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Abstract
Micellar electrokinetic chromatography (MEKC) provides a simple and rapid approach for determining n-octanol-

water partition coefficients (log Pow). A set of non-hydrogen bonding (NHB), hydrogen bond accepting (HBA) and 
hydrogen bond donating (HBD) benzene derivatives with known log Pow values was used as sample solutes. Two 
novel cationic gemini surfactants with different head groups were used as pseudostationary phases. Sodium dodecyl 
sulfate (SDS) was also used for comparison. Two approaches were applied for the determination of log Pow values: 
calibration curve and phase ratio. In calibration curve approach, the MEKC retention factors (log k) of six alkyl phenyl 
ketones were plotted against their literature log Pow values for constructing the calibration curve. Log Pow values of 
benzene derivatives were then determined from the slope and the y-intercept of the linear calibration line. In the 
phase ratio approach, total surfactant concentration, critical micelle concentration, partial specific molar volume and 
experimental log k values were utilized for estimation of the log Pow values. Both approaches provided comparable 
results for HBA solutes; however, the calibration curve approach and phase ratio approach were found to be more 
successful for NHB and HBD solutes, respectively. In general, gemini surfactants provided better estimated log Pow 
values for NHB and HBA solutes while SDS gave better values for HBD solutes. 

Keywords: Gemini surfactants; Micellar electrokinetic
chromatography; n-Octanol-water partition coefficient; log Pow; Partial 
specific volume; Phase ratio

Abbreviations: CMC: Critical Micelle Concentration; HBA:
Hydrogen Bond Accepting; HBD: Hydrogen Bond Donating; 
NHB: Non-Hydrogen Bonding; log Pow: n-octanol-water Partition 
Coefficients; MEKC: Micellar Electrokinetic Chromatography; PSV: 
Partial Specific Volume 

Introduction
Lipophilicity, which correlates with the bioactivity of chemicals, is 

an important molecular descriptor and its determination constitutes 
an important element in pharmaceutical characterization of drug 
candidates since drugs must pass across various biological membranes 
to reach its site of action. Its determination is of great importance 
in a variety of fields such as in micellar catalyst, [1] in estimation of 
the toxic effect of substances in animals and plants, [2] in prediction 
of chemical adsorption in soil, [3] and in method development and 
optimization in micellar electrokinetic chromatography (MEKC) [4]. 
Introduced by Hansch and Fujita for biological activity of chemicals, 
the logarithm of the partition coefficient between n-octanol and water 
(log Pow) has been widely used as a general measure of lipophilicity [5-
7]. Shake-flask methods is well-known method for determination of 
log Pow values of chemicals [8,9]. However, this method is cumbersome, 
time-consuming, needs skilled operator, and requires relatively large 
amount of pure compounds. After equilibrium between n-octanol 
and water, the relative concentration of the sample in each layer 
needs to be determined using spectroscopic or chromatographic 
techniques. In addition, n-octanol and water system does not mimic 
the biological model because biomembranes consisting of relatively 
rigid phospholipids are different from n-octanol-water system in terms 
of physicochemical property and size.

Due to the drawbacks of the direct measurement of log Pow, 
alternative methods such as high performance liquid chromatography 
(HPLC) [10-12] and theoretical calculation methods [13,14] have been 

introduced. High correlations are observed between the logarithms 
of retention factors in reversed-phase HPLC (RP-HPLC) and log Pow 
values [10]. However, due to the excessive retention in RP-HPLC at a 
purely aqueous mobile phase, the direct measurement of log Pow values 
is not achievable for many compounds. 

As an alternative to RP-HPLC, electrokinetic chromatography 
(EKC) with micelles [15,16] and microemulsion [17,18] has been 
introduced as a simple and inexpensive analytical tool for log Pow 
determination. Owing to its high efficiency and resolving power, 
requirement for small sample and buffer size, ease and speed of 
separation, MEKC has been a technique of choice for separation of 
a variety of charged and neutral compounds since its introduction 
by Terabe et al. [19] In MEKC, solutes are separated based on their 
differential partitioning between the aqueous phase and the micellar 
phase (i.e., pseudostationary phase). One of the major advantages 
of MEKC over other separation techniques is the feasibility of 
manipulating the selectivity by simply rinsing the capillary with 
the solution of a new micellar phase with diverse physicochemical 
properties [16].

Correlation between micelle-water partition coefficient, log 
Pmw, and log Pow has been known since 1975 [20]. Good correlations 
between log Pmw, and log Pow for phthalate esters have been shown in 
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the literature using MEKC [21]. Because the retention factor (log k) in 
MEKC is directly related to the log Pmw, a linear relationship between 
log k and log Pow for aromatic solutes in anionic surfactant systems has 
also been confirmed [22]. In addition to the anionic surfactants, several 
other surfactant systems such as cationic, anionic-nonionic mixed 
micelles, [23,24] bile salts, [25] and micro emulsions [26,27] have also 
been utilized for log Pow determination.

Due to their unique properties, gemini surfactants have been 
introduced as alternative pseudo stationary phases in MEKC [28-30]. 
Gemini surfactants are made up of two hydrophobic carbon chains and 
two polar head groups covalently linked to each other through a spacer. 
As compared to their single-chain analogues with the same chain 
length and head group, geminis generally exhibit superior properties 
[31,32]. They possess remarkably lower critical micelle concentration 
(CMC), low Krafft point and C20 values (surfactant concentration that 
reduces the surface tension of the solvent by 20 mNm-1). They have 
better wetting, solubilizing and foaming properties, closer packing of 
the hydrophobic groups, and stronger interaction with the oppositely 
charged surfactants. Head group could be anionic, cationic, zwitterionic 
and nonionic; spacer can be polar or nonpolar, flexible or rigid, short 
or long. The nature and length of spacer can have a significant effect 
on the physicochemical properties and morphology of the gemini 
aggregates [32]. 

In present study, two cationic gemini surfactants, 1,1'-didodecyl-
1,1'-but-2-yne-1,4-diyl-bis-pyrrolidinium dibromide (G1) and N,N'-
didodecyl-N,N,N',N'-tetramethyl-N,N'-but-2-ynediyl-di-ammonium 
dibromide (G2) were used as pseudostationary phases in MEKC 
for Pow determination. Sodium dodecyl sulfate (SDS), a commonly 
used anionic conventional pseudostationary phase with identical 
hydrocarbon chain length, was also used for comparison. Both gemini 
surfactants contain 2-butyne spacer and the same hydrocarbon chain 
lengths (C12), however, G1 has pyrrolidinium while G2 has dimethyl 
ammonium head group (chemical structures of surfactant systems are 
provided in Figure 1). To the best of our knowledge, no other study has 
yet been reported in the literature using cationic gemini surfactants for 
Pow determination.

Experimental
Chemicals

All benzene derivatives, alkyl phenyl ketone (APK) homologues, 
disodium hydrogenphosphate, sodium dihydrogenphosphate, and 
sodium hydroxide were obtained from Alfa Aesar (Ward Hill, MA, 
USA). Deionized water was obtained from a water purification system 
from Millipore (Milford, MA, USA). SDS was purchased from EMD 
Chemicals (Gibbstown, NJ, USA). The gemini surfactants G1 and G2 
were donated by Professor Fredric M. Menger’s Research Laboratory 
at Emory University (Atlanta, GA, USA). All chemicals were used as 
received without any further purification.

Characterization of surfactants

Surface tension measurement was used for CMC determination of 
the gemini surfactants and SDS. This method is based on the change 
in surface tension as a factor of surfactant concentration. The surface 
tension of surfactant solutions with given concentrations were measured 
at ambient temperature by a KSV Sigma 703D digital tensiometer 
(Monroe, CT, USA) using a DuNoüy ring. Surface tension values 
were plotted against surfactant concentration and the CMC value was 
taken as the breakpoint of the curve. The details of the experiment are 
explained elsewhere, [29] thus, are not reported here. Partial specific 

volume, PSV, is defined as the increase in volume upon dissolving 1.0 g 
of a dry material in a large volume of a solvent at constant temperature 
and pressure. Since the measurement of such small volume change 
is nearly impossible, an approach based on density measurement of 
surfactant solutions was used for determination of PSV. Five solutions 
with varied surfactant content were prepared in deionized water and 
their densities were measured at 25°C using a high-precision digital 
DMA 4500 density meter (Anton Paar, Ashland, VA, USA). The PSV 
values were obtained from the y-intercept of a graph of reciprocal of 
density against weight fraction of solvent. Experimental details and 
calculations on PSV are discussed elsewhere [29] and thus are not 
repeated here. 

Capillary electrophoretic separations

Instrumentation

An Agilent CE system (Agilent Technologies, Palo Alto, CA, 
USA) equipped with a diode array detector was used for MEKC 
separations. The system control and data handling were done using 
3D-CE ChemStation software. The MEKC separations were performed 
in fused-silica capillaries (Polymicro Technologies, Tucson, AZ, USA) 
with dimensions of 66.0 cm total length (57.5 cm effective length) × 
50 μm ID (360 μm OD). Capillaries used in this study were cut from 
the same capillary bundle and were reactivated thoroughly after each 
surfactant system using deionized water (10 min) and 1.0M NaOH (ca. 
20 min) to eliminate possible cross contamination. Each new capillary 
was activated with 1M NaOH (30 min at 40°C) and deionized water 
(10 min at 25°C) before use. For a typical MEKC run, the capillary was 
rinsed for 3 min with triply deionized water and for 3 min 0.1M NaOH 
followed by 3 min rinse with separation buffer between injections. 
Each day, the capillary was reactivated by rinsing with 1M NaOH (10 
min) and triply deionized water (5 min). Unless otherwise noted, the 
applied voltage was -30 kV for cationic geminis and +30 kV for anionic 
SDS. The injection size was 50 mbar for 1 s. Peaks were identified by 
comparison of their individual UV-spectrum obtained from diode 
array detector or in case of confusion the individual solute was spiked 
into the mixture.

Preparation of separation buffers and solute solutions

The background electrolyte (BGE) was prepared by dissolving 
appropriate amounts of anhydrous NaH2PO4 and anhydrous Na2HPO4 
in deionized water to obtain 100 mM solution of each. A stock solution 
of 10 mM phosphate buffer with pH of 7.0 was prepared from the 
mixture of 42.3 mL NaH2PO4 and 57.7 mL Na2HPO4. When necessary, 
dilute HCl or NaOH was used for adjustment of pH. Run buffers were 
prepared by addition of various amount of surfactant to the BGE. The 
final concentration of the two geminis in run buffers was 6.0 mM each 
and that of SDS was 40.0 mM. All run buffers were filtered through 
a 0.45 μm syringe filter (Nalgene, Rochester, NY, USA) followed 
by degassing using ultrasonication for about one min before used 
in MEKC experiments. All stock solutions of the test solutes were 
prepared in methanol with a concentration of ca. 20 mg/mL each and 
diluted with 50:50 methanol:deionized water before injection. The final 
solute concentration ranged from ca. 0.2 to 0.5 mg/mL. 

Calculations

The retention factor values, k, of neutral solutes were calculated by 
use of the following equation [33]:






















−

−
=

psp

R
eof

eofR

t
tt

tt
k

1                                                                       (1)



Citation: Guzel M, Akbay C, Hoyos Y, Ahlstrom DH (2015) Estimation of Octanol-Water Partition Coefficient Using Cationic Gemini Surfactants by 
Micellar Electrokinetic Chromatography. J Chromatogr Sep Tech 6: 275. doi:10.4172/2157-7064.1000275.

Page 3 of 10

Volume 6 • Issue 4 • 1000275
J Chromatogr Sep Tech
ISSN: 2157-7064 JCGST, an open access journal 

Where tR, teof and tpsp are the migration times of solute, EOF, and the 
pseudostationary phase, respectively. Methanol and undecanophenone 
were used as teof and tpsp markers, respectively. Solute partition coefficient 
between bulk aqueous and micellar phase, Pmw, is directly related to k 
and the phase ratio, β (Equation 2) [4].

P k
mw =

β
                                                                                     

(2)

The β is defined as the ratio of the volume of micellar phase 
(Vmc) over that of aqueous phase (Vaq) and is related to the total 
concentration, Csurf, the partial specific molar volume, V , and the CMC 
of the surfactant (Equation 3) [33].
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The relationship between log k and log Pow may be expressed using 
the following functional form [34,35]:

 log Pow=alog k+b	 	                                                    (4)

Where a and b are constants that represent the slope and intercept 
of a linear calibration line.

Results and discussion
Characterization of surfactant systems

The physicochemical properties of the surfactants are listed in 
Table 1. As compared with SDS, a conventional surfactant with the 
same carbon chain length, geminis have lower CMC and phase ratio 
but higher PSV values. The PSV values (in mL·g-1) are converted to 
partial specific molar volumes, PMV, (in L·mol-1) using molar masses 
of the surfactants (PMV=PSV × MM × 0.001 L/mL).

Estimation of octanol-water partition coefficients using alkyl 
phenyl ketones calibration curves

Like most other separation techniques, electrophoretic technique 
requires very small amount of compound (which does not have 
to be pure), is fast compared to traditional methods used for Pow 
determination, and are relatively easy to automate. As presented in 
Equation (4), this method is indirect. In other words, it is based on the 
construction of a correlation between a retention property characteristic 
of the solute (e.g., log k) and the separation system for a training set of 
solutes with known log Pow values. Further measurements of log k in 
the separation system can be used to estimate log Pow values for other 
compounds of interest. 

Six APKs, i.e., acetophenone, propiophenone, butyrophenone, 

valerophenone, hexanophenone and heptanophenone, with known 
log Pow values were selected as training solutes to construct the 
calibration curve needed for estimation of log Pow values of 29 sample 
benzene derivatives. The sample benzene derivatives used in this 
study are characterized as non-hydrogen bond donors (NHBs; 10 
solutes), hydrogen bond acceptors (HBAs; 9 solutes), and hydrogen 
bond donors (HBDs; 10 solutes). The NHB solutes include alkyl- and 
halo-substituted benzenes and polycyclic aromatic hydrocarbons 
(e.g., naphthalene) and do not hold any hydrogen bonding functional 
groups. However, due to the aromatic ring(s), they are considered to 
be weak hydrogen bond acceptors. The HBAs possess only hydrogen 
bond accepting functional groups on the aromatic ring, whereas, 
the HBDs have both hydrogen bond donating and hydrogen bond 
accepting functional groups. Based on their pKa values, all test solutes 
are believed to be neutral under experimental conditions.

The six APK training solutes were analyzed and their log k values 
were determined under the given MEKC conditions. The log k values 
were then plotted against their literature log Pow values for construction 
a linear calibration graph (Figure 2). High correlations between 
log k and log Pow values for ketones were obtained with correlation 
coefficients (R2) greater than 0.99 in all surfactant systems. Linear 
regression analysis yielded the following equations: 

 G1 system: 	 log Pow=1.308 logk+2.587, R2=0.993	                (5)

 G2 system: 	 log Pow=1.419 logk+2.521, R2=0.995	                      (6)

 SDS system: log Pow=1.360 log k+1.953, R2=0.992     	                  (7)

Based on the correlation coefficients obtained, the gemini 
surfactants provided relatively better linear equations than SDS. 
The log k values for 29 test solutes were determined under the same 
MEKC conditions. The estimated log Pow values, or more precisely, 
the micelle-water partition coefficient, log Pmw, for benzene derivatives 
were then using the experimental log k values in Equations 5-7. The 
estimated log Pmw and the differences between estimated log Pmw and 
log Pow (∆) values are listed in Table 2. The best estimated log Pmw 
values were obtained for HBA solutes (including APKs) in all three 
surfactant systems (Figure 3), as indicated by their smaller ∆ values. 
The absolute mean ∆ values are 0.08, 0.06, and 0.18 log units for G1, 
G2 and SDS surfactant systems, respectively. In log Pow estimation 
studies, it is important to remember that the structures of the training 
set and samples must be similar [11]. Since the training ketones show 
hydrogen bond accepting characteristics, superior log Pmw estimates for 
HBA samples are not surprising. Furthermore, scientifically sound log 
Pmw values were determined for NHB solutes, which are weak hydrogen 
bond acceptors, due to the benzene ring(s) in their structures. The 

Physicochemical property
Pseudostationary phase

G1 G2 SDS
Chemical formula C36H70N2Br2 C32H66N2Br2 C12H25NaO4S

Molar mass (g mol-1) 690.76 638.69 288.38
CMCa* in pure water (mM) 0.82 0.71 8.0

CMCa* in 10 mM phosphate buffer (pH 7.0) (mM) 0.21 0.11 3.0
Partial specific volumeb* (mL·g-1) 0.91 1.05 0.85

Partial specific molar volumec (L·mol-1) 0.63 0.58 0.25
Phase ratiod 0.0037 0.0034 0.0092

*Values from reference [29].
aCritical micelle concentrations were determined in deionized water or 10 mM phosphate buffer (pH 7.0) by surface tensiometer at ambient temperature.
bPartial specific volume was determined in deionized water by density meter at 25°C. 
cPartial specific molar volume was calculated using PSV and molar mass of the surfactant (i.e., PMV=PSV × MM × 0.001 L/mL).
dPhase ratio was determined from Equation 3.

Table 1: Physicochemical properties of investigated surfactants.
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To minimize the errors due to the application of the training 
ketones, a new approach was applied to the estimation of log Pow 
values. As mentioned earlier, Pmw is directly related to k and the phase 
ratio (Equation 2). Retention factor, k, can be easily obtained in any 
chromatographic technique; however, the phase ratio cannot be 
measured accurately in conventional (e.g., liquid) chromatography 
due to the fact that the phase ratio varies from column to column and 
even with time for a given column [4]. Thus, the use of Equation 2 for 
estimation of log Pac in conventional chromatography is not feasible. 
However, since the pseudostationary phase remains constant under 
given experimental conditions and the physicochemical properties 
of the micellar phase do not depend on the capillary system and 
separation column, unlike conventional chromatographic methods, 
MEKC can be used for log Pac estimations using the phase ratio. Since 
k is directly related to solute partition between the bulk aqueous buffer 
solution and the micellar phase, Equation 2 is applicable in MEKC. 
As stated in Equation 3, the phase ratio is related to total surfactant 
concentration, critical micelle concentration, and partial specific molar 
volume of the surfactant. Since it is a characteristic of the micellar 
phase, the phase ratio remains constant at a given MEKC conditions. 
Unlike HPLC, it does not vary from capillary to capillary or with time. 
Before using Equation 2 for log Pow estimations, the phase ratio was 
determined first by using the total surfactant concentrations (6.0 × 10-3 
mol·L-1 geminis and 4.0 × 10-2 mol·L-1 SDS), CMC values of surfactants 
under experimental conditions (2.1 × 10-4 mol·L-1 G1, 1.1 × 10-4 mol·L-1 
G2 and 3.0 × 10-3 mol·L-1 SDS) and partial specific molar volume values 
listed in Table 1. 

The estimated log Pmw obtained from the phase ratio equation 
and the differences between estimated log Pmw and log Pow (∆) values 
are listed in Table 4. As seen in Figure 5, the estimated log Pmw values 
are very comparable with those obtained from alkyl phenyl ketones 
calibration curves (Figure 3). The absolute mean ∆ values for HBA 
solutes (0.10 log units for both G1 and G2 systems and 0.17 log units 
for SDS) show the feasibility of the phase ratio approach for log Pmc 
estimations. As compared with calibration curve approach, slightly 
poorer estimates were obtained for NHB (∆ values are 0.35, 0.38, and 
0.70 log units for G1, G2 and SDS, respectively) and APK solutes. It 
is worth mentioning that significant improvements were observed 
for HBD solutes. Similar to the calibration curves, estimated log Pmw 
values obtained from phase ratio calculations are plotted against the 

average ∆ values for NHB solutes are 0.19, 0.27, and 0.67 log units 
in G1, G2 and SDS surfactant systems, respectively. Conversely, the 
poorest estimates were obtained for HBD solutes, especially in gemini 
surfactant systems, as can be seen from relatively higher average ∆ 
values. This signifies that when structurally unrelated compounds are 
correlated via Equation (4), incorrect estimates of log Pow values are 
obtained. This is because separation mechanisms that influence log 
k are not usually same as those influence log Pow [11]. These results 
demonstrate G1 and G2 gemini surfactant systems are suitable for 
the high throughput estimation of log Pow of weakly basic (i.e., HBA) 
and, to some extent, nonpolar (i.e., NHB) compounds, but not acidic 
compounds; while SDS system is suitable for log Pow estimation of both 
HBA and HBD solutes.

Estimated log Pmw values versus literature log Pow values plots show 
apparent differences between the two values (Figure 4). The divergence 
is due to the fact that the nature of the interactions between solute-
octanol and solute-surfactant systems is different. As seen in Figure 4, 
three distinct congeneric lines can be observed for sample solutes using 
the three pseudostationary phases. This shows that the factors that 
influence retention in G1, G2 and SDS surfactant systems are notably 
different from those that influence octanol-water partitioning. Figure 
4 also suggests that nonpolar NHB solutes have stronger interaction 
with octanol whereas polar HBD solutes tend to interact more with 
G1 and G2 surfactants. In addition, octanol and geminis are found to 
have similar affinities for polar HBA solutes while SDS has relatively 
higher affinity for the same solutes. It is also important to note that the 
slope of the regression line for HBA solutes is close to unity in all three 
surfactant systems, suggesting that these surfactants and octanol-water 
systems possess very similar partitioning mechanisms for these solutes. 
Also, unlike G1 and G2 geminis, SDS and octanol-water systems have 
similar partitioning mechanism for HBD solutes.

To better understand the origins of the congeneric behavior for 
surfactant systems studied here, it is helpful to compare the linear 
solvation energies (LSER) results discussed in our previous report 
[29]. It has been shown in the literature that polarizability and volume 
of solute enhance the log Pow, while dipolarity and hydrogen bond 
accepting ability of solute inhibit it. The solute hydrogen bond donating 
ability, however, has been found to have no significant influence on log 
Pow values [16,36,37]. The geminis, SDS and octanol-water systems show 
large positive values, indicating that the cohesive energy density and 
dispersion interaction term has a great amount of influence in MEKC 
retention. The magnitude of coefficients v suggests that hydrophobic 
solutes prefer to interact more with octanol and SDS systems. It is 
suggested by Abraham et al. that the relative values of coefficients are 
more descriptive than their absolute values [37]. Similar ratios indicate 
similar interactions between solutes and pseudostationary phase (or 
octanol phase). Since hydrophobic interaction has the major influence 
on partitioning, the e, s, a, and b coefficients have been normalized 
against v coefficient for G1, G2 and SDS systems in this study (Table 
3). For comparison, normalized values for octanol-water system and 
the differences between the ratios were also included. The results in 
Table 3 show that the b/v ratios for G1 and G2 as well as e/v for G2 are 
practically similar to that for octanol-water system and the remaining 
ratios are somehow different. The major difference is in a/v ratios of 
G1 (0.33) and G2 (0.35) as well as in b/v ratio of SDS (0.38) seem to be 
the sources of the observed congeneric behavior and different lines in 
Figure 4. 

Estimation of octanol-water partition coefficients using phase 
ratios
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Figure 1: Chemical structures of 1,1'-didodecyl-1,1'-but-2-yne-1,4-diyl-bis-
pyrrolidinium dibromide (G1), N,N'-didodecyl-N,N,N',N'-tetramethyl-N,N'-but-2-
ynediyl-di-ammonium dibromide (G2), and sodium dodecyl sulfate (SDS).
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Figure 2: Plots of log Pow values of 6 alkyl phenyl ketones versus their log k 
values using gemini (G1, G2) and SDS surfactant systems. MEKC separation 
conditions: 6.0 mM G1, 6 mM G2, 40.0 mM SDS in 10 mM phosphate buffer 
(pH 7.0); pressure injection, 50 mbar for 1 s; applied voltage, -30 kV for G1 
and G2 and +30 kV for SDS; temperature, 25°C; UV detection at 254 nm. The 
regression equation for alkyl phenyl ketones in each pseudostationary phase is 
given in text.

 

Figure 3: The difference between literature log Pow values and estimated log 
Pmw values obtained from calibration curves using A) G1, B) G2, and C) SDS 
surfactant systems. Small differences indicate better estimates of log Pmw 
values.

 

literature log Pow values (Figure 6). Based on the correlation coefficient 
values, the estimated log Pmw results were found to be slightly better 
than the previous values. These preliminary estimates can be further 
improved by careful determination of phase ratios and partial specific 
molar volumes. 

Conclusion
Two cationic gemini surfactants, 1,1'-didodecyl-1,1'-but-2-yne-1,4-

diyl-bis-pyrrolidinium dibromide (G1) and N,N'-didodecyl-N,N,N',N'-
tetramethyl-N,N'-but-2-ynediyl-di-ammonium dibromide (G2) were 
used as pseudostationary phases in MEKC for Pmw determinations. 
Sodium dodecyl sulfate (SDS) was also used for comparison. Both 
gemini surfactants contain 2-butyne spacer with twelve hydrocarbon 
chain length. However, G1 has pyrrolidinium but G2 has dimethyl 
ammonium head groups. MEKC was successfully applied as a simple 
and rapid approach for determining log Pow using two novel gemini 
surfactants and SDS. Two approaches were applied for determination 
of log Pow values: calibration curve and phase ratio. In calibration curve 
approach, the log k values of six alkyl phenyl ketones were plotted 
against their literature log Pow values for constructing linear calibration 
curve. Log Pow values of 29 sample benzene derivatives were then 
determined from the slope and the y-intercept of the calibration line. 
In the phase ratio approach, total surfactant concentration, critical 
micelle concentration, partial specific molar volume and experimental 
log k values were utilized for estimation of the log Pow values. Both 
approaches were found to provide very comparable results. In general, 

Figure 4: Plots of log Pow values versus estimated log Pmw values determined 
from calibration curves using A) G1, B) G2, and C) SDS surfactant systems. 
MEKC separation conditions are the same as Figure 2. Dashed lines 
represent the trend line for NHB, HBA and HBD subset solutes and solid line 
represents the trend line for all 
sets together. The regression equations for each subset and complete 
solutes are provided on the right side of the plots.
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Figure 5: The difference between literature log Pow values and estimated log Pmw values obtained from phase ratio approach using A) G1, B) G2, and C) SDS 
surfactant systems. Small differences indicate better estimated log Pmw values.
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Figure 6: Plots of log Pow values versus estimated log Pmw values determined from phase ratio approach using A) G1, B) G2, and C) SDS surfactant systems. MEKC 
separation conditions are the same as Figure 2. Dashed lines represent the trendline for NHB, HBA and HBD subset solutes and solid line represents the trendline for 
all sets together. The regression equations for each subset and complete solutes are provided on the right side of the plots.
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G1 G2 SDS
No Analytes log Pow

a log Pmw ∆b log Pmw ∆ log Pmw ∆
NHB solutes

1 Benzene 2.13 1.88 0.25 1.74 0.39 1.34 0.79
2 Toluene 2.69 2.42 0.27 2.31 0.38 1.94 0.75
3 Chlorobenzene 2.84 2.67 0.17 2.55 0.29 2.10 0.74
4 Bromobenzene 2.99 2.94 0.05 2.78 0.21 2.30 0.69
5 Ethylbenzene 3.15 2.90 0.25 2.81 0.34 2.45 0.70
6 p-Xylene 3.15 2.94 0.21 2.85 0.30 2.51 0.64
7 4-Chlorotoluene 3.33 3.19 0.14 3.11 0.22 2.69 0.64
8 Iodobenzene 3.25 3.29 0.04 3.15 0.10 2.63 0.62
9 Propylbenzene 3.68 3.46 0.22 3.38 0.30 3.05 0.63

10 Naphthalene 3.35 3.64 -0.29 3.53 -0.18 2.87 0.48
Absolute mean ∆c 0.19   0.27   0.67

HBA solutes
11 Benzonitrile 1.56 1.62 -0.06 1.59 -0.03 1.42 0.14
12 Acetophenone 1.58 1.68 -0.10 1.66 -0.08 1.68 -0.10
13 Nitrobenzene 1.85 1.97 -0.12 1.92 -0.07 1.53 0.32
14 Methyl benzoate 2.16 2.13 0.03 2.13 0.03 2.07 0.09
15 Propiophenone 2.20 2.16 0.04 2.13 0.07 2.10 0.10
16 4-Chloroacetophenone 2.35 2.46 -0.11 2.45 -0.10 2.38 -0.03
17 4-Nitrotoluene 2.45 2.50 -0.05 2.50 -0.05 2.13 0.32
18 Ethyl benzoate 2.64 2.60 0.04 2.63 0.01 2.56 0.08
19 4-Chloroanisole 2.82 2.96 -0.14 2.87 -0.05 2.45 0.37

Absolute mean ∆c   0.08   0.06   0.18
HBD solutes

20 Benzyl alcohol 1.08 1.42 -0.34 1.38 -0.30 1.03 0.05
21 Phenol 1.49 2.31 -0.82 2.32 -0.83 0.98 0.51
22 3-Methylphenol 1.96 2.55 -0.59 2.56 -0.60 1.19 0.77
23 4-Chloroaniline 1.83 2.79 -0.96 2.62 -0.79 1.82 0.01
24 4-Flourophenol 1.77 2.81 -1.04 2.85 -1.08 1.54 0.23
25 4-Ethylphenol 2.58 3.29 -0.71 3.35 -0.77 2.11 0.47
26 4-Chlorophenol 2.35 3.43 -1.08 3.47 -1.12 1.90 0.45
27 3-Chlorophenol 2.49 3.53 -1.04 3.59 -1.10 1.88 0.61
28 4-Bromophenol 2.59 3.71 -1.12 3.73 -1.14 2.12 0.47
29 3-Bromophenol 2.63 3.80 -1.17 3.85 -1.22 2.09 0.54

Absolute mean ∆c 0.89   0.89   0.41
Alkyl phenyl ketones

30 Butyrophenone 2.73 2.64 0.09 2.65 0.08 2.64 0.09
31 Valerophenone 3.26 3.17 0.09 3.20 -0.06 3.18 0.08
32 Hexanophenone 3.79 3.77 0.02 3.79 0.00 3.77 0.02
33 Heptanophenone 4.32 4.42 -0.10 4.39 -0.07 4.42 -0.10

Absolute mean ∆c 0.07 0.06 0.08
Overall absolute mean ∆d 0.31 0.32 0.33

aLiterature values. From reference [16].
b∆=log Pow(Lit)-log Pmw(MEKC)
cAbsolute mean of differences for each subset solutes.
dAbsolute mean of differences for all solutes.

Table 2: Estimated log Pmw values obtained from calibration curves using six alkyl phenyl ketones as training solutes.

Surfactant system
System constant ratios

v e/v s/v a/v b/v
1,1'-didodecyl-1,1'-but-2-yne-1,4-diyl-bis-pyrrolidinium dibromide (G1) 3.10 0.19 -0.07 0.35 -0.97
N,N'-didodecyl-N,N,N',N'-tetramethyl-N,N'-but-2-ynediyl-di-ammonium dibromide (G2) 3.05 0.13 -0.03 0.37 -0.92
Sodium dodecyl sulfate (SDS) 3.16 0.04 0.00 -0.06 -0.56
Octanol–water partition coefficient (log Pow) 4.07 0.11 -0.22 0.02 -0.94
Differences between ratios
G1 and log Pow 0.97 0.08 0.15 0.33 0.03
G2 and log Pow 1.02 0.02 0.19 0.35 0.02
SDS and log Pow 0.91 0.15 0.22 0.08 0.38

*LSER coefficients obtained from geminis and SDS are taken from reference [29]. Coefficients for octanol-water system were calculated using MS Excel (n=29). 
Table 3: LSER coefficient ratios for surfactant systems and octanol-water system*.
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G1 G2 SDS
No Analytes log Pow

a log Pmw ∆b log Pmw ∆ log Pmw ∆
NHB solutes
1 Benzene 2.13 1.91 0.22 1.91 0.22 1.59 0.54
2 Toluene 2.69 2.32 0.37 2.32 0.37 2.03 0.66
3 Chlorobenzene 2.84 2.51 0.33 2.49 0.35 2.14 0.70
4 Bromobenzene 2.99 2.71 0.28 2.65 0.34 2.29 0.70
5 Ethylbenzene 3.15 2.69 0.46 2.67 0.48 2.40 0.75
6 p-Xylene 3.15 2.71 0.44 2.70 0.45 2.45 0.70
7 4-Chlorotoluene 3.33 2.90 0.43 2.88 0.45 2.58 0.75
8 Iodobenzene 3.25 2.98 0.27 2.91 0.34 2.53 0.72
9 Propylbenzene 3.68 3.11 0.57 3.07 0.61 2.84 0.84
10 Naphthalene 3.35 3.24 0.11 3.17 0.18 2.71 0.64
Absolute mean ∆c 0.35    0.38  0.70
HBA solutes
11 Benzonitrile 1.56 1.71 -0.15 1.81 -0.25 1.65 -0.09
12 Acetophenone 1.58 1.76 -0.18 1.86 -0.28 1.83 -0.25
13 Nitrobenzene 1.85 1.98 -0.13 2.04 -0.19 1.72 0.13
14 Methyl benzoate 2.16 2.10 0.06 2.19 -0.03 2.12 0.04
15 Propiophenone 2.20 2.12 0.08 2.19 0.01 2.14 0.06
16 4-Chloroacetophenone 2.35 2.35 0.00 2.41 -0.06 2.35 0.00
17 4-Nitrotoluene 2.45 2.38 0.07 2.45 0.00 2.17 0.28
18 Ethyl benzoate 2.64 2.46 0.18 2.54 0.10 2.48 0.16
19 4-Chloroanisole 2.82 2.73 0.09 2.71 0.11 2.40 0.42
Absolute mean ∆c    0.10  0.10  0.17
HBD solutes
20 Benzyl alcohol 1.08 1.56 -0.48 1.66 -0.58 1.36 -0.28
21 Phenol 1.49 2.24 -0.75 2.32 -0.83 1.32 -0.17
22 3-Methylphenol 1.96 2.42 -0.46 2.49 -0.53 1.48 -0.48
23 4-Chloroaniline 1.83 2.60 -0.77 2.53 -0.70 1.94 -0.11
24 4-Flourophenol 1.77 2.61 -0.84 2.69 -0.92 1.73 0.04
25 4-Ethylphenol 2.58 2.98 -0.40 3.05 -0.47 2.15 0.43
26 4-Chlorophenol 2.35 3.08 -0.73 3.13 -0.78 2.00 0.35
27 3-Chlorophenol 2.49 3.16 -0.67 3.21 -0.72 1.98 0.51
28 4-Bromophenol 2.59 3.29 -0.70 3.31 -0.72 2.16 0.43
29 3-Bromophenol 2.63 3.37 -0.74 3.40 -0.77 2.14 0.49
Absolute mean ∆c 0.65 0.70  0.33
Alkyl phenyl ketones
30 Butyrophenone 2.73 2.49 -0.24 2.56 -0.17 2.54 -0.19
31 Valerophenone 3.26 2.89 -0.37 2.94 -0.32 2.94 -0.32
32 Hexanophenone 3.79 3.34 -0.45 3.36 -0.43 3.37 -0.42
33 Heptanophenone 4.32 3.83 -0.49 3.78 -0.54 3.85 -0.47
Absolute mean ∆c 0.30 0.30 0.28
Overall absolute mean ∆d 0.35 0.37 0.37

aLiterature values. From reference [16].
b∆=log Pow(Lit)- log Pmw(MEKC)
cAbsolute mean of differences for each subset solutes.
dAbsolute mean of differences for all solutes.

Table 4: Estimated log Pmw values obtained from phase ratios.

gemini surfactants provided better estimated log Pow values for NHB 
and HBA solutes while SDS gave better values for HBD solutes. 
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