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Abstract

Estrogen receptor related receptor alpha (ERRα) was the oldest orphan nuclear receptor with sequence identity
to the estrogen receptors, ERα/β. Recently, cholesterol had been identified as a potential agonist of ERRα which
brings new insights for ERRα in bone biology and aging.
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Short Communication
Estrogen receptor related receptor alpha (ERRα) was the oldest

orphan nuclear receptor with sequence identity to the estrogen
receptors, ERα/β [1]. The sequence alignment of the ERRα and the ERs
reveals a high similarity (68%) in the DNA-binding domain and a
moderate similarity (36%) in other parts of the proteins such as the
ligand-binding E domain [1]. If ERRα does not bind estrogen,
cholesterol had been recently described as a potential agonist of the
receptor [2]. Bone maintenance depends on a balance between bone
resorption and bone formation that implicates bone-resorbing cells
(osteoclasts), bone-forming cells (osteoblasts) and the osteocytes that
modulate response of bone mechanical stress [3]. In skeletal tissues,
ERRα plays mainly a functional role in osteoclasts (bone resorbing
cells) but also has a role in osteoblasts (bone-forming cells) and
chondrocytes [4].

A recent study has reinforced the role for ERRα in osteoclasts
differentiation and function [2]. In osteoclastogenesis, ERRa was
already known to act as a pro-osteoclastic factor in vivo, the ERRα
knockout mice exhibiting osteopetrosis (excess of bone formation) [5].
Concomitantly, osteoclastogenesis was dramatically disturbed in vitro
and genes implicated in mitochondrial biogenesis were down regulated
(Figure 1A). Moreover, ERRα was also implicated in osteoclasts
mobility and actin cytoskeletal organization by regulating the
osteopontin (OPN)-integrin b3 chain-activated c-src (phosphorylated
at the Tyr416) pathway causing the disruption of the specific actin
structure (podosome belt) implicated in osteoclast adhesion, migration
and invasion [6] (Figure 1B). Recently, ERRα was shown to mediate
the effect of cholesterol on bone resorption and skeletal remodeling [2]
(Figure 1C). Many studies have suggested a link between dyslipidemia
(such as hypercholesterolemia) and low bone mineral density (a strong
predicator of osteoporosis) for postmenopausal women [7].
Interestingly, osteoporosis is mainly due to an excess of osteoclasts
since the amount of bone resorbed by the osteoclasts is not restored
with the new bone deposited by the osteoblasts, suggesting that
cholesterol may directly act through osteoclasts to induce bone loss in
postmenopausal women [8]. Moreover, cholesterol had been described
as a stimulator of Interleukin 1α (IL1α) secretion by macrophages and
of RANKL (receptor activator of the NF-κB ligand) that are both
strong pro-osteoclastic factors [9-11]. ERRα has also been link to

osteoporosis. Indeed, ERRαexpression is stimulated by estrogen in
proliferative osteoblasts in vitro and inhibited in bone in vivo in
ovariectomized adult rats [12]. Similarly to estrogens/ERs, ERRα may
also regulate vascularisation and VEGF expression which is also
known to impact osteoblasts and osteoclasts [13-17]. Moreover, the
conditional knock-out of ERRα in female mice in pre-osteoblasts and
the global ERRα deletion confer resistance to bone loss induced by
estrogen-deficiency which suggest that ERRα may contribute to bone
loss in osteoporosis [18,19]. It seems that ERRα may also mediate the
pharmacological effects of bisphosphonates, the most prescribed anti-
resorptive drugs for fracture prevention in postmenopausal women
[2].

Figure 1: ERRα as a regulator of osteoclastogenesis through its
function in both mitochondrial biogenesis (A) and actin
organization and resorption capacity (B). Recently, ERRα was
shown to mediate the effect of cholesterol on bone resorption (C),
and its transcriptional activity was decreased by the reduction of
cholesterol synthesis induced by the zoledronate suggesting that
ERRα mediates at least in part the anti-resorptive effects of
bisphosphonates (D).

Cholesterol also has the ability to recruit coactivators PGC1β to
ERRα in osteoclasts [2] (Figure 1C). PGC1β is upregulated during the
transition from bone marrow macrophages to pre-osteoclasts, and
PGC1β knockout mice exhibited osteopetrosis [5]. It is also
downregulated in mice that were deleted in NF-κB proteins in
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osteoclast precursors [20]. Moreover, similarly to osteoclasts deleted in
ERRα, PGC1β-deficient osteoclasts displayed abnormal morphology
and their bone resorbing activity was significantly impaired due to a
reduction in phosphorylation of c-src at Tyr416 and a decrease in actin
ring formation [5,6]. Taken together, these data suggest that targeting
ERRα-PGC1β through synthetic molecules like the inverse agonist
XCT-790 that was designed to block ERRα activity by preventing its
interaction with the PGC1 coactivators, can block the ERRα activation
by cholesterol. Consequently, ERRα regulation of the mitochondrial
biogenesis and of the actin cytoskeletal organization that are required
for osteoclasts formation, migration and resorption capacity could be
altered [21].

1. In clinic, treatments that are generally recommended for
postmenopausal women are bisphosphonates that bind to bone
surfaces, target osteoclasts and decrease bone resorption [22].
Interestingly, the nitrogen-containing-bisphosphonates such as
zoledronate inhibits the mevalonate pathway and therefore the
production of cholesterol which results in osteoclasts apoptosis
[23] (Figure 1D). In mice, Wei, et al. show that the reduction of
cholesterol synthesis by the zoledronate decrease ERRα
transcriptional activity suggesting that ERRα mediates at least in
part the anti-resorptive effects of bisphosphonates [2] (Figure
1D). They also show that the statins that are the most prescribed
cholesterol-lowering drugs can also regulate ERRα activity in
muscle. In contrast to bisphosphonates, that only target bone
matrix surfaces, statins have pleiotropic effects [24]. Indeed
beside their cardio-protective properties, statins have also been
described to act as pro-osteogenic molecules by increasing the
bone mineral density in post-menopausal women [25,26].
Moreover, statins (Simvastatin, atorvastatin) are able to stimulate
growth factors secretions such as VEGF in osteoblasts which is
also a direct target gene of ERRα [17,27]. Statins (Lovastatin) can
also inhibit osteoclasts formation and a defect in ERRα in
osteoclasts blocks the effect of Lovastatin [2].

In aging, cholesterol is strongly linked to age-related disorders [28).
ERRα in association with the PGC1 family of coactivators play a main
role in the transcriptional control of mitochondrial biogenesis and
respiratory function [29]. Deregulation of mitochondrial function is a
common feature in multiple aspects of bone loss and cartilage
destruction suggesting the involvement of ERRα in skeletal aging
[30,31]. The bone phenotype in ERRα knock-out mice is more
prevalent in aged mice (10 to 12 month) compared with 4 to 5 month-
old mice and mainly due to osteoclasts defects and downregulation of
genes implicated in mitochondrial function and biogenesis [5]. Very
recently, ERRα-PGC1β had been linked to Sirtuin 3, a major
mitochondrial deacetylase (nicotinamide adenine dinucleotide
(NAD)-dependent protein deacetylase) that regulates oxidative stress
resistance, in bone homeostasis [32,33]. Indeed, mice deficient in
SIRT3 exhibit osteopenia due to increased numbers of osteoclasts. Huh
et al show that in response to the pro-osteoclastic cytokine RANKL,
the osteoclasts progenitors Sirt3-/- undergo increased
osteoclastogenesis due to the stimulation of the ERRα-PGC1β at the
transcriptional level.

Mitochondria also play a key role in chondrocytes function, survival
and oxidative stress [34]. Chondrocytes from osteoarthritis cartilage,
the most common chronic joint disease in the elderly population,
showed a significant decrease of mitochondrial electron transport
chain activity leading to mitochondrial damage of the outer membrane
[30,35]. Proteomics study from osteoarthritic (OA) chondrocytes

described a decrease in mitochondrial superoxide dismutase (SOD)
levels and an increase in intracellular reactive oxygen species (ROS) in
OA chondrocytes [36]. Considerable data now support the idea that
ERRα, combined with PGC1 family members, regulates ROS
production. Indeed, dysregulation of ERRα with the inverse agonist
XCT-790 enhanced ROS production in differentiated adipocytes,
muscles and breast cancer [37-39] (Figure 2).

Figure 2: Several data clearly show a strong link between ERRα-
PGC complex with ROS-detoxifying processes, the mitochondrial
SOD2 and the NAD-dependent deacetylase Sirt3 suggesting that
similar transcriptional regulation may occur in cartilage
maintenance in aging.

Moreover, in DAergic neuronal cells, ERRα was involved in Sirt3
neuroprotective functions by regulating Sirt3 expression via ERRα-
PGC1α interaction and binding on Sirt3 promoter. Increase of Sirt3
expression led to interaction with SOD2 that prevented ROS
production and DAergic neurons death observed in Parkinson’s disease
[40]. Also, the anti-oxidant effect of resveratrol was recently linked to
the transcriptional regulation of SOD2 by ERRα in cells deficient in
mitochondria Complex I [41] (Figure 2). Currently, no similar data are
yet available in osteoarthritic chondrocytes, but these results clearly
show a strong link between ERRα-PGCα complex with ROS-
detoxifying processes, the mitochondrial SOD2 and the NAD-
dependent deacetylase Sirt3 suggesting that similar transcriptional
regulation may occur in cartilage in aging.

In conclusion, we have reviewed the increasing data supporting a
role for ERRα in regulation of osteoclasts differentiation and function.
Together, the data suggest that ERRα mainly act as a regulator of bone
resorption. They also bring new insights into ERRα function and
suggest that ERRα may mediate the pharmacological effects of anti-
resorptive drugs such as bisphosphonates and statins that are both
targeting cholesterol metabolism. The fact that cholesterol is also
linked to age-related disorders combined with ERRα function in
mitochondria and in oxidative stress as a regulator of ROS production,
suggest that ERRα may also act as a regulator of the aging process in
skeletal tissues.
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