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Introduction

Adverse fetal and early-life conditions that disturb normal brain 
development are associated with neuropsychiatric disorders, with 
emergent epigenetic changes [1,2] determining life-long susceptibility 
to chronic disease states [3,4]. Several major aspects influence the 
eventual individual developmental trajectories that possess an essential 
determinant modulating effect upon outcome of future intervention: 

1. The type of agent that interferes with brain development,
whether chemical, immune system-activating, or conspicuous
through absence,

2. The phase of brain development at which the agent exerts dis-
ruption, i.e., prenatal-gestational, postnatal-infancy, adoles-
cent, or adult lifespan,

3. The age of expression of structural-functional abnormalities
with emotional, cognitive, and everyday behavior domains,
and

4. The particular pharmacogenomics-pharmacogenetics profiles
mediating responses to drug therapies [5] (Table 1).
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Abstract
Background: Mood disorders are expressed in many heterogeneous forms, varying from anxiety to severe 

major clinical depression. The disorders are expressed in individual variety through manifestations governed by 
co-morbidities, symptom frequency, severity, and duration, and the effects of genes on phenotypes. The underlying 
etiologies of mood disorders consist of complex interactive operations of genetic and environmental factors. The 
notion of endophenotypes, which encompasses the markers of several underlying liabilities to the disorders, may 
facilitate efforts to detect and define, through staging, the genetic risks inherent to the extreme complexity of disease 
state.

Aims: This review evaluates the role of genetic biomarkers in assisting clinical diagnosis, identification of risk 
factors, and treatment of mood disorders. 

Methods: Through a systematic assessment of studies investigating the epigenetic basis for mood disorders, 
the present review examines the interaction of genes and environment underlying the pathophysiology of these 
disorders.

Results: The majority of research findings suggest that the notion of endophenotypes, which encompasses the 
markers of several underlying liabilities to the disorders, may facilitate efforts to detect and define, through staging, 
the genetic risks inherent to the extreme complexity of the disease states. Several strategies under development 
and refinement show the propensity for derivation of essential elements in the etiopathogenesis of the disorders 
affecting drug-efficacy, drug metabolism, and drug adverse effects, e.g., with regard to selective serotonin reuptake 
inhibitors. These include: transporter gene expression and genes encoding receptor systems, hypothalamic-pituitary-
adrenal axis factors, neurotrophic factors, and inflammatory factors affecting neuroimmune function. Nevertheless, 
procedural considerations of pharmacogenetics presume the parallel investment of policies and regulations to 
withstand eventual attempts at misuse, thereby ensuring patient integrity.

Conclusions: Identification of genetic biomarkers facilitates choice of treatment, prediction of response, and 
prognosis of outcome over a wide spectrum of symptoms associated with affective states, thereby optimizing 
clinical practice procedures. Epigenetic regulation of primary brain signaling, e.g., serotonin and hypothalamic-
pituitary-adrenal function, and factors governing their metabolism are necessary considerations. The participation of 
neurotrophic factors remains indispensable for neurogenesis, survival, and functional maintenance of brain systems. 
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Among the mood disorders, adolescent depression is considered 
relatively common with prevalence ranging from 5% [6] to about 
14-15% in the United States of America [7], and may predict adult 
depression [8]. Female sufferers from the disorder remain almost twice 
as many as male sufferers with the relative gender proportions evident 
already during adolescence [9]. Complex traits such as susceptibility 
to diseases are determined in part by variants at multiple genetic loci. 
Genome-wide association studies can identify these loci, but most 
phenotype-associated variants lie distal to protein-coding regions and 
are likely involved in regulating gene expression [10]. Quality-of-life 
and psychological health are increasingly found to be intimately related 
[11]. A study of adolescents’ personality and intentional happiness-
increasing strategies as a function of temperament and character, 
as phenotypes [12], showed that the harm-avoidance and self-
directedness dimensions predicted subjective well-being. A mediating 
factor was a strategy endorsing ambivalent effort to both avoidance and 
mobilization of negative thoughts and feelings. The dynamic nature of 
epigenetic mechanisms holds implications not only for psychological 
health and well-being but also eventual therapeutic interventions 
focused upon mood disorders [13,14]. 

The aim of the present review was to examine the interactions 
of genes and environment in contributing to the pathophysiology of 
mood disorders. This was performed through a systematic review of 
articles and abstracts (where articles were not available) identified 
through PubMedicus. Relevant key words of interest were epigenetics, 
genes, endophenotypes, SNPs, staging, serotonin, glucocorticoid, 
BDNF, drug therapy, and mood disorders.

Mood Disorders, Genes, Pathophysiology and Environment
Every-day mood is influenced by circadian rhythms and stress 

with risk for disorder dependent upon a combination of factors, such 
as predisposition and vulnerability as defined by genetic parameters, 
early life events, and consequences of later life events. Life-event coping 
is linked to biological stress responses that vary from person to person 
according to set-points determined genetically and epigenetically 
during juvenile years and involve the sympathetic nervous system 
and the hypothalamic-pituitary-adrenal (HPA) axis. Both flexibility 
in coping and a chronic cortisol exposure in brain regions regulating 

affect and cognition are relevant to expressions of mood disorders. 
Additionally, gender differences in mood disorders are influenced by 
several personal and environmental factors, including physiological 
changes experienced during puberty, experienced-shift in social roles, 
affiliations and expectations regarding peers and adults, and transient 
affective status that may provide negative/stressful experiences [15-17]. 
Edwards et al. [18] have shown that the magnitude of environmental 
influences upon depressive symptoms during adolescence changes 
as a function of pubertal development, the timing of which differs 
across gender. Age may contribute a modulating influence on mood 
disorder: Among older women, Gillespie et al. [19] obtained evidence 
that both depression and anxiety interacted reciprocally with disrupted 
sleep, whereas among younger women both depression and anxiety 
appeared to have a causal impact on sleep. Finally, Edwards et al. 
[20,21] suggested that mood disorders genetically and environmentally 
correlated across adolescence. Brain-body epigenetic machinery poses 
a highly complicated and intertwined arrangement of predisposing 
and randomly-occurring factors, thereby emphasizing the necessity 
for further refined studies to disentangle brain-region and cell-type 
specific epigenetic codes under specific environmental conditions [22].

The consequences of multiple gene interactions with environment 
and each other through complex mechanisms, such as genetic 
heterogeneity and polygenicity, in combination with phenotypic 
variation, underscores inestimable individual differences in symptom 
severity, frequency, durability, manifestation, and co-morbidity in 
mood disorders [23]. Moreover, an important influence on outcome for 
future intervention is the pharmacogenomic-pharmacogenetic profile 
mediating responses to drug therapies. Table 1 provides examples of the 
pharmacogenetics of certain genes associated with the pathophysiology 
or efficacy, metabolism, or availability of pharmacotherapeutic agents 
in mood disorders.

Developmental plasticity, from preconception to early childhood, 
involving epigenetic responses to environmental changes exerted 
during life-history phase transitions, modulates brain development 
and cell- and tissue-specific gene expression, and may be transmitted 
transgenerationally [24]. Several genetic polymorphisms influencing 
treatment outcome, and environmental exposures in early life, such 
as childhood maltreatment, exert long-lasting influences that are 

Site of Action Gene Promoter Region Anomaly

Serotonin transporter SLC6A4 5-HTTPLR SSRI-efficacy

P-Glycoprotein ABCB1 Upstream/downstream promoters ABC-transporter1

CRH-receptor of HPA axis2 CRHR1 Luciferase reporter plasmid Suicidality

5-HT2A receptor HTR2A -1438G/A (rs6311) Overdensity

Glucocorticoid receptor NR3C1 Luciferase reporter plasmid Stress adaptation

BDNF3 neurotrophin BDNF Multiple promoters AD-enhanced plasticity

AD-drug action MAGI2, DTWD1. WDFY4, and 
CHL1 Multiple promoters Symptom-exacerbation

1Transportation of a wide variety of substrates across extra- and intracellular membranes
2Corticotrophin-releasing hormone (CRH) of the hypothalamic-pituitary-adrenal axis (HPA)
3Brain derived neurotrophic factor (BDNF)

Table 1: The pharmacogenetics of certain genes associated with the pathophysiology or efficacy, metabolism, or availability of pharmacotherapeutic agents in mood 
disorders.
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moderated by inherited genetic variation and mediated through 
stable epigenetic mechanisms such as tissue- and gene-specific DNA 
methylation [25]. Epigenetic mechanisms reflect the sensitivity 
and responsiveness of the brain and nervous system to variations in 
environmental circumstance, thereby modulating gene expression to 
the biomarkers and phenotypical outcomes that describe individual 
profiles [26,27]. Most epigenetic alterations are independent of genetic 
alterations yet interactions on specific genes, signaling pathways, and 
within chromosomal domains, in combination with genomic and 
epigenomic profiling manifest avenues for further comprehension of 
brain disorders. Symptom-profiles and disease course, etiopathological 
heterogeneity, and etiopathogenesis may be clarified by a dimensional 
approach to pathophysiology through the distinction of endophenotypes 
and concomitants of disease progression. Several lifestyle factors, 
among which are diet, obesity, physical activity, tobacco smoking and 
second hand smoke, alcohol consumption, drug abuse, environmental 
pollutants, psychological stress, and working on night shifts, can 
modify epigenetic patterns. To achieve an understanding of the mood 
disorders, genomic approaches must be complemented by a variety 
of strategies, including phenomics, epigenomics, pharmacogenomics, 
and neurobiology, as well as the study of environmental factors. 

Mood disorders are an associated group of diagnoses in the 
Diagnostic and Statistical Manual of Mental Disorders (DSM IV TR) 
classification system, wherein a disturbance in the person’s mood, 
or emotional or affective status, is considered to present the main 
underlying feature [28]. Both unipolar depression and bipolar disorder 
present clinically severe conditions characterized by recurring episodes 
of depressive symptom categories, and in the latter periods of mania, 
with a life-long lasting prevalence [29-31]. It has been suggested that 
whereas mood refers to the underlying or longitudinal emotional 
state, affect pertains to the external/visible expression of the individual 
observed by others [32]. Unipolar depression and bipolar disorder, of 
the depressive disorder spectrum of mood disorders, present severe 
illnesses and are leading causes of disability and suffering among a 
large population of afflicted individuals [33]. Mood disorders describe 
less severe forms of depressive disorders, yet although less extreme, 
dysthymic disorder induces long-lasting moodiness expressed 
through low, dark moods. Dysthymic disorder may occur by itself or 
in co-morbid relation to other psychiatric, e.g., drug abuse, or mood 
disorders [34-36]. Both anxiety and depression are markedly co-morbid 
and present strong relationships in continuous scale formats [37-39]. 
These disorders are associated with marked negative effects upon work 
relationships and performance, attendance, daily functioning, and 
care-givers situations, with overall increases in costs accumulating 
from loss-of-productivity, etc. [40-42]. Epigenetic mechanisms altering 
the activities of genes mediated through early life experiences leave 
indelible chemical marks within brain tissue thereby influencing both 
physical and neuropsychiatric health [43]. 

“Anxiety-sensitivity,” a lowered threshold for expression of physical 
and emotional anxiety symptoms, is a risk factor for mood disorders in 
children and adults [44,45], with multiple dimensions [46,47]. Factor 
analysis from a large study of adolescents has implicated a hierarchical 
structure for anxiety-sensitivity; all of its dimensions are derived from 
a higher-order, general anxiety sensitivity factor. The hierarchical 
model consists of three dimensions: Physical, Social, and Mental 
anxiety-related incapacitation concerns [48]. Other observations 
have confirmed the anxiety-sensitivity model [49]. Zinbarg et al. 
[50] have provided results demonstrating that anxiety-sensitivity-
Physical Concerns is the only one of the three anxiety-sensitivity 

group factors that contributes to relations with fear responses, whereas 
anxiety-sensitivity-Mental Incapacitation Concerns produced a 
stronger positive linear association with depressed mood than did 
anxiety-sensitivity-Physical Concerns. In a self-report study of three 
test-time points from adolescence to young adulthood with 2651 
participants from the G1219 twin study, Brown et al. [51] also obtained 
a three-factor model that depicted the Physical, Social, and Mental 
anxiety-related incapacitation concerns. However, the findings were 
characterized by higher levels of interpretability and parsimony than 
previously reported. The researchers found that multivariate genetic 
analyses supported a hierarchical structure with general genetic and 
non-shared environmental influences.

In summary, mood disorders present as disturbances in emotional 
feelings or affective states. A variety of genetic, pathophysiological, 
and environmental factors play important roles in determining 
the risk factors for mood disorders, including early childhood 
experiences. Moreover, treatment outcome is related to particular 
pharmacogenomics-pharmacogenetics profiles mediating responses to 
drug therapies.

Serotonergic Regulation
Epigenetic mechanisms regulated the effects of early life stress 

in Rhesus macaques upon serotonin transporter (5-HTT). In his 
nonhuman primate model, Kinnally et al. [52] showed that 5-HTT 
cytosine-phosphate-guanosine methylation was an important regulator 
of 5-HTT expression in early life contributing to risk for mood 
disorders that were observed in “high-risk” serotonin transport gene 
polymorphism 5-HTTLPR carriers. The identification of the particular 
relationships between genotype and drug response, including both 
the therapeutic effect and side effect profile, will influence the medical 
practice of disorder-intervention to a degree as yet impossible to assess. 
Despite the huge application of antidepressant (AD) compounds to 
afflicted individuals, only 60% of those treated with these drugs show 
sufficient response to medication, and adverse effects are common 
while numerous pharmacogenetic studies point to the involvement of 
genetic factors. Studying the effects of corticotrophin-releasing factor 
(CRF) overexpression as a basis for serotonergic-HPA axis interaction, 
Flandreau et al. [53] observed that amygdala CRF overexpression 
increased anxiety-like behavior in the defensive withdrawal test of 
rats at week eight, which was only partially prevented by the selective 
serotonin reuptake inhibitor (SSRI) citalopram. They found that 
in both CRF-overexpressing rats and control groups, citalopram 
decreased hippocampal CRF expression with concomitant increases 
in hypothalamic and hippocampal expression of the glucocorticoid 
receptor. The gene expression altered was considered to be associated 
with a significant decrease in HPA axis reactivity in rats treated with 
citalopram. Furthermore, citalopram increased the rate of weight gain 
only in rats over expressing CRF. Taken together, it may be argued 
that chronic AD treatment with SSRIs presented an epigenetic factor 
affecting outcomes as a function of CRF over expression.

The therapeutic response to ADs is marked by inter-individual 
variability, and a large proportion of patients with major depressive 
disorder do not response adequately to the first AD drug prescribed 
[54]. Therefore, identification of genetic biomarkers that predict AD 
treatment response likely would improve current clinical practice. 
Studies on AD treatment response have focused on both aspects of 
pharmacogenetics research, i.e., identifying new candidate genes that 
may predict better treatment response for patients [55], and taking 
into account the situation that AD drug response aggregates in families 

http://en.wikipedia.org/wiki/Diagnostic_and_Statistical_Manual_of_Mental_Disorders
http://en.wikipedia.org/wiki/Mood_(psychology)
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[56]. Narasimhan and Lohoff [57] have reviewed recent findings on 
the pharmacogenetics of AD drugs and future clinical applications. The 
individualization and optimization of treatment decisions for unipolar 
depression couched in terms of “the right drug/treatment for the 
right patient” remains restricted, in part because sufficiently powerful 
clinical or biological predictors are missing [58]. The relevance of 
personalized medicine is illustrated graphically by evidence emerging 
from studies of the fate of serotonin released into the synaptic cleft. 
That is, dysfunctions of serotonergic neurotransmission are involved 
in the physiopathogenesis of mood disorders. Serotonin concentration 
in the synaptic cleft is essentially regulated by the serotonin transporter 
(5-HTT), and in this regard, a length polymorphism repeat in the 
5-HTT promoter region, termed 5-HTTLPR, has been linked to the 
disorder. From a German genome-wide association data set, Haenisch 
et al. [59] detected a significant association between the TA haplotype 
(tagging the S-allele of the 5-HTTLPR) and mood disorder, and this 
is consistent with previous findings of an association between the 
5-HTTLPR S-allele and mood disorder [60]. 

Contributory factors to the higher prevalence during adolescence 
of depressive symptoms and mood disorders among girls compared to 
boys are age-at-onset and onset of puberty [61-63]. Edwards et al. [18] 
have showed that that pubertal development moderates environmental 
influences on depressive symptoms. At 14 years of age, more developed 
girls, relative to their less developed peers, were more likely to have 
depressive symptoms, but this decreased in influence by age 17. The 
effects observed in boys were similar, but are delayed, paralleling the 
delay in pubertal development in boys compared to girls, and thereby 
supporting the premise that environmental influences on depressive 
symptoms during adolescence changes as a function of pubertal 
development. Joinson et al. [64] found that depressive symptoms 
among girls during mid-adolescence were more strongly influenced 
by breast stage than timing of menarche. This implies that the female 
rise in depression during adolescence may be due to increasing levels 
of estrogen, and may account for the gender difference in rates of 
depression at this stage. Nilsen et al. [65] performed a systematic review 
of 32 anxiety studies and 13 depression studies that met predefined 
methodological criteria comprising client demographic characteristics 
(age, gender, ethnicity, IQ) and clinical factors (duration, type of 
diagnosis, pre-treatment severity, co-morbidity). Most of the studies 
showed non-significant associations between demographic factors 
(gender and age) with treatment outcome for both the anxiety and 
the depression treatment trials. The anxiety studies showed mainly 
the lack of demographic or clinical factors predicting or moderating 
treatment outcome. In the case of depression studies, the findings 
implied that baseline symptom severity and comorbid anxiety 
might impact treatment response. Gender differences in response to 
intervention other than medication may be revealing: Gender and 
crime victimization significantly modified treatment effects on distress 
and a behavioral-problems index [66]. Adolescent girls in families 
without crime victimization benefited from moving-to-opportunity 
intervention for all outcomes, distress, and major lifetime depressive 
disorder. Adolescent boys in intervention families experiencing crime 
victimization expressed worse distress, more behavior problems, and 
somewhat higher major lifetime depressive disorder versus controls. 
Finally, a community-based longitudinal sample of 309 adolescents 
reported depressive symptoms and negative life events at ages 11, 13, 
and 15. In a study by Priess-Groben and Hyde [67], 5-HTTLPR and 
MAOA-uVNTR genotypes were ascertained via buccal swabs. The 
significant four-way interaction between 5-HTTLPR, MAOA-uVNTR, 
NLE at age 13, and gender predicted depressive symptoms at 15 years 

of age whereby girls were most likely to exhibit elevated depressive 
symptoms when experiencing negative life events if associated with 
low-expression MAOA-uVNTR alleles and short 5-HTTLPR alleles. 
For boys, low-expression MAOA-uVNTR alleles but long 5-HTTLPR 
alleles were implicated. Taken together, the existing observations 
of pre-treatment patient variables as predictors and moderators of 
anxiety and depression treatment outcome provided little consistent 
knowledge concerning for what type of patients and under what 
conditions treatments work.

Keers [68] has suggested that gene-environment interaction studies 
may provide an explanation for the above discrepancies regarding the 
5-HTTLPR locus and the actions of SSRIs, particularly involving the 
interaction between stressors and 5-HTTLPR. Gene-by-environment 
interaction effects were observed for genes encoding components of 
the hypothalamic-pituitary-adrenal axis. The T allele of rs1360780 
in FKBP5 increased the risk of posttraumatic stress disorder (PTSD) 
following childhood maltreatment and rs10402 (a single-nucleotide 
polymorphism in the gene encoding CRHR1) and moderated the 
effects of this maltreatment on several behavioral phenotypes, such 
as alcoholism, neuroticism, and depression. This finding underlines 
the possibility that several polymorphisms moderate the effects of 
environmental adversity on the development of depression and 
treatment response [69]. Additionally, it has been found that individuals 
possessing the S allele experienced more depressive symptoms, clinical 
depression, and suicide attempts following recent stressful events or 
childhood maltreatment/adversity than those individuals carrying the 
L allele [70]. 

Bukh et al. [71] recruited a sample of 290 patients diagnosed 
with a single depressive episode, and using structured interviews, 
assessed the outcome of AD treatment and the presence of stressful 
life events during a six-month period preceding onset of depression. 
Nine polymorphisms in the genes encoding the serotonin transporter, 
brain derived neurotrophic factor, catechol-O-methyltransferase, 
angiotensin converting enzyme, tryptophan hydroxylase, and the 
serotonin receptors 1A, 2A, and 2C were genotyped. No evidence 
was forthcoming in support of the idea that the effects of the genetic 
polymorphisms on treatment outcome were dependent on stressful life 
events experienced by the individual prior to onset of depression [72]. 
Keers et al. [73] observed that stressful/adverse life events predicted a 
marked more effective response to citalopram, but showed no effect 
on response to nortriptyline; variation in the 5-HTTLPR promoter 
region polymorphism and another polymorphism in the gene, STin4, 
significantly modified these treatment effects. The serotonin transporter 
gene, SLC6A4, encodes the protein responsible for serotonin reuptake 
from the synaptic cleft following release from serotonergic neurons. 
The association between AD-induced mania and candidate genetic 
variants, focusing upon the promoter polymorphism of SLC6A4, has 
been examined [74]. Nevertheless, on the basis of a meta-analysis, 
Biernacka et al. [75] in attempting to confirm an association between 
the serotonin transporter gene polymorphism 5-HTTLPR (see above), 
and AD-induced mania, concluded that there was insufficient evidence. 

Generalized anxiety disorder, a highly prevalent chronic 
neuropsychiatric disorder with marked morbidity and mortality. It is 
characterized by excessive, uncontrollable and often irrational worry 
about everyday things that is disproportionate to the actual source of 
worry, and symptoms that interfere with everyday behaviors persist 
for at least six months [76]. For both acute and chronic treatment, 
AD compounds with 40-70% treatment response are prescribed [77-
79]. The 5-HT2A receptor is expressed widely throughout the central 
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nervous system, particularly near most of the serotonergic terminal 
rich areas, including neocortex (mainly prefrontal, parietal, and 
somatosensory regions), and the olfactory tubercle, and is coded by 
the HTR2A gene. Links between the A-1438G (rs6311) polymorphism 
and mood disorders have been obtained [80], and several studies 
have found associations between the rs7997012 and rs17288723 
single nucleotide polymorphisms (SNPs) and AD treatment outcome 
in patients presenting depression spectrum disorders [81-83]. 
Venlafaxine is a serotonin-norepinephrine reuptake inhibitor for 
treatment of major depressive disorder, generalized anxiety disorder, 
and comorbid indications. Lohoff [84] tested whether or not rs7997012 
polymorphism predicted treatment outcome in 156 patients with 
generalized anxiety disorder. During their six-month open-label 
clinical trial administering venlafaxine XR (extended-release), they also 
obtained scores on the Hamilton Anxiety Scale and the Clinical Global 
Expression of Improvement scale. The frequency of the G allele differed 
between responders (70%) and nonresponders (56%) at six months 
on the Hamilton, and the G allele was associated with improvement. 
Similarly, Lohoff et al. [85] studied the interaction between SLC6A4 
5-HTTLPR/rs25531 haplotype and rs7997012 polymorphism for 
venlafaxine XR in an 18-month relapse prevention trial comprising 112 
patients. Patients with genotypes La/La + G/G or La/La + G/A (n=28) 
showed lower Hamilton scores than those with genotypes La/S +A/A 
or S/S +A/Aat six months, thereby concluding a gene-gene interaction 
between these markers. 

Hypothalamic-Pituitary-Adrenal Axis (HPA) Regulation
Clinical and laboratory studies have shown that biological stress 

systems are shaped by adverse environments to instigate functioning 
in epigenetic systems with consequences for brain maturation under 
disorder conditions. Cortisol effects are exerted through glucocorticoid 
and mineralocorticoid receptors, with extremely high densities of 
glucocorticoid receptors in the hippocampus, dentate gyrus, prefrontal 
cortex, paraventricular nucleus of the hypothalamus, and amygdala, 
and mineralocorticoid mainly in the hippocampus, prefrontal cortex, 
and amygdala [86]. Both glucocorticoid and mineralocorticoid are 
co-expressed in the limbic system with balanced functioning in stress 
response regulation [87]. FKBP5 (FK506 binding protein 5), a protein 
encoded by the FKPB5 gene and involved in immunoregulation, is 
implicated in posttraumatic stress disorder, depression, and anxiety 
[88,89]. FKPB5 SNPs interact with childhood trauma to predict severity 
of adult PTSD [90]. As a co-chaperone of glucocorticoid influences [91], 
its activity and alleles associated with enhanced expression of FKBP5 
following glucocorticoid activation induce increased glucocorticoid 
resistance with reduced efficiency of the negative feedback of the stress 
hormone axis in healthy controls. This causes a prolongation of stress 
hormone system activation following exposure to stress [92]. Tyrka 
et al. [93] addressed the potential role of polymorphisms in genes 
regulating the HPA axis, thereby affecting putatively AD drug efficacy. 
Glucocorticoid is encoded by the NR3C1 gene on chromosome 5, which 
has three protein domains: immunogenic, DNA, and ligand-binding, 
as well as several functional genetic polymorphisms [94]. Relevant to 
mood disorders, SNPs in the region encoding the immunogenic domain 
involving changes in glucocorticoid function, linked to glucocorticoid-
resistance syndromes, have been identified, e.g., ER22/23EK [95], which 
induces loss of glucocorticoid-sensitivity [96]. An overrepresentation 
of the ER22/23EK allele conferring glucocorticoid resistance has 
been reported [97,98]. N363S and BclI polymorphisms are associated 
with hypersensitivity to glucocorticoids, whereas the ER22/23EK 
polymorphism is related to glucocorticoid resistance. Both BclI and 

ER22/23EK polymorphisms were associated with susceptibility to 
develop major depression [97], while the ER22/23EK polymorphism 
was associated with a faster clinical response to AD treatment. 

Longitudinal studies of abuse and neglect indicate the increased 
risk of cognitive impairment, social and emotional difficulties, 
and elevated risk for neuropsychiatric and physical disorder [99]. 
Conditions manifested by PTSD evidence abnormal functioning 
of frontal brain systems [100] and smaller cerebral and cerebellar 
volumes related to earlier onsets of abuse and longer durations of 
abuse [101]. Early life stress exerts long-lasting, even permanent, 
effects upon hippocampus associated cognitive functioning [102]; this 
regime disrupts development of neural systems mediating reward-
related behaviors [103]. Horstmann and Binder [104] have argued that 
despite the glucocorticoid measures and presence of polymorphisms 
involving the stress hormone system showing associations with 
response to ADs, necessary concurrent assessment of several clinical, 
biomarker, and pharmacokinetic variables is required, before a suitable 
level of predictability is achieved. Nevertheless, the structure-function 
relationships of the HPA axis with regions involved in stress coping or 
non-coping, and the dynamics of the glucocorticoid system, are critical 
to notions concerning epigenetic influences on the etiopathogenesis 
of mood disorders [105] and predicting AD treatment response 
[106,107]. Compared to suicide victims who had not suffered neglect/
abuse or healthy controls, suicide victims with a history of early 
childhood neglect/abuse displayed evidence of hypermethylation of the 
glucocorticoid gene promoter [108,109]. Suicide victims not exposed 
to early childhood adversity or patients afflicted by major depression 
only displayed no epigenetic marking of the hippocampus [110]. 
Thus, it is increasingly evident that epigenetic mechanisms mediate 
the gene-environment dialog in early life, thereby providing persistent 
epigenetic programming of adult neurophysiology dysfunctions and 
dysregulations [111]. 

Glucocorticoid sensitivity is influenced by several aspects of 
mood. First, cortisol awakening rise, reflecting the natural response 
to waking-up, with 50-75% increases in cortisol within 30 min, is 
modulated by sleep patterns, seasonal variation, daily activities, health 
indicators, and stressors/trauma [112,113]. Patients presenting mood 
disorders show higher basal cortisol awakening rise levels [114-116]. 
Second, HPA axis challenge using the dexamethasone suppression test 
indicates non-suppression effects in mood disorder patients [117-119]. 
And third, scalp-hair cortisol is associated with dysregulations linked 
to mood disorder [120-122]. Genetic variations on the glucocorticoid 
gene NR3C1 affect cortisol sensitivity [123]. Haplotype 4 (TthIIII + 9β) 
and haplotype (TthIIII + 9β + ER22/23EK) are linked to resistance for 
glucocorticoid [124], and polymorphisms are associated with a generally 
healthy type [125]. Haplotype 2 (BclI), haplotype 3 (TthIIII + BclI) and 
haplotype 6 are associated with hypersensitivity to glucocorticoids 
and cortisol [126]. Both the ER22/23EK and BclI polymorphisms are 
associated with higher risk for a depressive episode [127,128], and 
variable responses to AD treatment [129]. Mineralocorticoid gene 
SNPs involved in mood disorder included the V allele in the MRI180V 
SNP and -2G/C variant. The FKBP5 and CRH-R1 polymorphisms 
are associated with glucocorticoid resistance and reduced negative 
feedback of the HPA axis [92]. Epigenetic changes wrought by adverse 
environments showed lasting changes to HPA functioning [130,131] as 
well as mood disorders [132,133]. Spijker and Van Rossum [134] have 
outlined epigenetic changes, both early-in-life and in vitro, affecting 
the set-point and HPA axis regulation.

Mood disorders are associated with early adversity, often prenatal 
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traumatic stress [130,135,136], and frequently are accompanied by 
relative elevations of glucocorticoid stress hormones. The deregulation 
and the irregularity of the HPA axis presents a major aspect of symptom 
and biomarker profiles in depressive disorders [137-139], focusing 
on the role of elevated cortisol [140] and the putative AD-induced 
normalization of HPA function [141]. The biological stress response 
exerts essential functions in coping with life events, differing widely 
between individuals with genetically and epigenetically determined set-
points during infancy and adolescence [142]. It is possible the depressive 
spectrum disorders constitute an adaptive defense mechanism to 
excessive stress/distress, with the HPA axis expressing a hub in brain 
stress circuits implicated in depressive sub-types [143]. Nevertheless, 
both the corticolimbic (prefrontal cortex-hippocampus-amygdala) 
and the reciprocal monosynaptic cerebello-hypothalamic connections, 
together with dense glucocorticoid binding sites, play an important 
role in stress regulation and depressive disorder [105]. Piwowarska 
et al. [144] undertook to determine whether or not increased plasma 
concentrations occurred in patients with major depressive disorder as 
measured by the Hamilton Depression Rating Scale, and whether or 
not SSRI treatment with fluoxetine may re-regulate cortisol levels in 
a study of 21 patients (14 women; aged 29-75 years) and 24 healthy 
controls. Among patients responding to fluoxetine therapy (reduction 
of Hamilton scores by at least 50%), levels of cortisol were decreased. 
In mood disorders, higher mean cortisol levels and higher cortisol-
awakening rise indicate hyperactivity of the HPA axis and dysregulated 
glucocorticoid sensitivity determined in part by polymorphisms in 
genes encoding receptors and proteins involved in HPA axis regulation 
[124,127,145]. Spijker and van Rossum [134] have outlined both genetic 
and epigenetic changes influencing the set point and regulation of the 
HPA axis, with major effects upon mood states that could originate 
from traumatic experiences in utero and during infancy [109,146].

Both the release of CRH and arginine vasopressin in the 
parvocellular neurons of the paraventricular nuclei of the hypothalamus 
mediate parallel activation of the sympathetic nervous system and the 
HPA, in turn activating proopiomelanocortin synthesis, processed 
to adrenocorticotrophin hormone, which induces secretion of 
glucocorticoids from the adrenal cortex [87,147]. Glucocorticoids act 
through mineralocorticoid and glucocorticoid receptors. The former, 
high-affinity receptors, are implicated in the appraisal process and 
acute stress response onset, and the latter, low-affinity receptors, 
promote adaptation and recovery from stress [148]. Glucocorticoid 
signaling of the negative feedback process involves a complex 
arrangement of agents involving the transcriptional regulation of 
target genes [149]. Preclinical and clinical studies point to impaired 
mineralocorticoid and glucocorticoid signaling capacity coupled to 
over activity of the corticotrophin-releasing hormone and arginine-
vasopressin systems [150]. The over activity of the HPA axis, expressed 
by hypercortisolism, adrenal hyperplasia, and abnormalities in negative 
feedback, characterizes the biological abnormality in melancholic 
depression. In depressive states, anterior pituitary CRH1 receptors 
are down-regulated and response to corticotropin-releasing hormone 
infusion is blunted while, on the other hand, vasopressin V3 receptors 
in the anterior pituitary express enhanced responding to arginine-
vasopressin stimulation which influences HPA over activity [151]. 
Depressed patients showed elevated numbers of adrenocorticotrophin 
hormone [152] and cortisol [153] secretory pulses as expressed through 
increased plasma and urinary free cortisol [154]. These changes were 
accompanied by increased size of pituitary and adrenal glands [155]. 
During pregnancy, maternal cortisol promotes secretion of placental 
corticotropin-releasing hormone [156]. In a group of medication-free 

pregnant women presenting major depression (n=27) or not (n=38), 
O’Keane et al. [156] found that maternal cortisol concentrations 
correlated highly with corticotropin-releasing hormone secretion for 
all participants. Second trimester corticotropin-releasing hormone 
concentrations and mean evening salivary concentrations were 
significantly higher in the depressed women.

Neurotrophic Factors
Meta-analysis of association data of mood disorders suggests 

the role of particular genes posing genetic risk with differential 
expression evidence in brains of mood disorder patients, supporting 
the contributions of specific genes. The “neurotrophin hypothesis” of 
depression posits a role of brain-derived neurotrophic factor (BDNF) 
in depression, although it is unknown whether BDNF is more involved 
in the etiology of depression or in the mechanism of action of ADs. 
Accordingly, deficiency in neurotrophic support levels may underlie 
mood disorders such that elevation of neurotrophic status to normal 
levels engenders mood recovery. Castrén and Rantamäki [157] have 
provided an account on the role of BDNF and its receptors in depression 
and the AD response presenting a model whereby the effects of AD 
treatments may occur via a reactivation of activity-dependent and 
BDNF-mediated cortical plasticity. Wolkowitz et al. [158] observed 
that pre-treatment with SSRIs, BDNF levels were lower in depressed 
subjects than in controls, but these levels did not correlate significantly 
with the pre-treatment assessment of depression severity. Depression 
ratings improved with SSRI treatment, and BDNF levels increased with 
treatment. Changes in BDNF levels were not significantly correlated 
with changes in depression ratings. However, pre-treatment BDNF 
levels were directly correlated with AD responses, and patients who 
responded to treatment (≥ 50% improvement in depression ratings) 
had higher pre-treatment BDNF levels than did non-responders. These 
results confirm low serum BDNF levels in unmedicated depressed 
subjects and confirm AD-induced elevations in BDNF levels, but imply 
that ADs, in conjunction with correcting BDNF insufficiency, function 
through a permissive or facilitatory role of BDNF in the mechanism 
of action of ADs. In this context, network analysis of meta-analysis-
generated candidate genes expressing differential response in patient 
brains identified signaling pathways and functional clusters implicated 
in genetic risk for mood disorders [159].

An association between Val66 allele and higher neuroticism 
has been found, whereas the Met allele was either linked to lower 
neuroticism [160] or had no association [161,162]. Nevertheless, 
significant associations have been reported between Met allele carriers 
and increased introversion [163], increased harm avoidance [164], and 
significant gene-gene and gene-environment interactions pertaining 
to anxiety- and depression-linked endophenotypes [165-167]. Lester 
et al. [168] reported findings from a sample of 374 anxiety-disorder 
children of European ancestry undergoing cognitive-behavior therapy, 
from whom DNA was collected from buccal cells with cheek swabs. 
Their treatment response was assessed at post-treatment and follow-up 
time points. No significant associations were observed between BDNF 
rs6265 and the response to psychotherapy. However, children with one 
or two copies of the T allele of NGF rs6330 showed a greater likelihood of 
relinquishing their primary anxiety diagnosis at follow-up. The recently 
discovered human BDNF Val66Met (BDNF(Met)) polymorphism may 
play a role in stress vulnerability through pharmacogenetic influences 
affecting molecular and structural mechanisms underlying the 
interaction. Yu et al. [169] observed that heterozygous BDNF(+/Met) 
mice displayed HPA axis hyperreactivity, increased depressive-like and 
anxiety-like behaviors, and impaired working memory compared with 
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WT mice after 7 d restraint stress. Also, BDNF(+/Met) mice exhibited 
more prominent changes in BDNF levels and apical dendritic spine 
density in the prefrontal cortex and amygdala after stress, related 
to impaired working memory and elevated anxiety-like behaviors. 
These depressive-like behaviors in BDNF(+/Met) mice were reversed 
selectively by acute administration of desipramine, but not fluoxetine. 
Interestingly, these selective behavioral, molecular, and structural 
deficits appear similar to the stress and human genetic BDNF(Met) 
polymorphism interaction. From an aspect of “personalized medicine” 
(see below) the finding that desipramine but not fluoxetine exerted 
AD effects on BDNF(+/Met) mice suggests that specific classes of ADs 
may be a more effective treatment option for depressive symptoms in 
humans with this genetic variant BDNF.

Anxiety mood disorders, highly prevalent and persisting into 
adulthood [7,170], often have childhood onset [171], accompanied by 
several deficits/problems [172-174] with risk for various states of future 
ill health [175-177]. High rates remission and treatment response are 
predicted by symptom severity [178], parental psychopathology [179], 
and co-morbid mood disorder [180]. Meta-analyses from association 
data of mood disorders has indicated the role of particular genes 
in genetic risk, and the integration of association data from meta-
analyses with differential expression data in brains of mood disorder 
patients could heighten the level of support for specific genes [159]. 
Several lines of evidence imply mechanisms underlying the reported 
increase in anxiety-like behavior elicited by perturbation in BDNF 
signaling [181]. The secretion of BDNF is activity-dependent with 
reduced secretion linked to the effects of stress and mood disorders 
[182,183]; AD treatments generally elevate BDNF secretion [184,185]. 
In the functional rs6265 (Val66Met) polymorphism, the Met allele is 
associated with decreased activity-dependent BDNF secretion [186], 
structural brain abnormalities in limbic regions [187], impaired 
hippocampal activity [188], impaired associative fear learning [189], 
defective BDNF secretion, and increased anxiety-related behavior in 
knock-in mice [190]. The Met allele decreases BDNF transport, contrary 
to the superior functioning of the BDNF polymorphism (Val(66)Met) 
Val allele, and has been associated with worsened performance on 
several cognitive domains in euthymic bipolar-disorder subjects and 
controls. Manic patients with the Val allele (Met-) had higher Barrow 
Welsh Art Scale for creativity and neuropsychological test scores than 
Met+ carriers [191].

Pharmacogenetics of Mood Disorder Treatment
Epigenetics of mood disorder implies a psychopathological 

trajectory for disorder risk, invariably precipitated by environmental 
adversity and trauma [192]. Consequently, description and prediction 
of the extent to which the gene profiles of individuals affect their 
responses to pharmacogenetic therapeutic interventions may be 
achieved [193,194] through applied notions of genes, proteins, and SNPs 
[195]. Scharinger et al. [196] have described comprehensive evidence 
on the influence of serotonergic genes (SLC6A4, HTR1A, MAOA, 
TPH2) and BDNF on the following neural intermediate phenotypes: 
amygdala reactivity, coupling of amygdala-anterior cingulate cortex 
activity, volume of anterior cingulate cortex, hippocampal volume, 
and serotonin receptor 1A (5-HT1A) binding potential. Several factors 
contribute to the difficulties involving drug treatment efficacy, e.g., 
delay-of-onset of therapeutic effect and tolerance, and compliance 
issues [197]. Pharmacogenetic studies of psychometric outcome 
measures of drug response are hampered by small effect sizes. These may 
be handled through intermediate endophenotypes of drug response, 
as imaging studies suggest, thereby strengthening the relationship 

between genes and drug response, as well as providing new insights 
into the neurobiology of depression and individual drug responses. 
The pharmacogenetics of treatments for mood disorders may focus 
upon several aspects of drug action, including pharmacokinetics, 
neurotransmitter metabolism and metabolic enzymes, transporter 
mechanisms, etc. For example, Porcelli et al. [198] have focused 
upon genes linked to pharmacodynamics, and in the stratification 
of these identifications, have indicated several inconsistencies across 
observations. Scharinger et al. [199] have reviewed imaging genetics 
studies in mood disorders that apply complex genetic disease models, 
such as epistasis and gene-environment interactions, and their impact 
on brain systems regulating emotion processing and interventional 
outcomes. The notion of “differential-susceptibility” incorporates 
the specific genetic variants of individuals and the extent to which 
they are affected by environmental experiences [200-203]. Eley et al. 
[204] collected DNA from 584 individuals presenting anxiety-disorder 
and undergoing manual-based cognitive-behavior therapy, all with 
four white European grandchildren. They tested whether or not 
treatment response was associated with the 5-HTTLPR that was shown 
previously to moderate environmental influences upon depression 
[205]. They observed that children with the short-short allele genotype 
were significantly more likely to respond to cognitive-behavior therapy 
than those children carrying a long allele. In another study with 
adult bulimia-mood disorder co-morbidity patients [206,207], it was 
shown that the 5-HTTPLR short allele predicted a poorer treatment 
response whether or not cognitive-behavior therapy or medication or a 
combined therapy was administered. 

Despite lack of molecular mechanisms for gene expression, 
P11 (S100A10), which is involved in intracellular transmembrane-
trafficking of proteins [208], modulates neuronal function and is 
implicated in the pathophysiology of depressive disorders [209], with 
a role in regulation of how brain cells respond to 5-HT. In a laboratory 
model for gene therapy, p11 expression in mice was manipulated 
genetically by RNA interference. p11 was knocked down in the nucleus 
accumbens or in the anterior cingulate, and viral vectors were used 
to insert p11 into the nucleus accumbens of mice with knocked-out 
p11 [210]. The mice were then tested for laboratory expressions of 
depression-like behaviors (time of immobility in forced-swim and tail-
suspension tests) and anhedonia (strength of sucrose preference). This 
was followed by measures of post-mortem human p11 concentrations 
in the brains of 17 depressed patients and 17 healthy age- and sex-
matched controls. Restoration of p11 expression specifically in the 
nucleus accumbens of the p11 knockout mice normalized depression-
like behaviors. Human nucleus accumbens tissue showed a reduction 
of p11 protein in the depressed patients. The results suggested that 
p11 loss in rodent and human nucleus accumbens may contribute to 
the pathophysiology of depression. Additionally, there are very high 
S100B protein expressions, ensuring neuro- and gliotrophin inducing 
plasticity, in white matter tracts that are involved in the pathogenesis 
and treatment of psychiatric diseases such as major depression [211]. 
ADs elevate p11 levels in brain regions and P11 gene therapy was 
antidepressive: p11 concentrations were reduced in post-mortem brain 
tissues of patients presenting depressive disorder and by the expressions 
of depression-like behavioral phenotypes [212,213]. Moreover, AD 
compounds have been found to exert neurogenic effects in an AD action 
[214,215]. Schmidt et al. [216] utilized bacTRAP translational profiling 
to illustrate that layer 5 corticostriatal pyramidal cells expressing p11 
(S100a10) were markedly and specifically responsive to chronic AD 
intervention. This response required p11 and included the specific 
induction of Htr4 expression. Cortex-specific deletion of p11 abolished 
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the behavioral responses to SSRIs, but did not lead to increased 
depression-like behaviors. Their findings identified corticostriatal 
projection neurons that were critical for the response to ADs, suggesting 
that the regulation of serotonergic tone in this single cell type may have 
a pivotal role in AD therapy. Melas et al. [217] have observed decreased 
p11 levels, associated with higher methylation in the promoter region, 
in the prefrontal cortex of Flinders Sensitive Line rats, a depression 
model. The p11 level was reversed to normal by chronic treatment 
with the SSRI, citalopram, and was associated with increased P11 gene 
expression and reduced mRNA levels of DNA methyltransferases, 
Dnm1 and Dnmt3a that maintain forebrain DNA methylation. These 
studies pertain to epigenetic mechanisms underlying p11 involvement 
in AD interventions. Using the PubMed database of publications to 
mid 2011, Gvozdic et al. [218] reviewed the available literature on 
pharmacogenetics of AD response and side effects. They observed that 
several variants in candidate genes involved in the pharmacokinetics 
or pharmacodynamics of ADs, including association findings in the 
serotonin transporter gene 5-HTT, serotonin receptor genes, a gene 
coding an efflux pump in the blood-brain-barrier (ABCB1), and genes 
involved in the HPA axis. They concluded that future studies ought 
to investigate comprehensively the functional-biomarker analyses and 
underlying pathophysiology in considerations of gene-gene and gene-
environment interactions.

Adverse therapeutic drug reactions have played a critical role in 
determining the suitability of pharmacological treatment of patients 
on both individual and group bases, with passage of drug across the 
blood-brain barrier being a related issue that affects pharmacokinetics. 
P-glycoprotein (P-gp), an ATP-driven efflux pump with capillary 
location [219], recognizes or expels drugs, including ADs [220], 
and is encoded by the ABCB1 gene. Laboratory studies indicate that 
penetration of the blood-brain barrier by ADs is dependent on P-gp 
functionality [221,222]. The relationship between ABCB1 gene variants 
and response to AD treatment is unclear [223-225]. To study the 
association between ABCB1 gene variants and adverse effects of AD 
compounds in a large cohort of patients presenting major depression, 
de Klerk et al. [226] used the Netherland Study of Depression and 
Anxiety to examine data concerning drug use and side effects. Six 
ABCB1 gene variants were selected, 1236T>C, 2677G>T/A, 3435T>C, 
rs2032583, rs2235040, and rs2235015, and haplotypes. They found a 
significant association between the number of SSRI-related adverse 
drug effects and rs2032583, rs2235040, and a haplotype. Serotonergic 
effects, sleepiness, gastrointestinal complaints, and sexual effects were 
predicted by these variants and haplotype. 

Conclusions
Epigenetic mechanisms linked with a variety of environmental 

factors that encompass several aspects of adversity alter developmental 
trajectories of personal cognitive-emotional profiles that elevate 
susceptibility for mood disorders by affecting normal brain development 
and regional integrity. The involvements of serotonergic and HPA axis 
regulation, and neurotrophic factors in the pharmacogenetics of mood 
disorders may be traced through sites of action, genes implicated, 
promoter regions, and the multitude of clinical expressions of disorder. 
Epigenetic aberrations can affect drug treatment by modulating the 
expressions of key genes involved in the metabolism and distribution 
of drugs as well as drug targets, thereby contributing to inter-individual 
variation in drug response. The observed epigenetic alterations, 
together with the epigenetic profiles of circulating nucleic acids, have 
great potential to be used as biomarkers for personalized therapy. 
Ivanov et al. [227] have reviewed an update of pharmacoepigenetics 

with respect to regulation of drug absorption, distribution, metabolism, 
and excretion (ADME) genes and drug targets, and an implicit utility 
for predicting inter-individual variations in drug response. Kroeze et 
al. [228] have concluded that serotonin transporter gene variation in 
humans affects the efficacy and side effects of SSRIs, whereas on the 
other hand, SSRIs generally do not affect serotonin transporter gene 
expression in nonhuman animals. Instead, SSRIs alter mRNA levels of 
genes encoding serotonin receptors, components of non-serotonergic 
neurotransmitter systems, neurotrophic factors, hypothalamic 
hormones, and inflammatory factors, thereby presenting one case-
study for illustrating epigenetic modulation in mood disorder.
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