.093 1512.646 0.038 2138.007
B. cereus GS 199 0.105 994.13 0.045 785.11 0.091 1456.121 0.052 1056.65
B. subtilis GS 547 0.119 759.034 0.193 207.25 0.095 1394.164 0.0403 1966.63

Table 1: Total protein and specific activity.
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Figure 1: Extracellular digestive enzyme activity of B. subtilis GS 1, B. cereus 
GS 3, B. cereus GS 199 and B. subtilis GS 547.
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Figure 2: Temperature optimization for amylase activity.
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Figure 4: Effect of substrate concentration on amylase activity.
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Figure 5: Temperature optimization for lipase activity.
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Figure 6: pH optimization for lipase activity.
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Figure 7: Effect of substrate concentration on lipase activity.
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Figure 8: Temperature optimization for protease activity.
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Figure 9: pH optimization for protease activity.
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Figure 10: Effect of substrate concentration on protease activity.
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Figure 11: Temperature optimization for phytase activity.
at different pH conditions in vivo and also can withstand varying 
temperature during processing (Figures 8-10).

Phytase catalyzes the hydrolysis of phytic acid into myo-inositol 
and inorganic phosphates. In the present study, all the four tested 
Bacillus spp. showed phytase activity using sodium phytate as 

substrate. As shown in the Figure 1, the phytase activity of the four 
isolates ranged between 54 to 81 U/mL. Out of four isolates evaluated, 
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B. cereus GS 3 showed highest activity (81.07 ± 2.47 U/mL, p<0.05). In 
addition, optimum temperature was 40°C, although activity remained 
fairly stable over temperature range of 30 to 50°C. Interestingly, the 
activity was found to stabilize at different pH range from 4 to 7 with 
an optimum pH 5 except for B. subtilis GS 547 (pH 6). Further, Vmax 
values for B. subtilis GS 1 and B. cereus GS 3 were 67.64 and 85.87 U/
mL for 4.8 mg/mL/1 mL enzyme solution. Whereas for B. cereus GS 
199 and B. subtilis GS 547, the Vmax values were 60.75 and 93.47 U/
mL for 6 mg/mL/1 mL enzyme solution. However, in an another study, 
the optimum pH and temperature for phytase from B. subtilis were 7 
and 60°C respectively and Km and Vmax values for sodium phytate were 
0.42 mM and 4.35 μmol/min, respectively. The activity of phytase at 
optimum pH 4 indicated that the enzyme from the four tested isolates 
could be used in vivo to improve the bioavailability of phosphate from 
ingested food (Figures 11-13). 

Conclusion
In the present study, B. subtilis GS 1, B. cereus GS 3, B. cereus 

GS 199 and B. subtilis GS 547 were evaluated and optimized for 
their extracellular digestive enzymes viz., amylase, lipase, protease 
and phytase in vitro. The digestive enzymes of all the four isolates 
were active at wide temperature and pH range. Further, purification 
and characterization of these digestive enzymes would pave for the 
development of therapeutic enzyme formulations to alleviate the 
burden of pancreatic insufficiency and other digestive disorders. In 
addition, further in vitro and in vivo evaluation of the safety of tested 
Bacillus spp. and their validation as GRAS (generally regarded as safe) 
would also helpful in oral administration of these isolates as source of 
digestive enzymes in improving digestion. 
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